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1. Introduction

All graphs in this paper are finite, undirected and simple. By a surface we mean a compact, con-
nected 2-dimensional manifold with empty boundary. The classification theorem of surfaces (see
e.g. [16]) states that each surface is homeomorphic to either S g , the surface obtained from the sphere
by adding g handles, or Nk , the surface obtained from the sphere by adding k cross-caps. Thus
S0 = N0 is the sphere, S1 is the torus, N1 is the projective plane and N2 is the Klein bottle.

In this paper we study a specific instance of the following more general question: Given a surface
Σ and an integer t � 0, which graphs drawn in Σ are t-colorable?

Heawood [11] proved that if Σ is not the sphere, then every graph in Σ is t-colorable as long as
t � H(Σ) := �(7 + √

24γ + 1 )/2�, where γ is the Euler genus of Σ , defined as γ = 2g when Σ = S g

and γ = k when Σ = Nk . Incidentally, the assertion holds for the sphere as well, by the Four-Color
Theorem [2,4,3,21]. Ringel and Youngs (see [20]) proved that the bound is best possible for all surfaces
except the Klein bottle. Dirac [5] and Albertson and Hutchinson [1] improved Heawood’s result by
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Fig. 1. The graph H7.

showing that every graph in Σ is actually (H(Σ) − 1)-colorable, unless it has a subgraph isomorphic
to the complete graph on H(Σ) vertices.

We say that a graph is (t +1)-critical if it is not t-colorable, but every proper subgraph is. Dirac [6]
also proved that for every t � 8 and every surface Σ there are only finitely many t-critical graphs
on Σ . Using a result of Gallai [9] it is easy to extend this to t = 7. In fact, the result extends to t = 6
by the following deep theorem of Thomassen [26].

Theorem 1.1. For every surface Σ there are only finitely many 6-critical graphs in Σ .

Thus for every t � 5 and every surface Σ there exists a polynomial-time algorithm to test whether
a graph in Σ is t-colorable. What about t = 3 and t = 4? For t = 3 the t-coloring decision problem
is NP-hard even when Σ is the sphere [10], and therefore we do not expect to be able to say much.
By the Four-Color Theorem the 4-coloring decision problem is trivial when Σ is the sphere, but it
is open for all other surfaces. A result of Fisk [8] can be used to construct infinitely many 5-critical
graphs on any surface other than the sphere, but the structure of 5-critical graphs on surfaces appears
complicated [19, Section 8.4].

Thus the most interesting value of t for the t-colorability problem on a fixed surface seems to
be t = 5. By the Four-Color Theorem every graph in the sphere is 4-colorable, but on every other
surface there are graphs that cannot be 5-colored. Albertson and Hutchinson [1] proved that a graph
in the projective plane is 5-colorable if and only if it has no subgraph isomorphic to K6, the complete
graph on six vertices. Thomassen [24] proved the analogous (and much harder) result for the torus,
as follows. If K , L are graphs, then by K + L we denote the graph obtained from the union of a copy
of K with a disjoint copy of L by adding all edges between K and L. The graph H7 is depicted in
Fig. 1 and the graph T11 is obtained from a cycle of length 11 by adding edges joining all pairs of
vertices at distance two or three.

Theorem 1.2. A graph in the torus is 5-colorable if and only if it has no subgraph isomorphic to K6 , C3 + C5 ,
K2 + H7 , or T11 .

Our objective is to prove the analogous result for the Klein bottle, stated in the following theorem.
The graphs L1, L2, . . . , L6 are defined in Fig. 2. Lemma 4.2 explains how most of these graphs arise in
the proof.

Theorem 1.3. A graph in the Klein bottle is 5-colorable if and only if it has no subgraph isomorphic to K6 ,
C3 + C5 , K2 + H7 , or any of the graphs L1, L2, . . . , L6 .

Theorem 1.3 settles a problem of Thomassen [26, Problem 3]. It also implies that in order to test
5-colorability of a graph G drawn in the Klein bottle it suffices to test subgraph isomorphism to one
of the graphs listed in Theorem 1.3. Using the algorithms of [7] and [17] we obtain the following
corollary.
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Fig. 2. The graphs L1, L2, . . . , L6.

Corollary 1.4. There exists an explicit linear-time algorithm to decide whether an input graph embeddable in
the Klein bottle is 5-colorable.

It is not hard to see that with the sole exception of K6, none of the graphs listed in Theorem 1.3
can be a subgraph of an Eulerian triangulation of the Klein bottle. Thus we deduce the following
theorem of Král’, Mohar, Nakamoto, Pangrác and Suzuki [14].

Corollary 1.5. An Eulerian triangulation of the Klein bottle is 5-colorable if and only if it has no subgraph
isomorphic to K6 .

It follows by inspection that each of the graphs from Theorem 1.3 has a subgraph isomorphic to a
subdivision of K6. Thus we deduce the following corollary.

Corollary 1.6. If a graph in the Klein bottle is not 5-colorable, then it has a subgraph isomorphic to a subdivision
of K6 .

This is related to Hajós’ conjecture, which states that for every integer k � 1, if a graph G
is not k-colorable, then it has a subgraph isomorphic to a subdivision Kk+1. Hajós’ conjecture is
known to be true for k = 1,2,3 and false for all k � 6. The cases k = 4 and k = 5 remain open.
In [27, Conjecture 6.3] Thomassen conjectured that Hajós’ conjecture holds for every graph in the
projective plane or the torus. His results [24] imply that it suffices to prove this conjecture for k = 4,
but that is still open. Likewise, one might be tempted to extend Thomassen’s conjecture to graphs in
the Klein bottle; Corollary 1.6 then implies that it would suffice to prove this extended conjecture for
k = 4.

Thomassen proposed yet another related conjecture [27, Conjecture 6.2] stating that every graph
which triangulates some surface satisfies Hajós’ conjecture. He also pointed out that this holds for
k � 4 for every surface by a deep theorem of Mader [15], and that it holds for the projective plane
and the torus by [24]. Thus Corollary 1.6 implies that Thomassen’s second conjecture holds for graphs
in the Klein bottle. For general surfaces the conjecture was disproved by Mohar [18]. Qualitatively
stronger counterexamples were found by Rödl and Zich [22].

Our proof of Theorem 1.3 follows closely the argument of [24], and therefore we assume familiarity
with that paper. We proceed as follows. The result of Sasanuma [23] that every 6-regular graph in
the Klein bottle is 5-colorable (which follows from the description of all 6-regular graphs on the Klein
bottle) allows us to select a minimal counterexample G0 and a suitable vertex v0 ∈ V (G0) of degree
five. If every two neighbors of v0 are adjacent, then G0 has a K6 subgraph and the result holds. We
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may therefore select two non-adjacent neighbors x and y of v0. Let Gxy be the graph obtained from
G0 by deleting v0, identifying x and y and deleting all resulting parallel edges. If Gxy is 5-colorable,
then so is G0, as is easily seen. Thus we may assume that Gxy has a subgraph isomorphic to one
of the nine graphs on our list, and it remains to show that either G0 can be 5-colored, or it has a
subgraph isomorphic to one of the nine graphs on the list. That occupies most of the paper.

We would like to acknowledge that Theorem 1.3 was independently obtained by Kawarabayashi,
Král’, Kynčl, and Lidický [12]. Their method relies on a computer search. The result of this paper forms
part of the doctoral dissertation [29] of the last author.

2. Lemmas

Our first lemma is an adaptation of [24, Theorem 6.1, Claim (8)].

Lemma 2.1. Let G be a graph in the Klein bottle that is not 5-colorable and has no subgraph isomorphic to K6 ,
C3 + C5 , or K2 + H7 . Then G has at least 10 vertices, and if it has exactly 10, then it has a vertex of degree
nine.

Proof. We follow the argument of [24, Theorem 6.1, Claim (8)]. Let G be as stated, and let it have
at most ten vertices. We may assume, by replacing G by a suitable subgraph, that G is 6-critical.
By a result of Gallai [9] it follows that G is of the form H1 + H2, where Hi is ki -critical, k1 � k2,
and k1 + k2 = 6. If k1 = k2 = 3, then we obtain that G is isomorphic to either K6 or C3 + C5, a
contradiction. So k1 � 2 and therefore G has a vertex adjacent to all other vertices. Now, suppose
for purposes of contradiction that |V (G)| � 9. If k1 = 1, then |V (H2)| � 8 and so H2 is of the form
H ′

2 + H ′′
2 , where H ′

2 = K2 or K1. Thus we may assume that k1 = 2 and that H2 is 4-critical. By
the results of [9] and [28], the only 4-critical graphs with at most seven vertices are K4, K1 + C5,
H7 and M7, where M7 is obtained from a 6-cycle, x1x2 . . . x6x1 by adding an additional vertex v
and edges x1x3, x3x5, x5x1, vx2, vx4, vx6. However, G has no subgraph isomorphic to K2 + K4 = K6,
K2 + (K1 + C5) = C3 + C5, or K2 + H7. This implies that G is isomorphic to K2 + M7. The latter graph
has nine vertices and 27 edges, and so triangulates the Klein bottle. However, K2 + M7 has a vertex
whose neighborhood is not Hamiltonian, a contradiction. �

Our next lemma is an extension of [24, Lemma 4.1], which proves the same result for cycles of
length at most six. If C is a subgraph of a graph G and c is a coloring of C , then we say that a vertex
v ∈ V (G) − V (C) sees a color α on C if v has a neighbor u ∈ V (C) such that c(u) = α.

Lemma 2.2. Let G be a plane graph with an outer cycle C of length k � 7, and let c be a 5-coloring of G[V (C)].
Then c cannot be extended to a 5-coloring of G if and only if k � 5 and the vertices of C can be numbered
x1, x2, . . . , xk in order such that one of the following conditions hold:

(i) some vertex of G − V (C) sees five distinct colors on C ,
(ii) G − V (C) has two adjacent vertices that both see the same four colors on C ,

(iii) G − V (C) has three pairwise adjacent vertices that each see the same three colors on C ,
(iv) G has a subgraph isomorphic to the first graph shown in Fig. 3, and the only pairs of vertices of C colored

the same are either {x5, x2} or {x5, x3}, and either {x4, x6} or {x4, x7},
(v) G has a subgraph isomorphic to the second graph shown in Fig. 3, and the only pairs of vertices of C

colored the same are exactly {x2, x6} and {x3, x7},
(vi) G has a subgraph isomorphic to the third graph shown in Fig. 3, and the only pairs of vertices of C colored

the same are exactly {x2, x6} and {x3, x7}.

Proof. Clearly, if one of (i)–(vi) holds, then c cannot be extended to a 5-coloring of G . To prove the
converse we will show, by induction on |V (G)|, that if none of (i)–(vi) holds, then c can be extended
to a 5-coloring of G . Since c extends if |V (G)| � 4, we assume that |V (G)| � 5, and that the lemma
holds for all graphs on fewer vertices. We may also assume that V (G) �= V (C), and that every vertex
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Fig. 3. Graphs that have non-extendable colorings.

of G − V (C) has degree at least five, for we can delete a vertex of G − V (C) of degree at most four
and proceed by induction. Likewise, we may assume that

(∗) the graph G has no cycle of length at most four whose removal disconnects G .

This is because if a cycle C ′ of length at most four separates G , then we first delete all vertices and
edges drawn in the open disk bounded by C ′ and extend c to that graph by induction. Then, by
another application of the induction hypothesis we extend the resulting coloring of C ′ to a coloring
of the entire graph G . Thus we may assume (∗).

Let v be a vertex of G − V (C) joined to m vertices of C , where m is as large as possible. Then we
may assume that m � 3, for otherwise c extends to a 5-coloring of G by the theorem of [25].

Since (i) does not hold, the coloring c extends to a 5-coloring c′ of the graph G ′ := G[V (C) ∪ {v}].
Let D be a facial cycle of G ′ other than C , and let H be the subgraph of G consisting of D and all
vertices and edges drawn in the disk bounded by D . If c′ extends to H for every choice of D , then c
extends to G , and the lemma holds. We may therefore assume that D was chosen so that c′ does not
extend to H . By the induction hypothesis H and D satisfy one of (i)–(vi).

If H and D satisfy (i), then there is a vertex w ∈ V (H) − V (D) that sees five distinct colors on D .
Thus w has at least four neighbors on C , and hence m � 4. It follows that every bounded face of the
graph G[V (C) ∪ {v, w}] has size at most four, and hence V (G) = V (C) ∪ {v, w} by (∗). Since (i) and
(ii) do not hold for G , we deduce that c can be extended to a 5-coloring of G , as desired.

If H and D satisfy (ii), then there are adjacent vertices v1, v2 ∈ V (H) − V (D) that see the same
four colors on D . It follows that m � 3, and similarly as in the previous paragraph we deduce that
V (G) = V (C) ∪ {v, v1, v2}. It follows that c can be extended to a 5-coloring of G: if both v1 and v2
are adjacent to v we use that G does not satisfy (i), (ii), or (iii); otherwise we use that G does not
satisfy (i), (ii), or (iv).

If H and D satisfy (iii), then there are three pairwise adjacent vertices of v1, v2, v3 ∈ V (H) −
V (D) that see the same three colors on D . It follows in the same way as above that V (G) = V (C) ∪
{v, v1, v2, v3}. If v sees at most three colors on C , then c extends to a 5-coloring of G , because there
are at least two choices for c′(v). Thus we may assume that v sees at least four colors. It follows that
m = 4, because k � 7. Since G does not satisfy (v) or (vi) we deduce that c extends to a 5-coloring
of G .

If H and D satisfy (iv), then there are three vertices of V (H) − V (D) forming the first subgraph
in Fig. 3. But at least one of these vertices has four neighbors on C , and hence m � 4, contrary to
k � 7.

Finally, if H and D satisfy (v) or (vi), then H has a subgraph isomorphic to the second or third
graph depicted in Fig. 3, and the restriction of c′ to D is uniquely determined (up to a permutation of
colors). Since D has length seven, it follows that m � 3, and hence c′(v) can be changed to a different
value, contrary to the fact that the restriction of c′ to D is uniquely determined. �

The following lemma is shown in [23].

Lemma 2.3. All 6-regular graphs embeddable on the Klein bottle are 5-colorable.
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The next lemma is an adaptation of [24, Lemma 5.2] for the Klein bottle.

Lemma 2.4. Let G be isomorphic to C3 +C5 , let S be a cycle in G of length three with vertex-set {z0, z1, z2}, and
let u1 be a vertex in G\V (S) adjacent to z0 . Let G ′ be obtained from G by splitting z0 into two non-adjacent
vertices x and y such that u1 and at most one more vertex u0 in G ′ is adjacent to both x and y and such that
yz1z2x is a path in G ′ . Let G ′′ be obtained from G ′ by adding a vertex v0 and joining v0 to x, y, u1, z1, z2 . If
G ′′ is not 5-colorable and can be drawn in the Klein bottle, then either G ′\x or G ′\y has a subgraph isomorphic
to C3 + C5 or G ′′ is isomorphic to L4 .

Proof. We follow the argument of [24, Lemma 5.2]. If one of x, y has the same neighbors in G ′ as z0
does in G , say x, then G ′\y has a subgraph isomorphic to C3 + C5, as desired. Thus we can assume
that z0 has two neighbors in G such that one is a neighbor in G ′ of x but not y and the other is a
neighbor in G ′ of y but not x.

The vertices x, y have degree at least five in G ′′ , for if say y had degree at most four, then G ′′\y\v0
would not be 5-colorable (because G ′′ is not), and yet it is a proper subgraph of C3 + C5, a contradic-
tion. It follows that z0 has degree at least six in G . Let G consist of a 5-cycle p1 p2 p3 p4 p5 p1 and a
3-cycle q1q2q3q1 and the 15 edges piq j where 1 � i � 3, 1 � j � 5. Since the degree of z0 in G is at
least 6, we have z0 ∈ {q1,q2,q3}. The remainder of the proof is an analysis based on which vertices
are z0, z1, z2.

First suppose that z0, z1, z2 are q3,q1,q2, respectively. If both u0 and u1 are in {p1, p2, p3, p4, p5},
then we can color y, z1, z2, x with 2,1,2,1, respectively. We can color the remaining vertices with
colors 3,4,5 as the remaining vertices are v0 and a 5-cycle, and in this case v0 is only adjacent to one
of the vertices of the 5-cycle. If u1 = p1 and u0 = z1, then we color y, z1, z2, x, u1 by 2,1,2,3,4, re-
spectively. Since some neighbor of z0 in G is not a neighbor of y in G ′′ , some vertex in {p2, p3, p4, p5}
can obtain color 3 and the remaining vertices may be colored with colors 4 and 5.

Now consider the case where z0, z1, z2 are q1, p1, p2, respectively and u0 is not in {z1, z2}. Color
y, z1, z2, x, u0, u1 by 2,1,2,1,3,4, respectively. We can extend this to a 5-coloring of G ′′ , coloring v0
last, except (up to symmetry) in the following three cases. If u0 = q2 and u1 = p4, color q3 by the
same color as x or y and recolor either z1 or z2 by 4 and color the remaining vertices color 5. If
u0 = p3 and u1 = p4, then color q3 by color 1 or 2 and recolor z1 or z2 color 4. Then we can color
p5,q2 with colors 3 and 5 respectively. If u1 = p3 and u0 = p5, color q3 by 1 or 2 and recolor one of
z1, z2 by 3 and recolor p3, p4, p5,q2 by 4,3,4,5, respectively.

Now suppose that z0, z1, z2 are q1, p1, p2, respectively and u0 is in {p1, p2}. Without loss of gen-
erality let u0 = p2. Suppose that u1 ∈ {p3, p4, p5}. Then we can color y, z1, z2, x by 2,4,3,1 and can
color u1 by 3, except when u1 = p3, in which case we color u1 by 4. Next, color one of q2,q3 color
1 or 2. If both q2,q3 can be colored 1, 2 then the rest of the coloring follows. So we can assume
that q2,q3 are colored by 2,5, respectively and both q2,q3 are adjacent to x. (The argument is anal-
ogous if q2,q3 are both adjacent to y.) Since y has degree at least four in G ′ , at least one vertex in
{p3, p4, p5}\{u1} is joined to y and is colored 1. With possibly a swapping of the colors of z1 and z2,
we can now complete the 5-coloring.

