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This article discusses linear differential boundary systems, which include nth- 
order differential boundary relations as a special case, in g,“[O, l] x LZ’*D[O, 11, 
1 Q p < 0~. The adjoint relation in 2ng[0, l] x snq[O, 11, 1 /p + l/q = 1, is 
derived. Green’s formula is also found. Self-adjoint relations are found in 
P”p,“[O, l] x LYmLp,“[O, 11, and their connection with Coddington’s extensions of 
symmetric operators on subspaces of Pfla[O, l] is established. 

I. INTRODUCTION 

Traditionally, discussion of a linear differential problem of nth order was 

followed by a similar discussion of first-order systems. Further, except under 
special circumstances [8, p. 2051 th ere was little connection between self-adjoint 
problems of each type. For example, in the regular case, linear second-order 
equations were first discussed by Liouville [ 171, nth-order equations by Birkhoff 
[3], while systems followed later when discussed by Birkhoff and his colleague 
Langer [4]. In the singular case, linear second-order equations were first dis- 
cussed by Weyl[21] ; nth-order equations followed in discussions by Kodaira [l I] 
and Levinson [16] ; while systems were first discussed later by Brauer [5] and 
Atkinson [2]. 

Recently, however, Walker [19, 201 has written two rather remarkable 
articles which show that an nth order expression, scalar or vector,l can be 
written as a first-order system with three marvelous properties: 

1. The adjoint system is found by merely replacing the coefficients by 
their conjugate transposes. This strengthens the analogy between differential 
operators and matrices. 

2. Self-adjointness is preserved. That is, a self-adjoint nth order expression 
becomes a self-adjoint vector system of first order. 

1 Some very minor modifications are needed in Walker’s paper in the vector case. 
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3. Minimal conditions concerning the differentiability of the coefficients 
are imposed. This requires the introduction of quasi-derivatives for the functions 
or vectors to be operated upon, but broadens the generality of the description. 

Although the vector-matrix forms are too complicated to exhibit here in any 
detail, we can state that the first-order equation 

becomes 
670670Y) + POY = AWY +f 

iY’ = ~[q,lwq,lly + [-qolPoqolly + @..I 

upon substituting Y = qoy and dividing by q. . The second-order equation 

-NPoY’>’ - QOY)’ + (4oY’N + PlY = AWY + f 

is equivalent to 

Higher odd-order systems are slightly different from the first-order representa- 
tion. Even-order systems also are slightly different from what one would be led 
to believe by studying the second-order system representation, but are not so 
different as those of odd order. We refer to Walker’s papers [19, 201 for details. 

In all cases the vector system which results has the form 

JY’- BY = /\AY + AF, 

where J is nonsingular, constant, and satisfies J = -J”. If the nth order 
expression is self-adjoint, then B = B* and A = A*. Further, except for 
equations of first order, A consists of -w in the upper left corner and zeros 
elsewhere. 

This paper studies differential boundary relations with the form exhibited 
by Walker’s systems. In so doing we generalize earlier results for systems [12-l 51, 
since the matrix A may be singular, and simultaneously we derive for the first 
time the proper form for nth order differential boundary relations in a system 
representation. Self-adjoint nth order differential boundary relations fall out 
automatically merely by making certain assumptions concerning the coefficients. 

The connection between nth order differential boundary relations and the 
self-adjoint extensions of symmetric differential operators is at this point obvious. 
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2. THE SETTING AND THE PROBLEM 

Our notation conforms with Walker’s [19, 201 rather than the author’s 
earlier work [12-151. 

J, A, B are 11 x 71 matrices whose components are bounded and measurable. 
Further, J is nonsingular, of bounded variation, and regular. A is positive and 
symmetric; i.e., y*Ay >, 0 for all n-dimensional vectors y, and A = A*. 

M, N are m x n matrices, m < 2n, satisfying rank(M : N) = m, and P, 
Q are (2n - m) x ?t matrices with rank (P : Q) = 2n - m, such that (7 “,) is 
nonsingular. The matrix (g #) is chosen such that 

iF $1” (r ;I = ri(“’ ;1,!. 

Thus i@ and m are m x n matrices satisfying rank (&’ : m) = m, and P” and & 
are (272 - m) x n matrices satisfying rank (p : &) = 2n - m. 

K is a regular m x n matrix valued function of bounded variation satisfying 
d(KJ)(O) = 0, d(KJ)(l) = 0. Kl is a regular r x 11 matrix valued function of 
bounded variation satisfying d(K, J)(O) = 0, d(K,J)(l) = 0. 

Similarly H is a regular n x (272 - m) valued function of bounded variation 
satisfying dH(0) = 0, dH(1) = 0. HI is a regular 1z x s matrix valued function 
of bounded variation satisfying dH,(O) = 0, dH,(l) = 0. 

The setting we wish to use is the Banach space ,EpnP[O, I], 1 <p < CO, 
generated by the seminorm 

llfll = (jol [f*A”‘“f]“l” dt)? 

(Since A is positive, it has a spectral resolution A = Cy=, hipi , where Ai 3 0 
are its eigenvalues and p, are their corresponding projections. A2/n is then 
given by A2/P = CF=, hfi*pi .) 

Two elementsf, andf2 are said to be equivalent if ilfi - f2 /I = 0. Under this 
equivalence 11 . I/ becomes a norm, and L?,P[O, l] is a Banach space. In the case 
A = I this is equivalent to the