Suppose that z0, z1, z2 are q1, p1, p2, respectively and u0 = p2 and u1 = q2. Color y, z1, z2, x,q2
colors 2,1,3,1,4, respectively. If q3 can be colored 2, then color p3, p4, p5, v0 colors 5,3,5,5, re-
spectively. So we may assume that q3 is adjacent to y. Then color q3 by 5. If we can color {p3, p4, p5}
by colors {1,2,3}, then color v0 with 5. If not, then p3, p4 are adjacent to the same vertex in
{x, y}. Since x has degree at least four in G ′ and only u0, u1 are adjacent to both x, y, that ver-
tex must be x. We may assume that p5 is adjacent to y since otherwise we color p3, p4, p5 by
2,3,2, respectively. It follows that G ′′ is isomorphic to L4 by an isomorphism that maps the vertices
z1, y,q3, z2,q2, p5, p4, p3, x, v0 to the vertices of L4 in order, where the vertices of L4 are num-
bered by reference to Fig. 2, starting at top left and moving horizontally to the right one row at
a time.

Now, consider the case when z0, z1, z2 are q1,q2, p1, respectively. If u0 /∈ {z1, z2}, then color
y, z1, z2, x, p2, p3, p4, p5,q3 by 2,1,2,1,3,4,3,4,5, respectively. If u0 = p1, color y, z1, z2, x by
2,1,3,1, respectively. If q3 is not adjacent to y, then color q3 by 2 and the vertices p2, p3, p4, p5
colors 4 and 5. If q3 is adjacent to y, color q3 by 5. Since x has degree at least four in G ′ , some vertex
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in {p2, . . . , p5} can be colored 2. The other vertices in this set could then be colored with colors 3
and 4. Thus assume that u0 = q2 = z1. Color y, z1, z2, x, u1 by 2,3,2,1,4 and we now will try and
extend this coloring. If q3 can be colored 1, then color p2, p3, p4, p5 by colors 4 and 5. So we as-
sume that q3 is adjacent to x. If u1 = p3, then recolor z2 by color 4 and color q3 by 2. Since y also
has degree at least four in G ′ , it must be adjacent to at least one of p4, p5, which we color 1. The
remaining vertices of {p1, . . . , p5} are colored 5. If u1 = q3, then we color one of p2 or p5 color 1 if
possible and complete the coloring by using 5 for two vertices in {p2, p3, p4, p5}. Now assume that
both p2 and p5 are joined to x. Since y has degree at least four in G ′ it follows that y is adjacent to
p3 and p4. We now claim that G ′′ is not embeddable on the Klein bottle. Notice that if an embedding
of this graph exists, it must be that it is a triangulation as it has 10 vertices and 30 edges. Consider
the induced embeddings of G ′′\p2, G ′′\p5 and G ′′\v0, respectively. The face of G ′′\p2 containing p2
is bounded by a Hamiltonian cycle of NG ′′(p2). There exist similarly constructed Hamiltonian cycles
in NG ′′(p5) and NG ′′(v0). However, each of these cycles contains the edge xp1. This would mean that
xp1 is part of three facial triangles, a contradiction.

Finally, consider the subcase where z0, z1, z2, u0, u1 are q1,q2, p1,q2, p2, respectively. Color
y, z1, z2, x, u1,q3 by 2,3,2,1,4,5, respectively. We may assume that q3 is adjacent to x else we can
recolor q3 by 1 and complete the coloring. Also, we can assume that p5 is adjacent to x else we color
p5, p4, by 1,4 and complete the coloring. Color p5 by 4. The coloring can be completed unless p3
and p4 are both adjacent to the same vertex in {x, y}. Since y must have degree at least four in G ′ ,
it follows that p3 and p4 are adjacent to y. It follows that G ′′ has a subgraph isomorphic to L4 by an
isomorphism that maps x, z2 = p1, q3, p2 = u1, q2 = z1 = u0, p5, p4, p3, y, v0 to the vertices of L4
in order, using the same numbering of the vertices of L4 as above. Thus G ′′ is isomorphic to L4. �

We also need a minor variation of the previous lemma, a case not treated in [24].

Lemma 2.5. Let G be isomorphic to C3 + C5 , let S be a cycle in G of length three with vertex-set {z0, z1, z2},
and let u1 be a vertex in G\V (S) adjacent to z0 . Let G ′ be obtained from G by adding an edge between two
non-adjacent vertices neither of which is z0 , and then splitting z0 into two non-adjacent vertices x and y such
that u1 is the only vertex in G ′ that is adjacent to both x and y and such that yz1z2x is a path in G ′ . Let G ′′ be
obtained from G ′ by adding a vertex v0 and joining v0 to x, y, u1, z1, z2 . If G ′′ is not 5-colorable and can be
drawn in the Klein bottle, then either G ′\x or G ′\y has a subgraph isomorphic to either C3 + C5 or K6 .

Proof. If one of x, y has the same neighbors in G ′ as z0 does in G , say x, then G ′\y has a subgraph
isomorphic to C3 + C5, as desired. Thus we can assume that z0 has two neighbors in G such that
one is a neighbor in G ′ of x but not y and the other is a neighbor in G ′ of y but not x. We may
assume that the vertices x, y have degree at least five in G ′′ , for if say y had degree at most four,
then G ′′\y\v0 = G ′\y would not be 5-colorable (because G ′′ is not), yet this is a proper subgraph of
C3 + C5 plus an additional edge, and hence by Lemma 2.1 must contain either C3 + C5 or K6 as a
subgraph, as desired. Moreover, the sum of the degrees of x and y in G ′′ is at most 10 since z0 has
degree at most seven in G . Thus, z0 must have degree seven in G while x and y must have degree
five in G ′′ .

Let G consist of a 5-cycle p1 p2 p3 p4 p5 p1 and a 3-cycle q1q2q3q1 and the 15 edges piq j where
1 � i � 3,1 � j � 5. Since the degree of z0 in G is seven, we have z0 ∈ {q1,q2,q3}. Without loss of
generality, let z0 = q1. Moreover, in G ′ , there is an edge between two of the p’s that are not adjacent
in G . Without loss of generality, suppose that this edge is p1 p3.

As u1 is the only vertex in G ′ adjacent to both x and y, we have that x and z1 are not adjacent.
Consider the graph Gxz1 obtained from G ′′ by deleting v0, identifying x and z1 into a new vertex w ,
and deleting parallel edges. Now Gxz1 must not be 5-colorable, as otherwise we could color G ′′ . Now
Gxz1 must contain a 6-critical subgraph H . As y has degree at most four in Gzx1 , y is not in H .
Thus |V (H)| � 7. By Lemma 2.1 we find that H is isomorphic to K6. The vertex w must be in H as
otherwise G\x would contain K6 as a proper subgraph, a contradiction. The remaining five vertices of
H induce a K5. So these vertices must be q2,q3, p1, p2, p3. Hence z1 must be one of p4 or p5.

A similar argument shows that y and z2 are not adjacent and that the analogously defined graph
G yz2 must contain a subgraph H ′ isomorphic to K6 with vertices q2,q3, p1, p2, p3 and the new vertex
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of G yz2 . Hence z2 must be one of p4 or p5. Without loss of generality, suppose that z1 = p4 and
z2 = p5. As there are edges between w and p1, p2, the edges xp1 and xp2 must be present in G ′ .
Similarly, the edges yp3 and yp2 must be in G ′ . Hence u1 = p2. Finally, as x and y have degree four
in G ′ and exactly one of p4 = z1 and p5 = z2 is adjacent to x and exactly one is adjacent to y, we
may assume without loss of generality that x is adjacent to q2 and y is adjacent to q3.

It is straightforward to color G ′′ . Color q2 and y with color 5; color q3 and x with color 4. Color
p2 and p4 with color 1. Color p3 and p5 with color 3. Color p1 and v0 with color 2. This 5-coloring
of G ′′ contradicts the hypothesis of the lemma. �

We also need an adaptation of [24, Lemma 5.3] for the Klein bottle. We leave the similar proof to
the reader.

Lemma 2.6. Let G be isomorphic to K2 + H7 , let S be a cycle in G of length three with vertex-set {z0, z1, z2},
and let u1 be a vertex in G\V (S) adjacent to z0 . Let G ′ be obtained from G by splitting z0 into two non-
adjacent vertices x and y such that u1 and at most one more vertex u0 in G ′ is joined to both x and y and such
that yz1z2x is a path in G ′ . Let G ′′ be obtained from G ′ by adding a vertex v0 and joining v0 to x, y, u1, z1, z2 .
If G ′′ is not 5-colorable and can be drawn in the Klein bottle, then G ′\x or G ′\y has a subgraph isomorphic to
K2 + H7 .

We also need a similar variation of the previous lemma to handle a case not treated in [24].

Lemma 2.7. Let G be isomorphic to K2 + H7 , let S be a cycle in G of length three with vertex-set {z0, z1, z2},
and let u1 be a vertex in G\V (S) adjacent to z0 . Let G ′ be obtained from G by adding an edge between two
non-adjacent vertices neither of which is z0 , and then splitting z0 into two non-adjacent vertices x and y such
that u1 is the only vertex in G ′ that is adjacent to both x and y and such that yz1z2x is a path in G ′ . Let G ′′ be
obtained from G ′ by adding a vertex v0 and joining v0 to x, y, u1, z1, z2 . If G ′′ is not 5-colorable and can be
drawn in the Klein bottle, then either G ′\x or G ′\y has a subgraph isomorphic to either K2 + H7 or K6 .

Proof. If one of x, y has the same neighbors in G ′ as z0 does in G , say x, then G ′\y has a subgraph
isomorphic to K2 + H7, as desired. Thus we can assume that z0 has two neighbors in G such that one
is a neighbor in G ′ of x but not y and the other is a neighbor in G ′ of y but not x. The vertices x, y
have degree at least five in G ′′ , for if say y had degree at most four, then G ′′\y\v0 = G ′\y would not
be 5-colorable (because G ′′ is not), and yet this is a proper subgraph of K2 + H7 plus an additional
edge and by Lemma 2.1 must contain K2 + H7, C3 + C5 or K6 as a subgraph, a contradiction.

Hence x and y have degree at least four in G ′ and so z0 has degree at least seven in G . Moreover,
the sum of the degrees of x and y is at most 9 since z0 has degree at most eight in G . Thus, z0 must
have degree eight in G . Without loss of generality we may assume that x has degree five and y has
degree four in G ′ .

We label K2 + H7 as follows. The two degree eight vertices are q1,q2. The degree six vertex is p1.
The degree fives are p2, p3, p4, p5, p6, p7, where p2, p3, p4 and p5, p6, p7 are triangles, p4 p5 is an
edge, and p2, p3, p6, p7 are adjacent to p1. Since the degree of z0 in G is eight, we have z0 ∈ {q1,q2}.
Without loss of generality, let z0 = q1. Moreover, in G ′ , there is an edge between two of the p’s that
are not adjacent in G .

As u1 is the only vertex in G ′ adjacent to both x and y, we have that x and z1 are not adjacent.
Consider the graph Gxz1 obtained from G ′′ by deleting v0, identifying x and z1 into a new vertex w ,
and deleting parallel edges. Now Gxz1 must not be 5-colorable, as otherwise we could 5-color G ′′ .
Thus Gxz1 must contain a 6-critical subgraph H . As y has degree at most four in Gzx1 , y is not
in H . Thus |V (H)| � 8. By Lemma 2.1 we find that H is isomorphic to K6 or C3 + C5. The vertex w
must be in H as otherwise G ′′ would contain a proper subgraph that is not 5-colorable, a contradic-
tion.

Let J = G ′\{x, y, z1}. If H is isomorphic to C3 + C5, then J must contain a subgraph isomorphic to
K2 + C5, because q2 and p1 are the only vertices of G\z0 = G\q1 that could have degree at least six.
Thus there must be two degree six vertices in J . These must be q2 and p1. The other five vertices
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Fig. 4. The graphs L1 and L2 with their vertices labeled.

must be neighbors of p1 and yet must form a C5. This is impossible. So H must be isomorphic to K6.
Now J must contain K5 as a subgraph. This can only happen if one of the edges p1 p4 or p1 p5 is
present in G ′ . Without loss of generality suppose that p1 p4 is present in G ′ . Then H must consist of
the vertices w,q2, p1, p2, p3, p4. So z1 must be one of p5, p6, p7. It follows that x is adjacent to p2
and p3.

Similarly, as u1 is the only vertex in G ′ adjacent to both x and y, we have that y and z2 are
not adjacent. Consider the graph G yz2 obtained from G ′′ by deleting v0, identifying y and z2 into a
new vertex w ′ , and deleting parallel edges. Now G yz2 must not be 5-colorable, as otherwise we could
5-color G ′′ . Now G yz2 must contain a 6-critical subgraph H ′ . Thus |V (H ′)| � 9. By Lemma 2.1 we find
that H ′ is isomorphic to K6, C3 + C5, or K2 + H7. The vertex w ′ must be in H as otherwise G ′′ would
contain a proper subgraph that is not 5-colorable, a contradiction.

Suppose that x is not H ′ . The previous argument for H shows that H ′ is isomorphic to K6, that H ′
consists of w ′,q2, p1, p2, p3, p4 and that y is adjacent to p2 and p3. But then there are two vertices,
p2 and p3, adjacent to both x and y, a contradiction.

So x is in H ′ . Now the neighbors of x must be in H ′ . Specifically, p2 and p3 are in H ′ . Note that
p2 and p3 are not equal to z2 as they are not adjacent to p5, p6 or p7. Meanwhile, at least one of
p2, p3 is not adjacent to y. Without loss of generality, suppose that p2 is not adjacent to y. Now p2
has degree five in G ′ and hence degree at most five in G yz2 . Thus the neighbors in G ′ of p2 and all
edges incident in G ′ with p2 must be in H ′ .

If H ′ is isomorphic to K6, then it follows that x must be adjacent to all of H\w ′ as well as z2.
That is, x must be adjacent to all the neighbors of p2, namely q2, p1, p3, p4. Now G ′ contains K6 as a
subgraph, a contradiction. If H ′ is isomorphic to C3 + C5, then xp2 p3 is a triangle in H ′ . Thus one of
these vertices must have degree seven in H ′ . However, x and p2 have degree five in G ′ while p3 has
degree at most six, a contradiction.

Thus H ′ is isomorphic to K2 + H7. As H ′ has nine vertices, z1 must be in H ′ and have degree five.
As z1 is adjacent to y but not adjacent to x, z1 has degree five in G ′ . However, z1 is adjacent to z2.
So z1 has degree four in G yz2 and so has degree at most four in H ′ , a contradiction. �
Lemma 2.8. Let G be a graph drawn in the Klein bottle, and let c,d ∈ V (G) be such that G\c does not embed in
the projective plane, and G does not embed in the torus. Then every closed curve in the Klein bottle intersecting
G in a subset of {c,d} separates the Klein bottle.

Proof. Let φ be a closed curve in the Klein bottle intersecting G in a subset of {c,d}, and suppose
for a contradiction that it does not separate the Klein bottle. Then φ is either one-sided or two-sided.
If φ is one-sided, then it intersects G\c in at most one vertex, and hence the Klein bottle drawing
of G\c can be converted into a drawing of G\c in the projective plane, a contradiction. Thus φ is
two-sided, but then the drawing of G can be converted into a drawing of G in the torus, again a
contradiction. �
Lemma 2.9. Let G be L1 or L2 with its vertices numbered as in Fig. 4, and let it be drawn in the Klein bottle.
Then
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Fig. 5. The graphs L5 and L6 with their vertices labeled.

(i) every face is bounded by a triangle, except for exactly one, which is bounded by a cycle of length five with
vertices c1,ai, c2,b j,bk in order for some indices i, j,k, and

(ii) for i = 0,1,2 the vertices a1,a2,a3 appear consecutively in the cyclic order around ci (but not necessarily
in the order listed), and so do the neighbors of ci that belong to {b1,b2,b3,b4}.

Proof. Let i ∈ {1,2}. There are indices j,k such that a j and bk are both adjacent to ci and are next to
each other in the cyclic order around ci . Let f i be the face incident with both the edges cia j and cibk .
We claim that the walk bounding f i includes at most one occurrence of ci and no occurrence of c0.
Indeed, otherwise we can construct a simple closed curve either passing through f i and intersecting
G in ci only (if ci occurs at least twice in the boundary walk of f i ), or passing through f i and a neigh-
borhood of the edge cic0 and intersecting G in ci and c0 (if c0 occurs in the boundary walk of f i ). By
Lemma 2.8 this simple closed curve separates the Klein bottle. It follows from the construction that it
also separates G , contrary to the fact that G\{ci, c0} is connected. This proves our claim that the walk
bounding f i includes at most one occurrence of ci and no occurrence of c0.

Since the boundary of f i includes a subwalk from a j to bk that does not use ci , we deduce that
c3−i belongs to the facial walk bounding f i . But the neighbors of c1 and c2 in {b1,b2,b3,b4} are
disjoint, and hence f i has length at least five. By Euler’s formula f1 = f2, this face has length exactly
five, and every other face is bounded by a triangle. This proves (i). Statement (ii) also follows, for
otherwise there would be another face with the same properties as f1 = f2, and yet we have already
shown that this face is unique. �
Lemma 2.10. Let G be L5 or L6 with its vertices numbered as in Fig. 5, and let it be drawn in the Klein bottle.
Then

(i) every face is bounded by a triangle, except for exactly two, which are bounded by cycles C1, C2 of length
five, each with vertices c1,ai, c2,b j,bk in order for some indices i, j,k,

(ii) if G = L5 , then C1 ∩ C2 consists of the vertices c1, c2 , and if G = L6 , then C1 ∩ C2 consists of the vertices
c1, c2,b5 and the edge c2b5 , and

(iii) for i = 1,2 the vertices a1,a2,a3,a4 appear consecutively in the cyclic order around ci (but not necessar-
ily in the order listed), and so do the neighbors of ci that belong to {b1,b2,b3,b4,b5}.

Proof. The proof is similar to the proof of Lemma 2.9. There are distinct pairs ( j1,k1) and ( j2,k2) of
indices such that a ji and bki are both adjacent to c1 and are next to each other in the cyclic order
around c1. Let f i be the face incident with both c1a ji and c1bki . We claim that the walk bounding f i
includes at most one occurrence of c1. For if not, then there is a simple closed curve φ that passes
through f i and intersects G in c1 only. But since L5 and L6 are not embeddable in the torus and L5\c1
and L6\c1 are not embeddable in the projective plane, it follows from Lemma 2.8 that φ separates the
Klein bottle. By construction, φ also separates G , a contradiction, as G\c1 is connected. This proves
our claim that the walk bounding f i includes at most one occurrence of c1. Thus the walk bounding
f i includes c2, and it follows similarly that c2 occurs in that walk at most once. We deduce that
f1 and f2 are distinct and have length at least five. Euler’s formula implies that f1, f2 have length
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exactly five, and that every other face is bounded by a triangle. It follows that conditions (i), (ii) and
(iii) hold. �
3. Reducing to K6

If v is a vertex of a graph G , then we denote by NG(v), or simply N(v) if the graph can be
understood from the context, the open neighborhood of the vertex v; that is, the subgraph of G
induced by the neighbors of v . Sometimes we will use N(v) to mean the vertex-set of this subgraph.
We say that a vertex v in a graph G embedded in a surface has a wheel neighborhood if the neighbors
of v form a cycle C in the order determined by the embedding, and the cycle C is null-homotopic.
(The cycle C need not be induced.)

Let G0 be a graph drawn in the Klein bottle such that G0 is not 5-colorable and has no subgraph
isomorphic to any of the graphs listed in Theorem 1.3. Let a vertex v0 ∈ V (G0) of degree exactly five
be chosen so that each of the following conditions hold subject to all previous conditions:

(i) |V (G0)| is minimum,
(ii) the clique number of N(v0), the neighborhood of v0, is maximum,

(iii) the number of largest complete subgraphs in N(v0) is maximum,
(iv) the number of edges in N(v0) is maximum,
(v) |E(G0)| is minimum,

(vi) the number of homotopically-trivial triangles containing v0 is maximum.

In those circumstances we say that the pair (G0, v0) is an optimal pair. Given an optimal pair (G0, v0)

we say that a pair of vertices v1, v2 is an identifiable pair if v1 and v2 are non-adjacent neighbors
of v0. If v1, v2 is an identifiable pair, then we define G v1 v2 to be the graph obtained from G0 by
deleting all edges incident with v0 except v0 v1 and v0 v2, contracting the edges v0 v1 and v0 v2 into
a new vertex z0, and deleting all resulting parallel edges. This also defines a drawing of G v1 v2 in the
Klein bottle.

We now introduce notation that will be used throughout the rest of the paper. Let G ′
0 be obtained

from G0 by deleting all those edges that got deleted during the construction of G v1 v2 . That means
all edges incident with v0 except v0 v1 and v0 v2 and all those edges of G0 that got deleted because
they became parallel to another edge. Thus if a vertex v of G0 is adjacent to both v1 and v2, then G ′

0
will include exactly one of the edges v v1, v v2. Thus the edges of G ′

0\v0 may be identified with the
edges of G v1 v2 , and in what follows we will make use of this identification. Now if J is a subgraph
of G v1 v2 with z0 ∈ V ( J ), then let Ĵ be the corresponding subgraph of G ′

0; that is, Ĵ has vertex-set

{v0, v1, v2} ∪ V ( J ) − {z0} and edge-set {v0 v1, v0 v2} ∪ E( J ). Let R̂1 and R̂2 be the two faces of Ĵ
incident with v0, and let R1, R2 be the corresponding two faces of J . We call R1, R2 the hinges of J .
Finally, let R̂ be the face of Ĵ\v0 containing v0.

Lemma 3.1. Let (G0, v0) be an optimal pair, and let v1, v2 be an identifiable pair. Then G v1 v2 has no subgraph
isomorphic to C3 + C5 or K2 + H7 .

Proof. Suppose for a contradiction that there exists a subgraph J of G v1 v2 such that J = C3 + C5
or J = K2 + H7. Let us recall that z0 is the vertex of G0 that arises from the identification of v1
and v2. Since J is not 5-colorable the choice of G0 implies that z0 ∈ V ( J ). Thus we apply the nota-
tion introduced prior to this lemma. Let R1, R2 be the hinges of J , let R̂1 be bounded by the walk
v1u1u2 . . . uk v2 v0, and let R̂2 be bounded by the walk v2z1z2 . . . zm v1 v0. Then k,m � 2. We may
assume that k � m and that G0 is drawn on the Klein bottle such that k + m is minimized. Since
|E( J )| = 3|V ( J )| − 1 it follows that J has exactly one face bounded by a 4-cycle and all other faces
are bounded by 3-cycles. So k = 2 and m � 3. Furthermore, if m = 3, then all faces of Ĵ other than R̂1
and R̂2 are triangles; otherwise at most one face other than R̂1 and R̂2 is bounded by a cycle of length
four. It follows that z1 �= u2, for otherwise the cycle z1z2 . . . zm v1u1 of G0 has length at most five and
bounds a disk containing v0 and v2, contrary to Lemma 2.2. Similarly, u1 �= zm . Since J has no par-
allel edges we deduce that z1 �= u1 and u2 �= zm . It follows that the vertices v1, v2, u1, u2, z1, zm are
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pairwise distinct. However, if m = 3, then possibly z2 ∈ {u1, u2}. Finally, all vertices of G0 are either
in Ĵ or inside one of the faces R̂1, R̂2 of J by Lemma 2.2.

Next we claim that z0 has degree at least six. Indeed, otherwise z0 is contained in the open disk
bounded by a walk w of J of length at most six (because J has at most one face that is not a triangle).
But W is also a walk in G0, and the disk it bounds includes v0, v1, v2. But v1 is not adjacent to v2,
contrary to Lemma 2.2. This proves our claim that z0 has degree at least six.

We now make a couple of remarks about vertices of degree five in J . If J = C3 + C5, then J has
five vertices of degree five, and the neighborhood of each is isomorphic to K −

5 . If J = K2 + H7, then J
has six vertices of degree five; four of them have neighborhoods isomorphic to K −

5 and the remaining
two have neighborhoods isomorphic to K5 − E(P3).

Let us say a vertex v of degree five in J is good if its neighborhood in J has the property that
there are at least two triangles disjoint from any given vertex. Thus J either has five good vertices, or
it has exactly four, and they induce a matching of size two. It follows from the definition of optimal
pair that if N(v0) has at most one triangle, then the degree of each good vertex of J must be at least
six in G0.

Note that if z0 is a vertex of degree six in K2 + H7, then all the vertices of degree five have a K4
in their neighborhood disjoint from z0. Hence if N(v0) does not contain a K4, each vertex of degree
five in J must have degree at least six in G0.

We now condition on the cases of Lemma 2.2 for R̂ . Suppose that case (i) holds. First consider
the case that m = 3. Let us say that two vertices of G0 are adjacent through a face f of Ĵ if the edge
joining them lies in f . We condition on the number of edges incident with v0 through R̂1. Suppose
there are two such edges. Hence v0 is adjacent to u1 and u2 through R̂1. Further suppose that v0 is
adjacent to z2 through R̂2. If z2 is adjacent to z0 in J , then without loss of generality suppose that
v1 is adjacent to z2 but not through R̂2. Redrawing the edge through R̂2 contradicts condition (vi) of
an optimal pair.

So we may assume that z2 is not adjacent to z0. It follows that J = K2 + H7 and that z0 must be
the vertex of degree six in K2 + H7, because that is the only vertex of degree at least six in C3 + C5 or
K2 + H7 that has a non-neighbor. However, v1 is not adjacent to u2 and v2 is not adjacent to u1. So
N(v0) does not contain a K4. But then the vertices of degree five in J must be a subset of {u1, u2, z2},
a contradiction.

So we may assume without loss of generality that v0 is adjacent to z1 through R̂2. Now we may
apply Lemmas 2.4, 2.5, 2.6 and 2.7 to G0 + v1z1, where G0 + v1z1 denotes the graph obtained from
G0 by adding the edge v1z1 if v1 is not adjacent to z1 in G0 and G0 + v1z1 = G0 otherwise. We
find that either G0\v1\v0 or G0 + v1z1\v2\v0 contains a subgraph H isomorphic to K6, C3 + C5 or
K2 + H7, or G0 + v1z1 is isomorphic to L4. In the latter case, G0 is 5-colorable or isomorphic to L4,
a contradiction. In the former case, note that G0\v0 has a proper 5-coloring that does not extend to
a 5-coloring of G0 and hence in this coloring all of the neighbors of v0 must receive different colors.
This yields a 5-coloring of H , a contradiction.

Suppose v0 is incident with exactly one edge through R̂1. Without loss of generality we may
assume that v0 is adjacent to u2 through R̂1. Suppose that v0 is adjacent to z1 and z2. If z2 is
adjacent to z0 in J , we may apply Lemmas 2.4, 2.5, 2.6 and 2.7 to G0 + v1u2. We find that either
G0\v1\v0 or G0 + v1u2\v2\v0 contains a subgraph H isomorphic to K6, C3 + C5 or K2 + H7, or
G0 + v1u2 is isomorphic to L4. In the latter case, G0 is 5-colorable, a contradiction. In the former
case, note that G0\v0 has a proper 5-coloring that does not extend to a 5-coloring of G0 and hence
in this coloring all of the neighbors of v0 must receive different colors. This yields a 5-coloring of H ,
a contradiction. So we may assume that z2 is not adjacent to z0 in J . As v1 is not adjacent to z1 and
v2 is not adjacent to z2, N(v0) does not contain a K4. But then the vertices of degree five in J would
have to be a subset of {z1, z2, u2}, a contradiction.

If v0 is adjacent to z2 and z3, then a similar but easier argument applies as above. Let us assume
next that v0 is adjacent to z1 and z3. Note that z0 must have degree at least seven in J for v1 and
v2 to have degree at least five in G0 in this case. As z0 has degree at most eight in J , at least one
of v1 or v2 has degree five in G0. If v1 has degree five, consider G v2 z3 , defined as before. This graph
contains a subgraph H isomorphic to a graph listed in Theorem 1.3. Since v0 /∈ V (H), the vertex v1
has degree four in G v2 z3 and hence v1 /∈ V (H). It follows that the graph obtained from H by deleting
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the new vertex of G v2 z3 is a proper subgraph of J\z0. Consequently, H is isomorphic to a proper
subgraph of J , a contradiction. If v2 has degree five in G0, we consider G v1 z1 similarly to obtain a
contradiction.

Finally suppose v0 is not incident with any edge through R̂1. Hence v0 is adjacent to z1 z2, and
z3 through R̂2. Then same argument as in the preceding paragraph applies.

We may assume that m = 2. We may assume without loss of generality that v0 is adjacent to
u1 and u2 through R̂1 and to z1 through R̂2. Now we may apply Lemmas 2.4, 2.5, 2.6 and 2.7 to
G0 + v1z1. We find that either G0\v1\v0 or G0 + v1z1\v2\v0 contains a subgraph H isomorphic
to K6, C3 + C5 or K2 + H7, or G0 + v1z1 is isomorphic to L4. In the latter case, G0 is 5-colorable,
a contradiction. In the former case, note that G0\v0 has a proper 5-coloring that does not extend
to a 5-coloring of G0 and hence in this coloring all of the neighbors of v0 must receive different
colors. This yields a 5-coloring of H , a contradiction. This concludes the case when (i) of Theorem 2.2
holds.

For cases (iv)–(vi), we have that m = 3. Note that case (vi) cannot happen as v0 must be adjacent
to v1 and v2, which are distance three on the boundary of R̂ . For cases (iv) and (v), there are in each
case two possibilities, up to symmetry, as to which internal vertex is v0. In all cases, it is easy to
check that N(v0) is triangle-free. All vertices of degree five in J must then have degree six in G0,
since their neighborhood in G0 has a triangle and would thus contradict that (G0, v0) is an optimal
pair. To have higher degree in G0, these vertices must be a subset of {u1, u2, z1, z2, z3}. As K2 + H7 has
six vertices of degree five, J = C3 + C5. Furthermore, u1, u2, z1, z2, z3 are all distinct and induce C5.
We now color G0 as follows. We may assume without loss of generality that z2 is adjacent to v2 but
not to v1. Color z1 and z3 by 1. Color z2, v1, and u2 by 2. Color u1 and v2 by 3. Finally color the
other two vertices of C3 using colors 4 and 5. As only three colors appear on the boundary of R̂ , this
coloring extends to G0 by Lemma 2.2, a contradiction.

Suppose that case (iii) happens. Suppose that m = 3. We may assume without loss of generality
that v0 is adjacent to u1. If u1 �= z2, then N(v0) is triangle-free. Hence the good vertices of J must
be a subset of {u1, z1, z2, z3}, which do not induce a matching, a contradiction. Thus u1 = z2 and we
color G0 by [24, Lemma 5.1(a)]. For m = 2, case (iii) cannot happen as v0 must be adjacent to v1
and v2, which are distance three on the boundary of R̂ .

So finally we may assume case (ii). Let v ′
0 be the other vertex in the interior of R̂ . Suppose that

m = 3. Further suppose that z2 ∈ {u1, u2}. Note that if N(v0) has at most one triangle, then all good
vertices of J must have degree six in G0. However, they must be a subset of {u1, u2, z1, z3}. Hence
there are at most four good vertices in J and they do not induce a perfect matching, a contradiction.
So N(v0) has at least two triangles.

Suppose that one of v0 or v ′
0 is adjacent to both z1 and z3. Now N(v0) has at most one triangle

unless that vertex is v ′
0 which is also adjacent to z2, and v0 is adjacent to one of z1 or z3 through R̂2

as well as z2 through R̂1. In that case, the hypotheses of [24, Lemma 5.1(c)] are satisfied and we can
extend that coloring to a coloring of G0 by Lemma 2.2, a contradiction.

So we may suppose that neither v0 or v ′
0 is adjacent to both z1 and z3. Thus v ′

0 must be adjacent
to both v1 and v2. Without loss of generality, we may assume that one of v0 or v ′

0 is adjacent to

both z1 and z2 through R̂2. Now N(v0) will have at most one triangle unless z2 = u2. Let G be
the graph obtained from G0\{v0, v ′

0} by adding the edge u1z1. It follows that G is not 5-colorable,
because every 5-coloring of G can be extended to a 5-coloring of G0 by Lemma 2.2. Since G has
fewer vertices than G0, it follows that G has a subgraph G ′ isomorphic to one of the graphs listed in
Theorem 1.3. But the edge u1z1 belongs to G ′ , because G\u1z1 is 5-colorable.

On the other hand, we claim that the edge u1z1 belongs to no facial triangle of G ′ . Indeed, if
it did, say it belonged to a facial triangle u1z1q, then either qz1 v2u2u1q or qz1z2 v1u1q would be a
contractible 5-cycle with more than one vertex in its interior, contradicting Lemma 2.2. Thus u1z1
belongs to no facial triangle of G ′ . But there are only two graphs among those listed in Theorem 1.3
that have an embedding with an edge that does not belong to a facial triangle, namely, K6 and L6.
But G ′ has at most 10 vertices, because it is obtained from J by splitting one vertex, and hence G ′
is isomorphic to K6. We have u1, z1 ∈ V (G ′), but u1 is not adjacent to v2 (in G0 and hence in G ′)
and z1 is not adjacent to v1, because there are no exceptional vertices and no parallel edges. Thus
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v1, v2 /∈ V (G ′). It follows that G ′ can be obtained from J by first deleting a vertex of degree at least
six (and some other vertices) and then adding an edge. This is impossible because J = C3 + C5 or
J = K2 + H7.

Thus z2 /∈ {u1, u2}. Suppose that one of v0 or v ′
0 is adjacent to both z1 and z3. Now N(v0) is

triangle-free. Thus all the vertices of degree five in J must have degree six in G0. As these are subset
of {u1, u2, z1, z2, z3}, we find that J = C3 + C5. Moreover u1, u2, z1, z2, z3 are distinct and induce C5.
As in cases (iv) and (v), we may color so that the boundary of R̂ only uses colors 1, 2, and 3 and then
color v0 and v ′

0 with colors 4 and 5, a contradiction.
So we may suppose that neither v0 or v ′

0 is adjacent to both z1 and z3. Thus v ′
0 must be adjacent

to both v1 and v2. Without loss of generality, we may assume that one of v0 or v ′
0 is adjacent to

both z1 and z2 through R̂2. Now N(v0) has at most one triangle and hence the good vertices of J
must have degree six in G0. However, z3 is not adjacent to either v0 or v ′

0. Thus the good vertices
must be a subset of {u1, u2, z1, z2}. Hence J = K2 + H7. Color G0 as follows. Consider a 5-coloring of
G0\{v0, v ′

0}. If {u1, u2} and {z1, z2} do not receive the same pair of colors, then we may extend this
coloring to G0 by Lemma 2.2. So we may assume they are colored with colors 1 and 2. But then no
other vertex of J − z0 must receive colors 1 or 2. By swapping the colors of u1 and u2 if necessary,
we may assume that u2 and z1 have the same color. We may now recolor v1 with this color and
extend the coloring to G0 by Lemma 2.2.

We may now assume that m = 2. It follows that v0 is adjacent to u1 and u2 and that v ′
0 is adjacent

to z1, z2, v1, v2 and v0. Now N(v0) has at most one triangle. Moreover N(v0) is triangle-free unless
the edge v1u2 or the edge v2u1 is in the interior of the unique facial 4-cycle in J . So let us suppose
that N(v0) has a triangle. Without loss of generality suppose the edge v1u2 is present. All of the good
vertices of J must be degree six in G0. These must be a subset of {u1, u2, z1, z2}. Hence, J = K2 + H7
and these vertices induce a perfect matching. Repeating the argument from the above paragraph,
color G0 as follows. Consider a 5-coloring of G0\{v0, v ′

0}. If {u1, u2} and {z1, z2} do not receive the
same pair of colors, then we may extend this coloring to G0 by Lemma 2.2. So we may assume they
are colored with colors 1 and 2. But then no other vertex of J − z0 must receive colors 1 or 2. By
swapping the colors of u1, u2 if necessary, we may assume that u2 and z1 have the same color. We
may now recolor v1 with this color and extend the coloring to G0 by Lemma 2.2.

So N(v0) is triangle-free. All vertices of degree five in J must be degree six in G0. Such vertices
are a subset of {u1, u2, z1, z2, x1, x2} where x1, x2 are the ends of an edge in the interior of the facial
4-cycle of J . Let us assume that J = K2 + H7. There are six vertices of degree five; hence, all of
these vertices are distinct. As x1 is not adjacent to x2 in J , we may assume without loss of generality
that x1 is a good vertex, while x2 may be good or not. Color G0 as follows. Consider a 5-coloring of
G0\{v0, v ′

0}. If {u1, u2} and {z1, z2} do not receive the same pair of colors, then we may extend this
coloring to G0 by Lemma 2.2. So we may assume they are colored with colors 1 and 2.

We claim that one of the pairs {u1, u2} and {z1, z2} only sees two other colors in J\z0. Suppose
not. If x2 is good, then it follows that the other two vertices of degree five receive the same color but
they are adjacent, a contradiction. If x2 is not good, then as the pair which contains two good vertices
sees all the colors 3, 4, and 5 then x1 will also see 3, 4, and 5, as well as 1, 2 from the pair which
contains one good vertex and one not good vertex. Hence x1 cannot receive a color, a contradiction.
Now consider the pair, say {u1, u2} that only sees 2 other colors, say colors 3 and 4. As v1 and v2 are
not colored the same, one of v1 or v2 must not be colored 5. Without loss of generality suppose v1
is not colored 5. Then recolor u1 with color 5 and extend this coloring to G0 by Lemma 2.2.

So we may assume that J = C3 + C5. Suppose that at least one of {u1, u2, z1, z2} is not a vertex
of degree five in J . Then it must be exactly one, say u1. Consider a 5-coloring of G0\{v0, v ′

0}. If u1 is
not colored the same as one of {z1, z2}, then this coloring extends to G0 by Lemma 2.2. However, as
u1 is not a vertex of degree five, it is adjacent to all of J − z0 and hence to z1 and z2, it cannot be
colored the same as z1 or z2. Thus we may assume that all of {u1, u2, z1, z2} are vertices of degree
five in J .

Consider a 5-coloring of G0\{v0, v ′
0}. Now {u1, u2} must receive the same colors as {z1, z2}, as

otherwise this coloring extends to G0 by Lemma 2.2. Now the other vertex of degree five in J , call
this x1 must receive a third color, say color 3. Meanwhile, the other two vertices of J − z0 must
receive new colors, namely, colors 4 and 5. Now if v1 is not adjacent to any vertex of color 1, we
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may recolor v1 by 1 and extend the coloring to G0. Similarly with color 2 and the same applies for
v2 with colors 1 and 2. So we may assume that u1 and z1 are colored 1 and u2 and z2 are colored 2.
Further, we may assume that u1 and z2 are adjacent to x1. As x1 must have degree six in G0 there
exists an edge x1x2 through the 4-cycle in J . As it is not a parallel edge, x2 ∈ {v1, v2, u2, z1}. Thus
at least one of u2, z1 is not adjacent to x1. We may assume without loss of generality that u2 is not
adjacent to x1. Now recolor u2 by 3. If the resulting coloring of G0\v0, v ′

0 is proper, then we may
extend it to G0 by Lemma 2.2, a contradiction. Thus u2 must be adjacent to a vertex colored 3. As
u2 is not adjacent to x1 nor to v1, that vertex must be v2. So recolor v2 by color 2. The resulting
coloring is proper as v2 is not adjacent to z2. This coloring extends to a coloring of G0 by Lemma 2.2,
a contradiction. �
Lemma 3.2. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, let J be a subgraph of G v1 v2

isomorphic to L1 , L2 , L5 or L6 , and let R1 , R2 be the hinges of J . If R1 and R2 share a vertex u �= z0 and at
least one of them has length three, then the other one has length five and there exists an index i ∈ {1,2} such
that R̂1 ∪ R̂2\{v0, vi} is a cycle in G0 that bounds an open disk containing v0 and vi .

Proof. By the symmetry we may assume that R2 has length three. Thus u is adjacent to z0 in J .
Since R1 is an induced cycle, the cycles R1, R2 share the edge z0u. Thus R̂1, R̂2 share the edge viu
for some i ∈ {1,2}, and the second conclusion follows. By Lemma 2.2 the cycle R̂1 ∪ R̂2\{v0, vi} has
length at least six, and hence R1 has length five, as desired. �

We denote by K −
5 the graph obtained from K5 by deleting an edge, and by K5 − P3 the graph

obtained from K5 by deleting two adjacent edges.

Lemma 3.3. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, and let J be a subgraph of G v1 v2

isomorphic to L1 , L2 , L5 or L6 . Then there exists a vertex s ∈ V (G0) − {v0} of degree five such that

(i) NG0(s) has a subgraph isomorphic to K5 − P3 , and
(ii) if both hinges of J have length five, then NG0(s) has a subgraph isomorphic to K −

5 .

Proof. We only prove the first assertion, leaving the second one to the reader. A proof of the second
assertion may be found in [29]. Assume that the notation is as in the paragraph prior to Lemma 3.1,
and suppose first that J = L5. Let the vertices of J be numbered as in Fig. 5. It follows from
Lemma 2.10 that the indices of ai and b j can be renumbered so that the faces of J around c1 are
a1c1a2,a2c1a3,a3c1a4,a4c1b3b5c2,b3c1b2,b2c1b1,b1c1a1c2b4, in order. Recall that z0 is the vertex of
J that results from the identification of v1 and v2. If z0 �= c1, then one of the vertices a2,a3,b2 is
not incident with R̂1 or R̂2, and hence has the same neighbors in J and in G0. It follows that such a
vertex satisfies the conclusion of the lemma, as desired. We will use the same argument again later,
whereby we will simply say that a certain vertex satisfies the conclusion of the lemma.

Thus we may assume that z0 = c1, and since we may assume that no vertex satisfies the conclusion
of the lemma, we deduce that one of R1 and R2 is the face a2c1a3 and the other is b1c1b2 or b2c1b3.
Thus we may assume that R1 is a2c1a3 and R2 is b1c1b2. We may assume, by swapping v1 and v2,
that the neighbors of v1 in Ĵ are a1,a2, v0,b1 and that the neighbors of v2 are a3,a4,b3,b2, v0.
Hence the face R̂ is v1a2a3 v2b2b1. Now v1 is not adjacent to a3 in G0, for otherwise a2 satisfies
the conclusion of the lemma. We shall abbreviate this argument by a2 ⇒ v1 � a3. Similarly, we have
b5 ⇒ b3 � c2 and b3 ⇒ v2 � b5. We shall define a 5-coloring c of Ĵ\v0. Let c(a1) = c(v2) = c(b5) = 1,
c(a2) = c(b1) = 2, c(a3) = c(v1) = 3, c(a4) = 4, and c(c2) = c(b3) = 5. Assume first that b4 is adjacent
to a1. Then b2 is not adjacent to v1, for otherwise b1 satisfies the conclusion of the lemma. Further-
more, there is no vertex of G in the face of Ĵ bounded by b1 v1a1c2b4. In that case we let c(b4) = 4
and c(b2) = 3. If b4 is not adjacent to a1, then we let c(b4) = 3 and c(b2) = 4. In either case it follows
from Lemma 2.2 and the fact that v0 is adjacent to v1 and v2 that c extends to a 5-coloring of G0, a
contradiction. This completes the case J = L5.

If J = L6 we proceed analogously. By Lemma 2.10 we may assume that the faces around c1 are
a1c1a2, a2c1a3, a3c1a4, a4c1b4b5c2, b4c1b3 b3c1b2, b2c1b1 and b1c1a1c2b5. If z0 �= c1, or if one of R1,
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R2 is not a1c1a2 or b2c1b3, then one of a2,a3,b2,b3 satisfies the conclusion of the lemma. Thus we
may assume that R1 is a2c1a3 and R2 is b2c1b3. We may also assume, by swapping v1 and v2 that the
neighbors of v1 in Ĵ are a1,a2, v0,b1 and b2 and the neighbors of v2 in Ĵ are a3,a4,b3,b4, and v0.
Now a1 ⇒ v1 � y, b4 ⇒ v2 � b5, a3 ⇒ a2 � v2, and b2 ⇒ b3 � v1. With these constraints in mind
and recalling that v0 is adjacent to v1 and v2, consider the following coloring: c(a4) = c(b1) = 1,
c(a1) = c(b2) = 2, c(b3) = c(v1) = c(c2) = 3, c(a3) = c(b4) = 4 and c(b5) = c(a2) = c(v2) = 5. It fol-
lows from Lemma 2.2 that c extends to a 5-coloring of G0, a contradiction. This completes the case
J = L6.

We now consider the case J = L1. By Lemma 2.9 exactly one face of J , say F , is bounded by
a cycle of length five, and the remaining faces are bounded by triangles. Furthermore, we may
assume, by swapping b1,b2, and by permuting a1,a2,a3 that the faces around c1 in order are
F ,b2c1b1,b1c1c0, c0c1a1,a3c1a1,a2c1a3. By swapping b3,b4 we may assume that the faces around
c2 are F ,b3c2b4,b4c2c0, c0c2aα,aβc2aα,aγ c2aβ for some distinct indices α,β,γ ∈ {1,2,3}. Thus the
face F is bounded by the cycle c1a2c2b3b2, and hence γ = 2. Since a1c0c1, c1c0b1,b4c0c2 and c2c0aα

are faces of J we deduce that the faces around c0 in order are a1c0c1, c1c0b1,b1c0bi,bic0b j,b jc0b4,
b4c0c2, c2c0aα,aαc0aδ,aδc0a1 for some integers i, j, δ with {i, j} = {2,3} and δ ∈ {2,3} − {α}. Since
γ = 2 we have α �= 2, and hence α = 3 and δ = 2.

Now if z0 �= c0, then one of the vertices a1,a2,a3,b1,b2,b3,b4 satisfies the conclusion of the
lemma, and hence we may assume that z0 = c0. Furthermore, it is not hard to see that one of the
above vertices satisfies the conclusion of the lemma unless one of R1, R2 is a1c0a2 or a2c0a3 and the
other is one of b1c0bi , bic0b j , b jc0b4. Thus by symmetry we may assume that R1 is a1c0a2 and that
R2 is one of b1c0bi , bic0b j , b jc0b4.

We may assume that in Ĵ the vertex v1 is adjacent to c1 and v2 is adjacent to c2. We see that
a3 ⇒ c1 � c2 and a3 ⇒ a1 � v2. Furthermore, if R2 is the face b1c0bi , then b4 ⇒ b1 � v2, and if R2

is the face b1c0bi , then b1 ⇒ v1 � b4. Let c be the coloring of Ĵ\v0 defined by c(b1) = c(v2) = 1,
c(bi) = c(a1) = 2, c(b j) = c(v1) = c(a3) = 3, c(b4) = c(a2) = 4, and c(x) = c(y) = 5, and let c′ be
obtained from c by changing the colors of the vertices v1, v2,a2 to 4,2,1, respectively. It follows from
Lemma 2.2 by examining the three cases for R2 separately that one of c, c′ extends to a 5-coloring
of G , a contradiction. This completes the case G = L1.

Finally, let J = L2. We proceed similarly as above, using Lemma 2.9. Let F be the unique
face of J of size five. By renumbering a1,a2,a3 and b1,b2,b3 we may assume that the faces
around c1 are F ,b3c1b2,b2c1b1,b1c1c0, c0c1a1,a1c1a3,a3c1a2. Then the faces around c2 are F ,b4c2c0,
c0c2aα,aαc2aβ,aβc2aγ for some distinct integers α,β,γ ∈ {1,2,3}. It follows that γ = 2 and that
F is bounded by c1b3b4c2a2. Since b1c1c0, c0c1a1,b4c2c0, c0c2aα are faces of J we deduce that
α �= 1 (and hence α = 3 and β = 1) and that the cyclic order of the neighbors of c2 around c2 is
c1b1bib jb4c2a3a2a1 for some distinct integers i, j ∈ {2,3}. (Recall that all faces incident with c0 are
triangles.) Since b4 is adjacent to b3 in the boundary of F we deduce that i = 3 and j = 2.

Similarly as above, it is easy to see that some ai or b j satisfies the conclusion of the lemma,
unless z0 ∈ {c0, c1}. Suppose first that z0 = c1. We may assume that R1 is b1b2c1 and R2 is a1a3c1,
for otherwise some vertex satisfies the conclusion of the lemma. We may assume that v1 is adja-
cent to a2,a3,b2,b3. We have a2 ⇒ v1 � c2, a1 ⇒ a3 � v2 and b2 ⇒ v1 � b1. Let c(a2) = c(b2) = 1,
c(a3) = c(b4) = c(v2) = 2, c(a1) = c(b3) = 3, c(v1) = c(b1) = c(c2) = 4, and c(c0) = 5. It follows from
Lemma 2.2 that c extends to a 5-coloring of G0, a contradiction. Thus we may assume that z0 = c0.
Similarly as above we may assume that R1 is b1b3c0 or b3b2c0 and that R2 is a1a2c0 or a2a3c0.
We may assume that v1 is adjacent to a1 and b1. If R2 is a1a2c0, then we have a3 ⇒ c1 � c2

and a3 ⇒ a1 � v2. If R2 is a2a3c0, then a1 ⇒ c1 � c2 and a1 ⇒ a3 � v2. If R1 is b1b3c0, then
b2 ⇒ b1 � v2. Let c(a1) = c(b1) = c(v2) = 1, c(b3) = 2, c(a2) = c(b2) = 3, c(a3) = c(b4) = c(v1) = 4
and c(c1) = c(c2) = 5. It follows from Lemma 2.2 that c extends to a 5-coloring of G0, a contradic-
tion. �
Lemma 3.4. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, and let J be a subgraph of G v1 v2 .
Then J is not isomorphic to L1 , L2 , L5 or L6 .
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Proof. Let G, v0, v1, v2 and J be as stated, and suppose for a contradiction that J is isomorphic to
L1, L2, L5 or L6. Let R1, R2 be the hinges of J , and let Ĵ , R̂1 and R̂1 be as prior to Lemma 3.1. From
Lemma 3.3 and conditions (ii)–(iv) in the definition of an optimal pair we deduce that

(1) NG0(v0) has a subgraph isomorphic to K5 − P3,

and

(2) if both R1 and R2 have length five, then v1, v2 is the only non-adjacent pair of vertices in NG0(v0).

Let v3, v4, v5 be the remaining neighbors of v0 in G0. If at least two of them belong to the interior
of R̂1 or R̂2, then they belong to the interior of the same face, say R1, by (1). But then R̂1 is bounded
by a cycle of length seven, and that again contradicts (1) by inspecting the outcomes of Lemma 2.2.
Thus at most one of v3, v4, v5 belongs to the interior of R̂1 or R̂2.

From the symmetry we may assume that the edges v0 v4 and v0 v5 belong to the face R̂1. We may
also assume that v5 belongs to the boundary of R̂1, and that if v4 does not belong to the boundary
of R̂1, then the edge v0 v3 belongs to R̂2. We claim that v4 belongs to the boundary of R̂1. To prove
this suppose to the contradiction that v4 belongs to the interior of R̂1. Then one of the edges v1 v4,
v2 v4 does not belong to G0, and so we may assume v2 v4 does not. By (1) v1, v2 and v2, v4 are the
only non-adjacent pairs of vertices in NG0(v0), and by (2) at least one of R1, R2 has length three.
It follows that v3 belongs to the boundary of R̂1, and the choice of v4, v5 implies that the edge
v0 v3 lies in the face R̂2. Thus v3 belongs to the boundary of R̂2. By Lemma 3.2 there exists an
index i ∈ {1,2} such that the cycle R1 ∪ R2\{v0, vi} bounds a disk containing v0, vi in its interior. By
shortcutting this cycle through v0 we obtain a cycle of G0 of length at most four bounding a disk that
contains the vertex vi in its interior, contrary to Lemma 2.2. This proves our claim that v4 belongs to
the boundary of R̂1. We may assume that v0, v1, v4, v5, v2 occur on the boundary of R̂1 in the order
listed.

Let e ∈ E(G0) have ends either v1, v5, or v2, v4. Then e /∈ E( Ĵ ), because the boundary of R̂1 is an
induced cycle of Ĵ . Moreover, e does not belong to the face R̂1, because the edges v0 v4, v0 v5 belong
to that face. Thus e belongs to R̂2 or a face of Ĵ of length five. We claim that e does not belong to R̂2.
To prove the claim suppose to the contrary that it does, and from the symmetry we may assume
that e = v2 v4. We now argue that not both R1, R2 are pentagons. Indeed, otherwise v1 is adjacent
to v5 by (2), and the edge v1 v5 belongs to R̂2, because there is no other face of length at least five
to contain it. In particular, v4, v5 belong to the boundary of R̂2, and because the edges v1 v5, v2 v4
do not cross inside R̂2, the vertices v1, v0, v2, v4, v5 occur on the boundary of R̂2 in the order listed.
It now follows by inspecting the 5-cycles of L5 and L6 that this is impossible. Thus not both R1, R2
are pentagons. By Lemma 3.2 the cycle R̂1 ∪ R̂2\{v0, v1} bounds a disk with v0, v1 in its interior. By
shortcutting this cycle using the chord v2 v4 we obtain a cycle in G0 of length at most five bounding
a disk with at least two vertices in its interior, contrary to Lemma 2.2. This proves our claim that
v1 v5 and v2 v4 do not lie in the face R̂2.

By (1) and the symmetry we may assume that v2 v4 ∈ E(G0), and hence the edge v2 v4 belongs to
a face F̂ of Ĵ such that F̂ �= R̂1, R̂2. Let F be the corresponding face of J . Since F is bounded by an
induced cycle, we deduce that v4 is not adjacent to z0 in J . Consequently, R1 has length five. Thus
R1 and F have length five, and all other faces of J , including R2, are triangles. In particular, J = L5
or J = L6, and v1, v5 are not adjacent in G0 (because no face of Ĵ can contain the edge v1 v5). By (1)
v1, v2 and v1, v5 are the only non-adjacent pairs of vertices in NG0(v0). Condition (1) also implies
that v3 belongs to the boundary of R̂2. Using that and the fact that v3 is adjacent to v1 and v2
in G0, it now follows that there exists a vertex of G0\v0 whose neighborhood in G0 has a subgraph
isomorphic to K5 − P3. Finding such a vertex requires a case analysis reminiscent of but simpler than
the proof of Lemma 3.3. We omit further details. The existence of such a vertex contradicts the fact
that (G0, v0) is an optimal pair. �
Lemma 3.5. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, and let J be a subgraph of G v1 v2 .
Then J is not isomorphic to L3 or L4 .



1084 N. Chenette et al. / Journal of Combinatorial Theory, Series B 102 (2012) 1067–1098
Proof. Let G0, v0, v1, v2 and J be as stated, and suppose for a contradiction that J is isomorphic
to L3 or L4. Let R1, R2 be the hinges of J , and let Ĵ , R̂1, R̂2 be as prior to Lemma 3.1. Since by
Euler’s formula J triangulates the Klein bottle, we deduce that the faces R̂1, R̂2 have size five, and
every other face of Ĵ is a triangle. Let the boundaries of R̂1 and R̂2 be v1 v0 v2a1b1 and v1 v0 v2cbl ,
respectively. Let the neighbors of v1 in Ĵ in cyclic order be v0,b1,b2, . . . ,bl , and let the neighbors of
v2 in Ĵ be v0,a1,a2, . . . ,ak, c. Then deg J (z0) = k + l + 1. Since J has no parallel edges the vertices
a1,a2, . . . ,ak, c,bl,bl−1, . . . ,b1 are distinct, and since J is a triangulation they form a cycle, say C , in
the order listed. Since v1 is not adjacent to v2 in G0, Lemma 2.2 implies that |V (C)| � 7.

Let us assume that |V (C)| = 7. Then z0 has degree seven, and hence J = L4, because L3 has no
vertices of degree seven. Let X be the set of neighbors of z0 in J . By inspecting the graph obtained
from L4 by deleting a vertex of degree seven, we find that for every x ∈ X , there exists a 5-coloring of
J\z0 such that no vertex of X − {x} has the same color as x. But this contradicts Lemma 2.2 applied
to the subgraph of G0 consisting of all vertices and edges drawn in the closed disk bounded by C ,
because X = V (C). This completes the case when |V (C)| = 7.

Since L3 and L4 have no vertices of degree eight, it follows that |V (C)| = 9, and hence z0 is the
unique vertex of J of degree nine. From the symmetry between v1 and v2, we may assume that
deg Ĵ (v1) � 5; in other words l � 4. The graph J is 6-critical. Since z0 is adjacent to every other
vertex of J , we deduce that J\z0\x is 4-colorable for every vertex x ∈ V ( J ) − {z0}, and hence

(1) for every vertex x ∈ V ( J ) − {z0}, the graph J\z0 has a 5-coloring such that x is the only vertex colored 5.

From Lemma 2.2 applied to the boundary of the face R̂ of Ĵ\v0, we deduce that one of R̂1, R̂2
contains no vertex of G0 in its interior, and the other contains at most one. Since v0 has degree five,
we may assume from the symmetry between R̂1 and R̂2 that v0 is adjacent to a1 and b1 (and hence
R̂1 includes no vertices of G0 in its interior). We claim that l = 4 and v1 is adjacent to c. To prove the
claim suppose to the contrary that either l � 3 or v1 is not adjacent to c. Then deg Ĵ (v1) � 5. By (1)

there exists a coloring of J\z0 = Ĵ\{v0, v1, v2} such that b1 is the only vertex colored 5. We give v2
the color 5, then we color v1, then we color the unique vertex in the interior of R̂2 if there is one, and
finally color v0. The last three steps are possible, because each vertex being colored sees at most four
distinct colors. Thus we obtain a 5-coloring of G0, a contradiction. This proves our claim that l = 4
and v1 is adjacent to c. It follows that k = 4 and V (G0) = {v0, v1, v2,a1,a2,a3,a4,b1,b2,b3,b4, c}.
We have degG0

(v1) = degG0
(v2) = 6, and since deg J (c) � degG0

(c) − 2, we deduce that degG0
(c) � 7.

Thus we have shown that

(2) if x1, x2, x3, x4, x5 are the neighbors of v0 in G0 listed in their cyclic order around v0 , the vertex x1 is not
adjacent to x3 in G0 and Gx1,x3 has a subgraph isomorphic to L3 or L4 , then degG0

(x1) = degG0
(x3) = 6

and degG0
(x2)� 7.

It also follows that v1 is not adjacent to a1 in G0 and that v2 is not adjacent to b1 in G0. Not both
G v1a1 and G v2b1 have a subgraph isomorphic to L3 or L4 by (2), and so from the symmetry we may
assume that G v1a1 does not. By the optimality of (G0, v0) and Lemmas 3.1 and 3.4, it follows that
G v1a1 has a subgraph isomorphic to K6. Thus G\{v0, v1, v2} has a subgraph K isomorphic to K5. If
v2 /∈ V (K ), then V (K ) ∪ {z0} induces a K6 subgraph in J , a contradiction. Thus v2 ∈ V (K ), and hence
V (K ) = {v2,a2,a3,a4, c}. Let i ∈ {3,4}. If a1 is not adjacent to ai in G0, then we 5-color G0 as follows.
By (1) there is a 5-coloring of G0\{v0, v1, v2} such that a1 and ai are the only two vertices colored 5.
We give v1 color 5, then color v2 and finally v0. Similarly as before, this gives a valid 5-coloring of
G0 a contradiction. Thus, a1 is adjacent to a3 and a4 and hence a1 is not adjacent to c, for otherwise
{a1,a2,a3,a4, v2, c} induces a K6 subgraph in G0.

Since degG0
(v2) = 6, it follows from (2) that Gca1 has no subgraph isomorphic to L3 or L4. By

the optimality of (G0, v0) and Lemmas 3.1 and 3.4 it follows that Gca1 has a subgraph isomorphic
to K6. By an analogous argument as above we deduce that {v1,b1,b2,b3,b4} is the vertex-set of a
K5 subgraph of G0. The existence of the two K5 subgraphs implies that a2,a3,a4,b2,b3,b4 have K4
subgraphs in their neighborhoods, and the optimality of (G0, v0) implies that a2,a3,a4,b1,b2,b3 all
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have degree at least six in G0, and hence in J . Thus a1,b1, c are the only vertices of J of degree five.
Thus, J = L3 and a1,b1, c are pairwise adjacent, a contradiction, because we have shown earlier that
a1 is not adjacent to c. �

The results of this section may be summarized as follows.

Lemma 3.6. Let (G0, v0) be an optimal pair, and let v1, v2 be an identifiable pair. Then G v1 v2 has a subgraph
isomorphic to K6 .

Proof. Every 5-coloring of G v1 v2 may be extended to a 5-coloring of G0, and hence G v1 v2 is not 5-
colorable. By the choice of G0 the graph G v1 v2 has a subgraph isomorphic to one of the graphs listed
in Theorem 1.3. By Lemmas 3.1, 3.4 and 3.5 that subgraph is K6, as desired. �
4. Using K6

Lemma 4.1. Let (G0, v0) be an optimal pair. Then G0 has at least 10 vertices, and if it has exactly 10, then it
has a vertex of degree nine.

Proof. This follows immediately from Lemma 2.1. �
Lemma 4.2. Let (G0, v0) be an optimal pair. Then there are at least two identifiable pairs.

Proof. Since G0 has no subgraph isomorphic to K6 there is at least one identifiable pair. Suppose for
a contradiction that v1, v2 is the only identifiable pair. Thus the subgraph of G0 induced by v0 and
its neighbors is isomorphic to K6 with one edge deleted. By Lemma 3.6 the graph G0\{v0, v1, v2} has
a subgraph K isomorphic to K5, and every vertex of K is adjacent to v1 or v2. Let t be the number
of neighbors of v0 in V (K ). Since v0 has degree five and its neighbors v1, v2 are not in K it follows
that t � 3. If t = 0, then G0 has a subgraph isomorphic to L5 or L6; if t = 1, then G0 has a subgraph
isomorphic to L1 or L2; if t = 2, then G0 has a subgraph isomorphic to K2 + H7; and if t = 3, then
G0 has a subgraph isomorphic to C3 + C5. �
Lemma 4.3. Let (G0, v0) be an optimal pair. Then v0 has a wheel neighborhood.

Proof. Let us say that a vertex v ∈ V (G0) is a fan if its neighbors form a cycle in the order determined
by the embedding of G0. We remark that if v0 is a fan and v0 does not have a wheel neighborhood,
then the embedding of G0 can be modified to G ′

0 so that v0 will have a wheel neighborhood con-
tradicting condition (vi). Thus it suffices to show that v0 is a fan. Suppose for a contradiction that
there exist non-adjacent vertices a,b ∈ N(v0) that are consecutive in the cyclic order of the neighbors
of v0. By condition (iv) in the definition of an optimal pair, the graph G ′ = G0 + ab has a subgraph
M isomorphic to one of the graphs from Theorem 1.3. Assume, for a contradiction, that v0 /∈ V (M).
By optimality condition (i), G0\v0 has a 5-coloring c. Since c is not a 5-coloring of M it follows that
c(a) = c(b). But then c can be extended to a 5-coloring of G0, a contradiction. Thus v0 ∈ V (M). Since
deg(v0) = 5, we get that NG0(v0) ⊆ V (M). Further note that a,b are adjacent in M , because M is not
a subgraph of G0.

First, assume M = K6. Then V (M) = {v0}∪N(v0). This implies that there is at most one identifiable
pair, contrary to Lemma 4.2. Second, assume M = L3 or L4. As each is a triangulation, Lemma 2.2
implies that G0 = M\ab. But M is 6-critical, so G0 has a 5-coloring, a contradiction.

Third, assume that M = C3 + C5 or K2 + H7. Because M is one edge short of being a triangulation,
there is a unique face in M of length four. As ab ∈ E(M), the embedding of M\ab has at most two
faces of size strictly bigger than three, and if it has two, then they both have size four. Since G0 has at
least 10 vertices by Lemma 4.1, Lemma 2.2 implies that M\ab has a face f of size five whose interior
includes a vertex of degree five. However, f is the only face of M\ab of size at least four, and hence
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it also includes the edge ab, but that is impossible. This completes the case when M = C3 + C5 or
K2 + H7.

Fourth, suppose that M is either L5 or L6, and let the notation be as in the proof of Lemma 3.3.
In particular, every face incident with a2 or b2 is a triangle. At least one of a2,b2, say s, is not equal
to v0 and does not include both a,b in its neighborhood. But then the neighborhoods of s in G and
in M are the same, and hence s satisfies conditions (ii)–(iv) in the definition of an optimal pair by
Lemma 4.2. But s is a fan in M , and hence has a wheel neighborhood in some embedding of G0,
contrary to condition (vi) in the definition of optimal pair.

If M = L1, then we apply the argument of the previous paragraph to the vertices a1,b1,b4, using
the notation of Lemma 3.3. Finally, suppose that M is L2, and let the notation be again as in the proof
of Lemma 3.3. Every face incident with one of the vertices a3,b2 is a triangle, and at least one of
those vertices, say s, has the property that s �= v0 and if the neighborhood of s includes both a and b,
then a,b are not consecutive in the cyclic ordering around s and {a,b} ∩ {x, y} �= ∅ for every pair of
distinct non-adjacent vertices x, y ∈ NM(v0). Since s is a fan in M its choice implies that it is a fan
in G0, and hence has a wheel neighborhood in some embedding of G0. Furthermore, in G0 there are
at most two pairs of non-adjacent vertices in the neighborhood of s, and if there are two, then they
are not disjoint. Thus s satisfies conditions (ii)–(iv) in the definition of an optimal pair by Lemma 4.2,
contrary to condition (vi) in the definition of an optimal pair. �

A drawing of a graph G in a surface is 2-cell if every face of G is homeomorphic to an open disk.

Lemma 4.4. Let (G0, v0) be an optimal pair, and let v1, v2 be an identifiable pair, and let J be a subgraph of
G v1 v2 isomorphic to K6 . Then the drawing of J in the Klein bottle is 2-cell.

Proof. Let v0, R1, R2, R̂1, R̂2 be as before, and suppose for a contradiction that the drawing of J is
not 2-cell. Since K6 has a unique drawing in the projective plane [13, p. 364], it follows that every
face of J is bounded by a triangle, and exactly one face, say F , is homeomorphic to the Möbius strip.
If F is not R1 or R2, then the boundary of F is a separating triangle of G0, a contradiction, because
no 6-critical graph has a separating triangle. Thus we may assume that F = R2.

Since both R1 and R2 are triangles, and they share at least one vertex, there exists a vertex
s ∈ V ( J ) not incident with R1 or R2. Thus in Ĵ all the faces incident with s are triangles, and hence
degG0

(s) = deg J (s) = 5 by Lemma 2.2. Furthermore, if R1 and R2 share an edge, then NG0(s) has
a subgraph isomorphic to K −

5 , the complete graph on five vertices with one edge deleted. This im-
plies, by the optimality of (G0, v0), that NG0(v0) has a subgraph isomorphic to K −

5 , contradicting
Lemma 4.2.

So we may assume that R1 and R2 have no common edge. Let the facial walk incident with R̂1
be v0, v1, z1, z2, v2, v0, and the facial walk incident with R̂2 be v0, v1, z3, z4, v2, v0. Notice, from the
embedding of J , that the zi are distinct. Also notice that s is the lone vertex in Ĵ not incident with
either R̂1 or R̂2, and NG0(s) includes no two disjoint pairs of non-adjacent vertices. This implies, by
the optimality of (G0, v0), that NG0(v0) includes no two disjoint pairs of non-adjacent vertices. We
shall refer to this as the DP property.

Let N(v0) = {v1, v2, v3, v4, v5}. Assume that some neighbor of v0, say v3, belongs to R̂1. By
Lemma 2.2, v3 is adjacent to all vertices incident with R̂1. Thus v4 and v5 belong to the closure
of R2. In either case, v3 and v4 are not adjacent in G0. Since v1 and v2 are also not adjacent, this
contradicts the DP property.

Since v1 is not adjacent to v2 in G0 it follows from Lemma 4.3 that at least one of v3, v4, v5
belongs to the closure of R̂1. Thus there remain two cases, depending on whether one or two of those
vertices are incident with R̂1. If it is two vertices, then we may assume without loss of generality
that v3 = z1 and v4 = z2. As z1 and z2 are not incident to R̂2, v3, v2 and v4, v1 are not adjacent
in G0, contrary to the DP property. Thus we may assume that v3 = z1 and v4 and v5 belong to
the closure of R̂2. By the DP property v3, v4 and v3, v5 are adjacent in G0. Thus, without loss of
generality, v4 = z3 and v5 = z4. Furthermore, it follows from the DP property that either v1, v5 or
v2, v4 are adjacent in G0. Thus the subgraph L of Ĵ consisting of the vertices v0, v1, v2, v4, v5 and
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edges between them that belong to the closure of R̂2 has five vertices and at least eight edges. We
can regard L as drawn in the Möbius band with the cycle v1 v0 v2 v5 v4 forming the boundary of the
Möbius band. As such the graph L has at least three faces. Since the sum of the lengths of the faces is
at least 11, at most one of them has length at least five. That face of L includes at most one vertex of
G0 by Lemma 2.2, and the other faces of L include none. Thus G0 has at most nine vertices, contrary
to Lemma 4.1. �
Lemma 4.5. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, and let J be a subgraph of G v1 v2

isomorphic to K6 . Then some face of J has length six.

Proof. Let J̃ denote the graph consisting of Ĵ and edges of G0 not in Ĵ from v1 or v2 to the boundary
of R̂1 or R̂2 that are drawn inside R̂1 or R̂2. Let R̃1 be the face in J̃ that contains v0 and is contained
in R1, and similarly for R̃2. We assume for a contradiction that no face of J has length six. By
Lemma 4.4 the embedding of J is 2-cell, and so, by Euler’s formula, all faces of J are bounded by
triangles, except for either three faces of length four, or one face of length four and one face of length
five. Each face of J̃ other than R̃1 and R̃2 will be called special if it has length at least four. Thus there
are at most three special faces, and if there are exactly three, then they have length exactly four.

Let us denote the vertices on the boundary of R̃1 as v1, v0, v2, u1, . . . , uk in order, and let the
vertices on the boundary of R̃2 be v2, v0, v1, z1, . . . , zl in order. Note that u1, u2, . . . , uk are pairwise
distinct, and similarly for z1, z2, . . . , zl . A special face of length five may include a vertex of G0 in its
interior; such vertex will be called special. It follows that there is at most one special vertex. An edge
of G0 is called special if it has both ends in Ĵ\v0, but does not belong to Ĵ , and is not v1z1 or v2z1
if l = 1, and is not v1u1 or v2u1 if k = 1. It follows that every special edge is incident with v1 or v2.
Furthermore, the multigraph obtained from G0 by deleting all vertices in the faces R̃1 and R̃2 and
contracting the edges v0 v1 and v0 v2 has J as a spanning subgraph, and each special edge belongs to
a face of J of length at least four. It follows that there are at most three special edges. Furthermore,
if there is a special vertex, then there is at most one special edge, and each increase of k or l above
the value of two decreases the number of special edges by one.

Since R1 and R2 have length three, four, or five, we deduce that k, l ∈ {1,2,3,4}. The graph
Ĵ\{v0, v1, v2} = J\z0 is isomorphic to K5, and u1, u2, . . . , uk are its distinct vertices; let uk+1, . . . , u5
be the remaining vertices of this graph. It follows that if c is a 5-coloring of J̃ and c(ui) = c(z j), then
ui = z j . We will refer to this property as injectivity. From the symmetry we may assume that k � l.
Since J has at most one face of length five, it follows that l � 3. We distinguish three cases depending
on the value of l.

Case 1: l = 1.
By Lemma 4.3 the vertex v0 is adjacent to z1. Also notice then that v1z1 v2u1u2 . . . uk is a null-

homotopic walk W of length at most seven. Since G0 is 6-critical, the graph G\v0 has a 5-coloring,
say c. By Lemma 2.2 applied to the subgraph L of G0 drawn in the disk bounded by W and the
coloring c, the graph L satisfies one of (i)–(vi) of that lemma. We discuss those cases separately.

Case (i): There are eight vertices in J̃ and none in the interior of R̃1 and R̃2, and at most one
special vertex. Thus |V (G0)| � 9, contradicting Lemma 4.1.

Case (ii): As before |V (G0)| � 9, a contradiction, unless there exists a special vertex v ′
0. This implies

that |R̃1| = |R̂1| = 6. Without loss of generality suppose v0 is adjacent to u3, v1, z1, v2 and a vertex
v3 which is adjacent to v0, v2, u1, u2, u3. Notice that v ′

0 must have degree five in G0 and its neigh-
borhood must contain a subgraph isomorphic to K5 − P3, since four of its neighbors are in J\z0 and
thus form a clique. Meanwhile the neighborhood of v0 is missing the edges v1 v2, v1 v3, and v2u3.
The last one does not belong to J̃ , does not lie in R̃1 (because we have already described the graph
therein), and is not special, because all special edges have been accounted for. Thus the pair (G0, v ′

0)

contradicts the optimality of (G0, v0).
Case (iii): The graph L\W consists of three pairwise adjacent vertices, and v0 is one of them. Let

v3, v4 be the remaining two. By Lemma 4.3 we may assume, using the symmetry that exchanges
v1, v4, u1, u2 with v2, v3, uk, uk−1, that v3 has neighbors v0, v2, u1, u2, v4 and v4 is adjacent to
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v1, v0, v3, u2 and either u3 or u4. In either case z1 and u2 are colored the same, and hence they
are equal by injectivity. To be able to treat both cases simultaneously, we swap u3 and u4 if neces-
sary; thus we may assume that v4 is adjacent to u3. We can do this, because we will no longer use
the order of u1, u2, . . . , uk for the duration of case (iii). The vertex v1 is adjacent to u2, u3, u4, u5,
for otherwise its color can be changed, in which case the coloring c could be extended to L, contrary
to the fact that G0 has no 5-coloring. Similarly, v2 is adjacent to u1, u2, u4, u5. It follows that G0
has a subgraph isomorphic to L3, a contradiction. To describe the isomorphism, the vertices corre-
sponding to the top row of vertices in Fig. 2(c) in left-to-right order are u1, u4, u5, u3, the vertices
corresponding to the middle row are v3, v2, u2 = z1, v1, v4, and the bottom vertex is v0. This com-
pletes case (iii).

Cases (iv)–(vi): We have k = 4. Hence R1 has length five, and therefore there is at most one special
edge. Consequently, one of v1, v2 is not adjacent in J̃ to at least two vertices among u1, u2, u3, u4.
Since every face of J̃ except R̃1 and one other face of length four is bounded by a triangle this implies
that in the coloring c, one of v1, v2 sees at most three colors. From the symmetry we may assume
that v2 has this property. Thus c(v2) may be changed to a different color.

By using this fact and examining the cases (iv)–(vi) of Lemma 2.2 we deduce that L is isomorphic
to the graph of case (iv). Let the vertices of L be numbered as in Fig. 3(iv). It further follows that
v2 = x4 or v2 = x5, and so from the symmetry we may assume the former. Since z1 has a unique
neighbor in L\W we deduce that z1 = x3, v1 = x2, u4 = x1 and so on. Notice that x8 has degree five
in G0 and that its neighborhood is isomorphic to K5 − P3. Meanwhile, the neighborhood of v0 is
certainly missing the edges v1 v2 and v1x9. Now if x3 �= x5 then x3 is not adjacent to x9 and N(v0) is
missing at least three edges, a contradiction to the optimality of (G0, v0), given the existence of x8. So
x3 = x5, but then the edges x3 v2, x5 v2 are actually the same edge, because J̃ does not have parallel
edges. It follows that v2 has degree at most four in G0, a contradiction.

Case 2: l = 2.
By Lemma 4.3 either v0 is adjacent to both z1 and z2, in which case we define v0 := v0, or

there exists a vertex v0 in R̃2 adjacent to v0, v1, v2, z1, z2. Let W denote the walk v1 v0 v2u1 . . . uk
of length at most seven, and let X denote the set of vertices of G0 drawn in the open disk bounded
by W . We claim that X �= ∅. This is clear if v0 �= v0, and so we may assume that v0 = v0. But then
X = ∅ implies |V (G0)| � 9, contrary to Lemma 4.1. Thus X �= ∅. Let x ∈ X have the fewest number
of neighbors on W . Since G0 is 6-critical, the graph G0\x has a 5-coloring, say c. By Lemma 2.2
applied to the subgraph L of G0 drawn in the disk bounded by W and the coloring c, the graph L
and coloring c satisfy one of (i)–(vi) of that lemma.

Suppose first that L and c satisfy (i). Then |X | = 1 by the choice of x. As before |V (G0)| � 9, con-
tradicting Lemma 4.1, unless there is a special vertex. Hence k � 3. If k = 3, then R1 has length four,
and all special faces have been accounted for. In particular, J̃ = Ĵ . The fact that the coloring c cannot
be extended to L implies that {c(z1), c(z2)} ⊆ {c(u1), c(u2), c(u3)}, and hence {z1, z2} ⊆ {u1, u2, u3} by
injectivity. Thus u1 or u3 is equal to one of z1, z2. Since there are no special edges, either u1 v2 and
z2 v2, or uk v1 and z1 v1 are the same edge, but then v1 or v2 has degree at most four, a contradiction.
If k = 2 we reach the same conclusion, using the fact that in that case there is at most one special
edge. It follows that L and c do not satisfy (i).

Next we dispose of the case k � 3. To that end assume that k � 3. Then W has length at most six.
Thus L and c satisfy either (ii) or (iii) of Lemma 2.2, and so W has length exactly six and k = 3. In
particular, R1 has length four, and so there is either at most one special vertex, or at most two special
edges, and not both. It follows that either c(v1) or c(v2) can be changed without affecting the colors
of the other vertices of G0\X . That implies that L and c satisfy (ii). Let v3 be the unique neighbor of
v0 in X , and let v4 be the other vertex of X . From the symmetry we may assume that v3 is adjacent to
v0, v1, v2, u1, v4, and v4 is adjacent to v1, v3, u1, u2, u3. By considering the walk u1u2u3 v1z1z2 v2 and
the subgraph drawn in the disk it bounds, and by applying Lemma 2.2 to this graph and the coloring
c we deduce that |{c(u1), c(u2), c(u3)} ∩ {c(z1), c(z2)}| = 1. That implies |{u1, u2, u3} ∩ {z1, z2}| = 1 by
injectivity, and so we may assume that u5 is not equal to z1 or z2. It follows that the neighborhood
of u5 has a subgraph isomorphic to K5 − P3. However, the neighborhood of v0 is missing v1 v2 and
at least one of the edges v3z1 and v3z2, contrary to the optimality of (G0, v0) if v0 = v0. Similarly,
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the neighborhood of v3 is missing v1 v2 and v0 v4, a contradiction if v0 = v3. This completes the case
k � 3.

Thus we may assume that k = 4. It follows that R1 has length five, and hence there is at most
one special edge. Let i ∈ {1,2}. If vi is adjacent to both z1 and z2, then one of the edges vi z1, vi z2 is
special. It follows that in G0, either v1 is not adjacent to z2, or v2 is not adjacent to z1. But z2 is the
only neighbor of v1 in G0\X colored c(z2), because G0\(X ∪{v0, v1, v2}) is isomorphic to J\z0, which,
in turn, is isomorphic to K5. Thus there is a (proper) 5-coloring c1 of G0\X obtained by changing the
color of at most one of the vertices v1, v2 such that either c1(v1) = c1(z2) or c1(v2) = c1(z1). Now
c1(v0) can be changed to another color, thus yielding a coloring c2 of G0\X .

If L and c satisfy one of the cases (iii)–(vi), then one of the colorings c1, c2 extends into L, a
contradiction. Thus L and c satisfy (ii) of Lemma 2.2. Let v3 ∈ X be the unique vertex of X adjacent
to v0, and let v4 be the other vertex in X . If both v3 and v4 have degree five in G0, then one
of the colorings c1, c2 extends into L, a contradiction. Thus one of v3, v4 has degree five, and the
other has degree six. It follows that v3 is adjacent to v1, v2, and either u1 or u4, and so from the
symmetry we may assume it is adjacent to u1. If c1(v1) = c1(u1), then we can extend one of the
colorings c1, c2 into L by first coloring v4 and then v3. Thus c1(v1) �= c1(u1). If v4 is not adjacent
to u1, then we can extend c1 or c2 by giving v4 the color c1(u1), and then coloring v3. Thus v4 is
adjacent to v1. If v4 has degree five, then its neighbors are u1, u2, u3, u4, v3, and the neighbors of
v3 are v0, v1, v2, u1, u4, v4. Let d be a 5-coloring of G0\v0. Since the coloring d cannot be extended
to v0, it follows that the neighbors of v0 receive different colors. Now similarly as in the construction
of c1 above, we can change either the color of v1, or the color of v2. The resulting coloring then
extends to v0, a contradiction. This completes the case when v4 has degree five, and hence v4 has
degree six. It follows that the neighbors of v4 are u1, u2, u3, u4, v1, v3 and the neighbors of v3 are
v0, v1, v2, u1, v4. Let d1 be a 5-coloring of the graph G0\{v0, v3}. Since the coloring d1 does not
extend into v0, v3, we deduce that {d1(z1),d1(z2)} = {d1(v4),d1(u1)}. By injectivity this implies that
u1 = z1 or u1 = z2. If u1 = z2, then one of the edges v2u1, v2z2 is special, because they cannot be the
same edge, given that v2 has degree at least five in G0. Thus all special edges have been accounted
for, and so z1 is not adjacent to u1. Thus d1(v1) can be changed to d1(u1), and the new coloring
extends to all of G0, a contradiction. Thus u1 = z1. It follows that G0 is isomorphic to L3. First of all,
the vertex v1 is not adjacent to both u2 and u3, for otherwise the vertices v1, v4, u1, u2, u3, u4 form a
K6 subgraph in G0. If v1 is adjacent to neither u2 nor u3, then v2 is adjacent to these vertices, and an
isomorphism between G0 and L3 is given by mapping the vertices in the top row in Fig. 2(c), in left-
to-right order, to u4, u2, u3, u5, the middle row to v1, v4, u1 = z1, v2, v0 and the bottom vertex to v3.
If v1 is adjacent to exactly one of u2, u3, then due to the symmetry in the forthcoming argument we
may assume that v1 is adjacent to u3, and hence v2 is adjacent to u2. Then an isomorphism is given
by mapping the top row to v4, u4, u3, u2, the middle row to v3, v1, u1 = z1, u5, v2, and mapping the
bottom vertex to v0. This completes the case l = 2.

Case 3: l = 3.
Lemma 4.3 implies that v0 has at most one neighbor among {z1, z2, z3, u1, u2, . . . , uk}, and such

neighbor must be u1, uk , z1, or z3.
We claim that either v0 is adjacent to z1 or z3, or k = 3 and v0 is adjacent to u1 or u3. To prove

this claim let us assume that v0 has no neighbor among {z1, z2, z3}. Let C be the cycle v1z1z2z3 v2 v0,
and let X denote the set of vertices of G0 drawn in the open disk bounded by C . We have X �= ∅
by Lemma 4.3. Let c be a coloring of G\X , and let L denote the subgraph of G0 consisting of all
vertices and edges drawn in the closed disk bounded by C . By Lemma 2.2 the graph L satisfies one
of the conditions (i), (ii), (iii) of that lemma. The vertices z1 and z3 are adjacent, because the graph
obtained from Ĵ by deleting v0, v1, v2 and the vertices drawn in the faces R̃1 or R̃2 is isomorphic
to K5. We may also assume, by the symmetry between v1 and v2, that v1 is adjacent to z2. We claim
that we may assume that the neighborhood of v0 is a 5-cycle. This is clear if v0 has no neighbor in
{u1, u2, u3, u4}, and so we may assume that v0 is adjacent to u1. Then we may assume that k = 4,
for otherwise the claim we are proving holds. Thus there is no special edge. By Lemma 4.3 there
exists a vertex inside R̃1 adjacent to v0, v1, u1. Since there is no special edge the vertex v1 is not
adjacent to u1, and u1 is not adjacent to z1, because v2 has degree at least five in G0. It follows
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that the neighborhood of v0 is indeed a 5-cycle. If |X | � 2, then there exists a vertex in X whose
neighborhood has a subgraph that is a 5-cycle plus at least one additional edge, namely z1z3 or v1z2.
That contradicts the optimality of (G0, v0). Thus |X | = 1. Let x denote the unique element of X ,
and let us assume first that k = 4. Then there are no special edges, and so v1 is not adjacent to
z3 and v2 is not adjacent to z1. Let C ′ denote the cycle v1xv2u1u2u3u4, and let X ′ be the set of
vertices of G0 drawn in the open disk bounded by C ′ . Then G0\(X ′ ∪ {x}) has a 5-coloring c′ such
that c′(v1) = c′(z3) and c′(v2) = c′(z1). Then c′ can be extended to x in at least two different ways. By
Lemmas 2.2 and 4.3 the coloring c′ can be extended to all of G0, unless (up to symmetry between v1
and v2) v0 is adjacent to u1, there exists a vertex y adjacent to u1, u2, u3, u4 and c′(v1) = c′(u5). But
v1 is not adjacent to u1 (because v2 is and there are no special edges), and hence the color of v1 can
be changed to c′(u1), and the resulting coloring extends to all of G0, a contradiction. This completes
the case k = 4. Thus k = 3, and so there is at most one special edge. Let c′′ be a 5-coloring of G0\X ′ .
It follows that the color of at least one of the vertices v1, v2 can be changed to a different color,
without affecting the colors of the other vertices of G\X ′ . It follows from Lemma 2.2 that |X ′| � 2.
That, in turn, implies that v0 is adjacent to u1 or u3, and hence proves our claim from the beginning
of this paragraph.

Thus we may assume that v0 is adjacent to z3. By Lemma 4.3 there exists a vertex v3 adjacent to
v0, v1, z1, z2, z3 and a vertex v4 in R̃1 that is adjacent to v0, v1, v2. The neighborhood of v3 includes
the edge z1z3, and so by the optimality of (G0, v0) the neighborhood of v0 includes the edge v4z3.
Thus z3 ∈ {u1, u2, u3, u4}. Assume first that k = 4. Then there are no special edges, and hence z3 �= u4.
Next we deduce that z3 �= u1, for otherwise v2u1 and v2z3 are the same edge, which implies (given
that z3 = u1 is adjacent to v4) that v2 has degree at most three, a contradiction. Thus z3 ∈ {u2, u3}.
Let Y consist of v0 and all vertices in R̃1 or R̃2. Since z3 is adjacent to v4 we deduce that |Y | � 4.
Since there are no special edges, z3 is not adjacent to v1, and v2 is not adjacent to u4. Thus G0\Y
has a coloring d such that d(v1) = d(z3) and d(v2) = d(u4). Since z3 ∈ {u2, u3} this coloring can be
extended to the vertices drawn in R̃1, and since d(v1) = d(z3) it can be further extended to v0 and v3,
a contradiction.

Thus k = 3. Let W denote the walk v1 v3z3 v2u1u2u3, and let d′ be a 5-coloring of G0\(Y − {v3}).
We now apply Lemma 2.2 to the graph drawn in the closed disk bounded by W and coloring d′ , and
note that either the color of each of v1, v2 can be changed to a different color, independently of each
other and independently of the colors of other vertices, except possibly v3, or the color of one of v1,
v2 can be changed to two different values. In either case, one of the resulting colorings extends to G0,
a contradiction. �
Lemma 4.6. Let (G0, v0) be an optimal pair, let v1, v2 be an identifiable pair, and let J be a subgraph of G v1 v2

isomorphic to K6 . Then the drawing of J in the Klein bottle does not have a facial walk of length six.

Proof. Suppose for a contradiction that there exists a subgraph J of G v1 v2 isomorphic to K6 such
that the drawing of J in the Klein bottle has a face F0 bounded by a walk W of length six. Let
the vertices of J be z1, z2, . . . , z6. Since K7 cannot be embedded in the Klein bottle, it follows that
W has a repeated vertex. If W has exactly one repeated vertex, then (since J is simple) we may
assume that the vertices on W are z6, z2, z4, z6, z3, z5, in order. There exists a closed curve φ passing
through z6 and otherwise confined to F0 such that there is an edge of J on either side of φ in a
neighborhood of z6. The curve φ cannot be separating, because G0\z0 is connected, and it cannot be
2-sided, because G0\z0 is not planar. It follows that φ is 1-sided. By Euler’s formula every face of J
other than F0 is bounded by a triangle. It follows that the triangles z4z5z6, z1z6z3, and z1z6z2 bound
faces of J . Furthermore, either z3z5z2 or z3z5z4 is a face, but since J is simple we deduce that it
is the former. It follows that z1z3z4, z2z3z4, z1z2z5 and z1z4z5 are faces of J , and those are all the
faces of J . The drawing of J is depicted in Fig. 6, where diagonally opposite vertices and edges are
identified, and the asterisk indicates another cross-cap.

Similarly, if W has at least two repeated vertices, then it has exactly two, and we may assume
that the vertices of W are z6z5z4z6z2z4. Similarly as in the previous paragraph, the embedding is
now uniquely determined, and is depicted in Fig. 7.
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Fig. 6. An embedding of K6 with a facial walk on five vertices.

Fig. 7. An embedding of K6 with a facial walk on four vertices.

In either case let R1 and R2 be the hinges of J , and let Fijk denote the facial triangle incident
with zi, z j, zk if it exists. We should note that specifying the hinges does not uniquely determine the
graph Ĵ , because the face F0 has multiple incidences with some vertices. For instance, if W has five
vertices, z0 = z6, and R1 = F0, then it is not clear whether the split occurs in the “angle" between the
edges z3z6 and z4z6, or in the angle between z5z6 and z2z6. To overcome this ambiguity we will write
R1 = F364 in the former case, and R1 = F265 in the latter case. Notice that this is just a notational
device; there is no face bounded by z3z6z5 or z2z6z4. We proceed in a series of claims.

(1) Not both R1 and R2 are bounded by triangles.

To prove (1) suppose for a contradiction that R1 and R2 are both facial triangles. Let us recall that z0
is the vertex of G v1 v2 that results from the identification of v1 and v2. Suppose first that R1 and R2
are consecutive in the cyclic order around z0. Then v0 and one of v1 or v2 is in the interior of a 4-
cycle in G0, contrary to Lemma 2.2. Similarly, if the cyclic order around z0 has R1 followed by a facial
triangle, followed by R2, then there would be two vertices in the interior of a 5-cycle in G0, contrary
to Lemma 2.2. In addition, if the cyclic order has R1, followed by two facial triangles, followed by R2,
then there are two vertices inside a 6-cycle. Hence, we are in either case (ii) or (iii) of Lemma 2.2.
However, the boundary has five vertices that form a clique. So 5-color all but the interior of this
6-walk (using that G0 is 5-critical); the boundary must have five colors, contrary to Lemma 2.2. We
conclude that R1 and R2 must have F0 in between them in the cyclic order around z0, on both sides.
In particular, W has five vertices.
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Thus the only case remaining is that z0 = z6, where J is embedded with a facial 6-walk on five
vertices. Suppose without loss of generality that R1 = F126 and R2 = F456, and that v2 is adjacent to
z1, z3 and z4. Then the faces of the subgraph induced by v1, v2, z1, z2, z3, z4, z5 are all triangles but
perhaps for two six-cycles: v1, z2, z1, v2, z4, z5 and v1, z5, z3, v2, z4, z2. Since v0 is adjacent to v1 and
v2 it follows from Lemma 2.2 that the only vertex in G0 in the interior of the first six-cycle is v0.
Hence there must be at least two vertices in the interior of the other six-cycle, else |V (G0)| � 9, a
contradiction. Thus we are in either case (ii) or (iii) of Lemma 2.2. Note that the disk bounded by
the second cycle includes no chord. So v1 is not adjacent to z3. Now if v1 is not adjacent to z1, we
color G0 as follows. Let the color of zi be i. Color v1 with color 1. Then color v0 and v2, and extend
the coloring to the interior of the second six-cycle by Lemma 2.2. Hence we may assume that v1 is
adjacent to z1. But then v0 is adjacent to z1, z4, z5 while v1 is not adjacent to z4. Now v1 may be
colored either 3 or 4. One of these options extends to the interior of the second six-cycle after we
color v1, v0, v2 in that order. This proves claim (1).

In light of (1) we may assume that R1 = F0.

(2) If R2 is bounded by a triangle, then it is not consecutive with F0 in the cyclic order around z0 in J .

To prove (2) suppose for a contradiction that R2 is bounded by a triangle and that it is consecutive
with F0 in the cyclic order around z0 in J . It follows that one of v1, v2 has degree two in Ĵ , and so
we may assume that it is v1 and that its neighbors are v0 and z j . Consider the subgraph Ĵ\{v0, v1}.
All of its faces are triangles but for a 7-walk. We 5-color this subgraph, which is isomorphic to K6
minus an edge. Thus v2 must receive the same color as z j . Since this subgraph only has six vertices,
the interior of the 7-walk must be as in case (v) or (vi) of Lemma 2.2, for otherwise there would be
at most nine vertices in G0, contrary to Lemma 4.1. Consider the edge z0z j in J , which must be on
the boundary of F0. Now the vertex or vertices not on the boundary of F0 must be on the boundary
of R2, for otherwise the 7-walk would only have four colors and we could extend the 5-coloring to
its interior, a contradiction. Since R2 is a facial triangle this means that either z0 or z j is z6 and that
W has five vertices. However, then the color of z0 and z j appears three times on the boundary of the
7-walk. So the 5-coloring may also be extended, a contradiction. This proves (2).

By an s-vertex we mean a vertex s ∈ V (G0) of degree five such that NG0(s) has a subgraph isomor-
phic to K5 − P3. If G0 has an s-vertex, then the optimality of (G0, v0) implies that NG0(v0) does not
include two disjoint pairs of non-adjacent vertices.

(3) Let R2 be bounded by a triangle; then R̂2 is bounded by a pentagon, say v0 v1r1r2 v2. Assume
further that G0 has an s-vertex. Then either
(a) R̂2 includes a unique vertex v of G , and v is adjacent to v0, r1, r2 and all neighbors of v0

other than v , or
(b) v0 is adjacent to r1, r2, and r1, r2 are adjacent to the neighbor of v0 other than v1, v2, r1, r2,

or
(c) v0, v1, v2 are all adjacent to ri for some i ∈ {1,2}, and ri is adjacent to the two neighbors of

v0 other than v1, v2, ri .

To prove (3) we first notice that R̂2 includes at most one vertex of G0 by Lemma 2.2. If it includes
exactly one vertex, then (a) holds by the existence of an s-vertex, and the optimality of (G0, v0). If R̂2
includes no vertex of G0, then by Lemma 4.3 either v0 is adjacent to both r1 and r2, or v0, v1, v2 are
all adjacent to ri for some i ∈ {1,2}. We deduce from the existence of an s-vertex and the optimality
of (G0, v0) that either (b) or (c) holds. This proves (3).

(4) The walk W has five vertices.

To prove (4) we suppose for a contradiction that W has four vertices. Suppose first that z0 = z2. Then
by (2) and the symmetry we may assume that R2 = F125. It follows that z3 is an s-vertex, and so
we may apply (3). But (a) does not hold, because in that case v0 has four neighbors in R̂1 or on its
boundary, and not all of them can be adjacent to the neighbor of v0 in R̂2. If (b) holds, then v0 is
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adjacent to z1 and z5, and v is adjacent to z1, where v is the neighbor of v0 other than v1, v2, z1, z5.
Now v �= z5, because otherwise both R̂1 and R̂2 include an edge joining v0 and z5, contrary to the
fact that G0 is simple. Since v is adjacent to z1 we deduce that v = z4 or v = z6. In either case
Lemma 4.3 implies that v1 or v2 has degree at most four, a contradiction.

Thus we may assume that (c) holds, and so v0, v1, v2 are all adjacent to z1 or z5. In the former
case we can change notation so that R2 = F126, contrary to (2). Thus v0, v1, v2 are all adjacent to z5.
Let v1 be adjacent to z3, z4, z5; then v2 is adjacent to z1, z5, z6. Let the vertices v2, z5, v1, v4, v5 form
the wheel neighborhood of v0, in order. Since an s-vertex exists, the optimality of (G0, v0) implies
that either v1 is adjacent to v5, or v2 is adjacent to v4, or both. We may assume from the symmetry
that v1 is adjacent to v5. Since v5 is adjacent to z5 by (c), we deduce that v5 = z4 or v5 = z6,
because v5 �= z5 for the same reason as above. If v5 = z6, then v2z6 and v2 v5 are the same edge, and
it follows from Lemma 4.3 that v2 has degree at most four. Thus v5 = z4. It follows that v2 is adjacent
to z4, and hence the neighborhood of z1 has a subgraph isomorphic to K −

5 , contrary to Lemma 4.2.
This completes the case z0 = z2.

Thus by symmetry we may assume that z0 = z4. Again by symmetry we may assume that R1 =
F246 and R2 is either F134 or F145. Assume first that R2 = F145. Let v1 be adjacent to z1, z2, z3. Then
z3 is an s-vertex, and so we may use (3). If (a) holds, and v is as in (a), then it is not possible for v to
be adjacent to all neighbors of v0 other than v , a contradiction. If (b) holds, then v2 is not adjacent
to z1, and hence v1 is adjacent to z5, by the optimality of (G0, v0), because an s-vertex exists. Thus
the neighborhood of z3 in G0 has a subgraph isomorphic to K −

5 , contrary to Lemma 4.2. Thus (c)
holds. If v0, v1, v2 are adjacent to z5, then NG0(z3) has a subgraph isomorphic to K −

5 , contrary to
Lemma 4.2. Hence v0, v1, v2 are adjacent to z1. By (c) the vertex z1 is adjacent to v4, v5, the two
neighbors of v0 other than v1, v2, z1. It follows that {v4, v5} ⊆ {z2, z5, z6}. However, if v0 is adjacent
to z2, then v1 would be of degree at most four in G0, a contradiction. Thus v0 is adjacent to z5
and z6; hence v1 is adjacent to z5 by Lemma 4.3. Now the graph has eight vertices and perhaps one
more inside the 5-cycle v1z2z6 v2z5. Hence G0 has at most nine vertices, contrary to Lemma 4.1. This
completes the case R2 = F145.

We may therefore assume that R2 = F246. From the symmetry we may assume that v1 is adjacent
to z2 and z3. If R̂2 includes an edge incident with v1 or v2, then Lemma 4.3 implies that v0, v1, v2
are all adjacent to z1 or z3. Then we may change our notation so that either R2 = F145 or R2 = F234.
In the former case we get a contradiction by the result of the previous paragraph, and in the latter
case we get a contradiction by (2). Thus R̂2 includes no edge incident with v1 or v2. Hence either v0
is adjacent to z1 and z3, or v0 is adjacent to an internal vertex v3 of degree five which is adjacent
to z1 and z3. In either case there is a vertex of degree five in G0 adjacent to v1, z3, z1, and v2. For
this vertex, z3, v2 is an identifiable pair. Note that Gz3 v2 is not 5-colorable. We 5-color the vertices
z1, z2, v2 = z3, z5, z6 so that each gets a unique color. Then this coloring extends to Gz3 v2 , unless we
are in case (ii) of Lemma 2.2 for the following walk on six vertices: z5, v2 = z3, z6, z2, v2 = z3, z6 in
Gz3 v2 [{z1, z2, v2 = z3, z4, z5, z6}]. This implies that there are two adjacent vertices w1 and w2 such
that, in G0, w1 is adjacent to z2, z6, v2, and z5, while w2 is adjacent to z6, z5, z2, and one of
v2, z3. But then the subgraph induced by the eight vertices: z1, z2, z3, z5, z6, v2, w1, w2 has all facial
triangles except for perhaps one 5-cycle. Yet there can be at most one vertex in the interior of that
5-cycle. Thus G0 has at most nine vertices, a contradiction. This proves (4).

(5) z0 �= z2, z3 .

We may assume to a contradiction that z0 = z2 since the case where z0 = z3 is symmetric. By (2)
R2 = F125 or F235. Suppose first that some edge of G0 is incident with v1 or v2 and lies inside R̂2.
Then v0, v1, and v2 are all adjacent to z5, for otherwise we may change our notation so that R̂2 =
F126, contrary to (2). Let v4 and v5 be neighbors of v0 such that the cyclic order around v0 is v1, z5,
v2, v5, v4. Now notice that z1 is degree five in G0 and NG0(z1) has a subgraph isomorphic to K5 − P3.
Since NG0 (z0) is missing the edge v1 v2, one of the edges v1 v5, v2 v4 must be present or z1 would
contradict the choice of v0. This implies that v1 and v2 are both adjacent to v j for some j ∈ {4,5}.
Thus the edges v1 v j , v2 v j must go to a repeated vertex on the boundary of R1 or v0 would be in a
four-cycle in G0, a contradiction. Thus v j = z6 and the edge v2z6 is already present. The edge v1z6
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then implies that z4 is degree five in G0 and that NG0(z4) has a subgraph isomorphic to K −
5 , contrary

to Lemma 4.2. Thus R̂2 includes no edge of G0 incident with v1 or v2.
Now suppose that R2 = F125. We may assume that v1 is adjacent to z3, z4, z5. Then either the

cyclic order around v0 is v1, z5, z1, v2, and an unspecified vertex v3, or v0 is adjacent to a vertex
v3 of degree five with cyclic order: v1, z5, z1, v2, v0. In either case, z1 v1 is an identifiable pair for
a vertex of degree five in G0. Note that G v1 z1 is not 5-colorable. We 5-color the vertices v1 = z1, z3,
z4, z5, z6 of G v1 z1 such that each gets a unique color. Since this coloring does not extend to G v1 z1

we deduce from Lemma 2.2 applied to the walk z6, v1 = z1, z4, z6, z3, z5 on six vertices that case
(i) of that lemma holds. That implies there exists a vertex w1 in G0 that is adjacent to v1, z4, z6,
z3 and z5. Let H := G[{z1, z3, z4, z5, z6, v1, w1}]. The edge w1z6 may be embedded in two different
ways. In one way of embedding the edge the graph H has all faces bounded by triangles, except for
one bounded by a 4-cycle and one bounded by a 5-cycle. But then G0 has at most eight vertices by
Lemma 2.2, contrary to Lemma 4.1. It follows that the edge w1z6 is embedded in such a way that
all faces of H are bounded by triangles, except for one face bounded by the walk z6z1z5 v1 w1z5 of
length six. Since G0 has at least ten vertices by Lemma 4.1, we must be in case (iii) of Lemma 2.2
when applied to said walk. This can happen in two ways. In the first case there are pairwise adjacent
vertices a,b, c ∈ V (G0) such that a is adjacent to z1, z5, z6, the vertex b is adjacent to z5, v1, w1 and
c is adjacent to w1, z5, z6. Now G0 is isomorphic to L4 by an isomorphism that maps z3 and z4 to the
top two vertices in Fig. 2(d) (in left-to-right order), z6 and w1 to the vertices in the second row, z5
to the unique vertex of degree nine, and z1,a, c,b, v1 to the last row of vertices in that figure. In the
second case there are pairwise adjacent vertices a,b, c ∈ V (G0) such that a is adjacent to z1, z5, v1,
the vertex b is adjacent to z5, v1, w1 and c is adjacent to z1, z5, z6. Now G0 is isomorphic to L3 by
an isomorphism that maps the top row of vertices in Fig. 2(c) to z6, z3, z4, w1 (again in left-to-right
order), the middle row to c, z1, z5, v1,b and the bottom vertex to a. Since either case leads to a
contradiction, this completes the case R2 = F125.

It follows that R2 = F235. We may assume that v2 is adjacent to z1, z5, z6. Then either the cyclic
order around v0 is v1, z3, z5, v2, and an unspecified vertex v3, or v0 is adjacent to a vertex v3 of
degree five with cyclic order: v1, z3, z5, v2, v0. Note that z1 is degree five in G0 and NG0(z1) has a
subgraph isomorphic to K5 − P3. Thus in either case, v2z3 is an identifiable pair for a vertex of degree
five in G0, for otherwise NG0(z1) has a subgraph isomorphic to K −

5 , a contradiction. Note that G v2 z3

is not 5-colorable. We 5-color the vertices z1, v2 = z3, z4, z5, z6 of G v2 z3 such that each gets a unique
color. Since this coloring does not extend to G v2 z3 , we deduce that the 6-walk z6 v2 = z3z4z6 v2 = z3z5
satisfies (ii) of Lemma 2.2. Thus, in G0, there exists two adjacent vertices w1 and w2 such that w1 is
adjacent to z4, z6, z3, and z5, while w2 is adjacent to z4, z5, z6 and v2. But then w1 is degree five in
G0 and NG0(w1) has a subgraph isomorphic to K −

5 , a contradiction. This proves (5).

(6) z0 �= z4, z5 .

To prove (6) we may assume for a contradiction that z0 = z4 since the case where z0 = z5 is sym-
metric. Thus R2 = F134 or F145 by (2). Assume first that R2 = F145, and that R̂2 includes no edges
incident with v1 or v2. Then either the cyclic order around v0 is v1, z1, z5, v2, and an unspecified
vertex v3, or v0 is adjacent to a vertex v3 of degree five with cyclic order: v1, z1, z5, v2, v0. If the
edge v1z5 is present, then in the subgraph of G0 induced by z1, z2, z3, z5, z6 and v2, there is only one
face that is not bounded by a triangle or 4-cycle—the following walk on six vertices: z5, z3z6z5z1 v2.
Thus there are at most nine vertices in G0 by Lemma 2.2, contrary to Lemma 4.1. Hence, in either
case v1z5 is an identifiable pair for a vertex of degree five in G0. Note that G v1 z5 is not 5-colorable.
We 5-color the vertices z1, z2, z3, v1 = z5, z6 of G v1 z5 such that each gets a unique color. Since this
5-coloring does not extend to a 5-coloring of G v1 z5 we deduce that case (ii) of Lemma 2.2 holds for
the following walk on six vertices: z6, z2, v1 = z5, z6, z3, v1 = z5. Thus, in G0, there are two adjacent
vertices w1 and w2 such that w1 is adjacent to z2, z6, z5, and z3, while w2 is adjacent to z2, z6, z3
and v1. But then w1 is degree five in G0 and NG0(w1) has a subgraph isomorphic to K −

5 , contrary

to Lemma 4.2. This completes the case when R2 = F145 and R̂2 includes no edges incident with v1
or v2.
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For the next case assume that R2 = F134, and again that R̂2 includes no edges incident with v1
or v2. Then either the cyclic order around v0 is v1, z3, z1, v2, and an unspecified vertex v3, or v0
is adjacent to a vertex v3 of degree five with cyclic order: v1, z3, z1, v2, v0. Next we dispose of
the case that v2 is adjacent to z3. In that case we consider the subgraph of G0 induced by z1, z2,
z3, z5, z6 and v2. There is only one face that is not bounded by a triangle or 4-cycle—the following
walk on seven vertices: z5z3 v2z1z3z2z6. We 5-color the subgraph as follows: c(zi) = i for i = 1,2,3,5,
c(z6) = 4, and c(v2) = 2 and apply Lemma 2.2. By Lemma 4.1 cases (v) or (vi) of Lemma 2.2 hold.
Since z2 and v2 have the same color and z3 is a repeated vertex it follows from Lemma 2.2 that G0
has four vertices a,b, c,d such that d is adjacent to z2, z3, z5, z6, the vertices a,b, c form a triangle
and either a is adjacent to z1, v2, z3, the vertex b is adjacent to z1, z2, z3, and c is adjacent to z2, z3,d
(case (v) of Lemma 2.2), or a is adjacent to z1, v2, z3, the vertex b is adjacent to v2, z3,d, and c is
adjacent to z2, z3,d (case (vi) of Lemma 2.2). In the former case d is an s-vertex, and yet v0 = a, c is
not adjacent to z1 and b is not adjacent to v2, contrary to the optimality of (G0, v0). In the latter case
G0 is isomorphic to L3 by a mapping that sends the top row of vertices in Fig. 2(c) to z1, z6, z5, z2 (in
left-to-right order), the middle row to a, v2, z3,d, c and the bottom vertex to b, a contradiction. Thus
v2 is not adjacent to z3, and hence v2z3 is an identifiable pair for a vertex of degree five in G0. Note
that G v2 z3 is not 5-colorable. We 5-color the vertices z1, z2, v2 = z3, z5, z6 of G v2 z3 such that each
gets a unique color. Since this coloring not extend to G v2 z3 we deduce that case (ii) of Lemma 2.2
holds for the following 6-walk: z6, z2, z3 = v2, z6, z3 = v2, z5. However this would imply that there
are two internal vertices w1 and w2, both adjacent to z2 and both adjacent to z5. But then one of
them is not adjacent to z3 = v2, a contradiction. This completes both cases when R̂2 includes no
edges incident with v1 or v2.

We continue the proof of (6). We have just shown that R̂2 includes an edge incident with v1
or v2. Then v0, v1, v2 are all adjacent to z1, z3 or z5. However, if they are all adjacent to z3, then
we can change notation so that R2 = F234, contrary to (2), and if they are all adjacent to z5, then we
can change notation so that R2 = F456, again contrary to (2). Thus v0, v1, v2 are all adjacent to z1.
We may assume that the notation is chosen so that v1 is adjacent to z2 and z3 while v2 is adjacent
to z5 and z6. Let v4 and v5 be neighbors of v0 numbered so that the cyclic order around v0 is
v2, z1, v1, v4, v5.

Next we claim that v1 is not adjacent to z6. Suppose it were. The triangle z2 v1z6 is null-homotopic
in G0 by Lemma 2.2 applied to the 4-cycle z1z5z6 v1. Now consider the subgraph induced by the
vertices z1, z2, z3, z5, z6, and v1. All of its faces are triangles but for the 7-walk z1z5z6z3z5z6 v1. We
5-color these vertices as follows: c(zi) = i for i = 1,3,5, c(z6) = 4, and c(v1) = 5. Now we must be
in case (v) or (vi) of Lemma 2.2, for otherwise |V (G0)| � 9, contrary to Lemma 4.1. Yet, since the
fifth color would appear three times on the boundary, we can extend this coloring to all of G0, a
contradiction. Thus v1 is not adjacent to z6.

Now we claim that v4, v5 /∈ {z1, z2, . . . , z6}. To prove this claim we suppose the contrary. Then
v0 is adjacent to z2, z3, z5 or z6. If v0 is adjacent to z2, then v1 has degree at most four in G0. If
v0 is adjacent to z6, then either v2 is degree four in G0, a contradiction, or v1 is adjacent to z6, a
contrary to the previous paragraph. If v4 = z3, then the 5-cycle v1z3z6z5z1 has the vertices v0 and v2
in its interior, contrary to Lemma 2.2. Let us assume that v5 = z3. Then v2 is degree five and N(v2)

is missing at most the edges v0z5 and v0z6. Yet these edges must not be present, for otherwise
N(v2) has a subgraph isomorphic to K −

5 , contrary to Lemma 4.2. Hence v4 /∈ {z1, z2, . . . , z6}, but
then it is not adjacent to z1. Thus NG0(v0) includes two disjoint edges. However, NG0(v2) has a
subgraph isomorphic to K5 − P3, contradicting the optimality of (G, v0). Thus we may assume that
v0 is adjacent to z5. This implies, by Lemma 4.3, that v4 = z5, because v2 is already adjacent to z5
and v5 = z5 would imply the existence of another edge from v2 to z5, not homotopic to the existing
one. Then the subgraph of G0 induced by z1, z2, z3, z5, z6, and v1 has only one face—a six-walk—that
can have vertices in its interior. But then there are at most nine vertices in G0 by Lemma 2.2, contrary
to Lemma 4.1. This proves our claim that v4, v5 /∈ {z1, z2, . . . , z6}.

Continuing with the proof of (6), we note that v2 is not adjacent to v4, for otherwise v5 is of
degree four in G0, a contradiction. Similarly v1 is not adjacent to v5. Since z1 is not adjacent to
v4 or v5, the neighborhood of v0 in G0 is a cycle of length five. The vertex v2 is not adjacent
to z2, for otherwise the 4-cycle z2 v2 v0 v1 includes the vertices v4 and v5 in its interior, contrary to
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Lemma 2.2. Furthermore, the vertex v4 is not adjacent to z2, for otherwise the neighborhood of v1
in G0 has a subgraph isomorphic to a 5-cycle plus one edge, contrary to the optimality of (G0, v0).
We now consider the graph G v2 v4 . It has a subgraph H isomorphic to K6, and the new vertex w
of H obtained by identifying v2 and v4 belongs to H . Let � denote the open disk bounded by the
walk z1z5z6z3z5z6z2z3 of G v2 v4 . Since w belongs to �, all vertices of H belong to the closure of �.
However, z2 /∈ V (H), because z2 is not adjacent to v2 or v4 in G0. Since v1 is not adjacent to z6
as shown two paragraphs ago, we deduce that not both z6 and v1 belong to H . That implies that
z1 /∈ V (H), because at most six neighbors of z1 in G v2 v4 (including z2 /∈ V (H)) belong to the closure
of �. If v1 /∈ V (H), then no edge incident with one of the two occurrences of z3 on the boundary of
� belongs to H . Thus regardless of which of v1, z6 does not belong to H , there is a planar graph H ′
obtained from H by splitting at most two vertices, and a drawing of H ′ in the unit disk with vertices
p,q, r, s drawn on the boundary in order such that H is obtained from H ′ by identifying p with r,
and q with s. It follows that H can be made planar by deleting one vertex, contrary to the fact that it
is isomorphic to K6. This proves (6).

Since R1 = F0 it follows that z0 �= z1. Thus z0 = z6 by (5) and (6).

(7) We may assume that R2 �= F136 and R2 �= F126 .

To prove (7) we may assume for a contradiction by symmetry that R2 = F136. Then by (2) we have
R1 = F264. We may assume that v1 and v2 are numbered so that v1 is adjacent to z1 and z2. We
may assume that R̂2 includes no edge incident with v1 or v2; for if it includes the edge v2z1, then
we can change notation so that R2 = F126, contrary to (2), and if it includes the edge v1z3, then
we can change notation and reduce to the case when R2 = F0, which is handled below. Then either
the cyclic order around v0 is v1, z1, z3, v2, and an unspecified vertex v3, or v0 is adjacent to a
vertex v3 of degree five with cyclic order: v1, z1, z3, v2, v0. In either case, z1, v2 is an identifiable
pair for a vertex of degree five in G0. Note that G v2 z1 is not 5-colorable. We 5-color the vertices
z1 = v2, z2, z3, z4, z5 of G v2 z1 such that each gets a unique color. Since this coloring does not extend
to the rest of G v2 z1 we deduce that case (i) of Lemma 2.2 holds for the following 6-walk on five
vertices: z1 v2, z2, z4, z1 v2, z3, z5. This implies that there exists a vertex w1 in G0 such that w1 is
adjacent to z2, z4, v2, z3 and z5 in G0. In the subgraph of G0 induced by those six vertices and z1,
all the faces are triangles but for the face bounded by the cycle z1z3 v2z5 w1z2. Since G0 must have at
least ten vertices, we must be in case (iii) of Lemma 2.2. Now 5-color the subgraph induced by those
six vertices and z4 such that c(zi) = i for i = 1,2,3,5, c(w1) = 1, and c(v2) = 2. The above-mentioned
cycle is colored using four colors, and hence the 5-coloring may be extended to G0, a contradiction.
This proves (7).

In light of (7) we may assume that both R1 and R2 are equal to F0. Thus we may assume that
R1 = F264 and R2 = F365. We may assume that v1 and v2 are numbered so that v1 is adjacent to
z1, z2 and z3. Let the remaining neighbors of v0 be v3, v4, v5 numbered so that the cyclic order
around v0 is v1, v3, v2, v5, v4. This specifies the cyclic order uniquely up to reversal, and so we
may assume by symmetry that the cyclic order around v1 (of a subset of the neighbors of v1) is
z1, z3, v3, v0, v4, z2, where possibly v3 = z3 and z2 = v4.

(8) The vertex v1 is not adjacent to z4 or z5 .

To prove (8) we note that z1 has degree five in G0 and that its neighborhood has a subgraph isomor-
phic to K5 − P3. If v1 was adjacent to z4 or z5, then the neighborhood of z1 would have a subgraph
isomorphic to K −

5 , contrary to Lemma 4.2 and the optimality of (G0, v0). This proves (8).
Since z1 has degree five in G0 and its neighborhood has a subgraph isomorphic to K5 − P3, we

deduce from the optimality of (G0, v0) and Lemma 4.2 that the neighborhood of v0 is isomorphic to
K5 − P3. It follows that

(9) the vertex v3 is adjacent to v4 or v5

and
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(10) either v1 is adjacent to v5 , or v2 is adjacent to v4 , and not both.
(11) The vertex v2 is adjacent to v4 .

To prove (11) suppose for a contradiction that v2 and v4 are not adjacent. We will consider G v2 v4 and
its new vertex w formed by identifying v2 and v4. Let us note that all faces of the subgraph of G v2 v4

induced by z1, z2, z3, z4, z5, v1, w are bounded by triangles except for a face bounded by the 8-walk
W1 = v1 wz5z3 v1 wz4z2. Let D1 be the open disk bounded by W1, let W0 = v1 v4 v5 v2z5z3 v1 v3 v2z4z2
be a corresponding walk in G0, and let D0 be the open disk bounded by W0. By Lemma 3.6 the graph
G v2 v4 has a subgraph H isomorphic to K6. Since G has no K6 subgraph it follows that w ∈ V (H). If
z1 ∈ V (H), then, since z1 has degree five in G0, all neighbors of z1 belong to V (H), contrary to (8).
Thus all vertices of H belong to W1 or D1, and by Lemma 4.3 each vertex of H\w (when regarded
as a vertex of G0) belongs to W0 or D0. Assume for a moment that all but possibly one vertex of H
belong to W1. Then z4 or z5 belongs to V (H), and so v1 /∈ V (H) by (8). Thus exactly one vertex of H ,
say w1, belongs to D1 and V (H) = {w, w1, z2, z3, z4, z5}. It follows that v4 /∈ {w1, z2, z3, z4, z5}. Thus
v4 is not adjacent to z3 in G0, because the edge z3 v4 would have to lie in D0, where it would have to
cross the path z4 w1z5. But w is adjacent to z3 in H , and so v2 is adjacent to z3 in G0. It follows that
the 4-cycle v1 v0 v2z3 is null-homotopic, for otherwise the edge v2z3 and path z2 w1z5 would cross
in D0. We deduce from Lemma 2.2 applied to the 4-cycle v1 v0 v2z3 that v3 = z3. But v3 is adjacent
to v4 by (9), and yet z3 is not adjacent to v4, a contradiction. This completes the case when at most
one vertex of H belongs to D .

Thus at least two vertices of H , say w1 and w2 belong to of D1. Since W1 has exactly two repeated
vertices, the argument used at the end of the proof of (6) shows that w1 and w2 are the only two
vertices of H in D1. Also, it follows that w, v1, the two repeated vertices of W0, belong to H . Since
v1 is in H , (8) implies that z4, z5 /∈ V (H). It follows that z2, z3 ∈ V (H), and consequently v4 /∈ {z2, z3}.
Thus each of w1, w2 is adjacent in G0 to v1, z2, z3 and to v2 or v4. It follows from considering the
drawing of G0 inside D0 that one of w1, w2, say w1, is adjacent to v2 and the 4-cycle v1 v0 v2 w1 is
null-homotopic. By Lemma 2.2 applied to this 4-cycle we deduce that w1 = v3. Thus the edge v3 v4
belongs to D0. But w2 �= v4, because v4 is not a vertex of H , and yet the edge v3 v4 intersects the
path z3 w2z2 inside D0, a contradiction. This proves (11).

(12) The vertex v5 is adjacent to v1 .

We prove (12) similarly as the previous claim. Suppose for a contradiction that v1 and v5 are
not adjacent, and consider G v1 v5 and its new vertex w . The subgraph of G v1 v5 induced by z1,
z2, z3, z4, z5, w , v2 has all faces bounded by triangles except for one bounded by the 8-walk
W1 = w v2z5z3 w v2z4z2. Let D1 be the open disk bounded by W1, and let W0, D0 be as in (11).
Similarly as in the proof of (11) the graph G v1 v5 has a subgraph H isomorphic to K6 with w ∈ V (H).
We claim that z4 /∈ V (H). Indeed, if z4 is in H , then it is adjacent to w in H ; but z4 is not adjacent
in G0 to v1 by (8), and hence z4 is adjacent to v5 in G0. Yet v2 is adjacent to v4 by (10). Since
v4 /∈ {z4, z5} by (8), the edges v2 v4 and z4 v5 must cross inside D0, a contradiction. This proves our
claim that z4 /∈ V (H). It follows that z1 /∈ V (H), because z1 has degree five in G v1 v5 , and z4 is one of
its neighbors.

If D1 includes at most one vertex of H , then w, v2, z2, z3, z5 ∈ V (H), and exactly one vertex of H ,
say w1, belongs to D1. Thus w1 is adjacent to z2 and z5 in G0, and that implies that the edges
v3 v4 and v3 v5 do not lie in D1. Therefore v3, v4, v5 ∈ {z2, z3, z4, z5}, but that is impossible, given the
existence of w1. This completes the case that D1 includes at most one vertex of H . Thus, similarly
as in (11), it follows that D1 includes exactly two vertices of H , say w1 and w2. Now V (H) includes
w, v2 and exactly two of {z2, z3, z5}. But it cannot include z5 and z3, because otherwise for some
j ∈ {1,2} the paths z5 w j v2 and z3 w3− j v2 cross inside D0. Thus V (H) includes z2 and zi for some
i ∈ {3,5}. Choose j ∈ {1,2} such that w j �= v3. Then the path z2 w j zi is not disjoint from the edges
v3 v4, v3 v5 (because they cross inside D0), and so it follows that i = 3 and v3 = z3. Since there is
no crossing in D0 and w1 and w2 are adjacent to z2 and z3, they are not both adjacent to v5. Thus
we may assume that w1 is adjacent to v1. This argument shows, in fact, that the cycle v1 v0 v2 w1 is
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null-homotopic, and so it follows from Lemma 2.2 that v3 = w1, a contradiction, because w1 lies in
D1 and v3 = z3 does not. This proves (12).

Now claims (10), (11), and (12) are contradictory. This completes the proof of Lemma 4.6. �
Proof of Theorem 1.3. It follows by direct inspection that none of the graphs listed in Theorem 1.3 is
5-colorable. Conversely, let G0 be a graph drawn in the Klein bottle that is not 5-colorable. We may
assume, by taking a subgraph of G0, that G0 is 6-critical. Then G0 has minimum degree at least five.
By Lemma 2.3 the graph G0 has a vertex of degree exactly five, and so we may select a vertex v0 of
G0 such that (G0, v0) is an optimal pair. If there is no identifiable pair, then G0 has a K6 subgraph,
as desired. Thus we may select an identifiable pair v1, v2. Let G ′ := G v1 v2 . By Lemma 3.6 the graph
G ′ has a subgraph H isomorphic to K6. By Lemma 4.4 the drawing of H is 2-cell, and by Lemma 4.5
some face of H has length six, contrary to Lemma 4.6. �
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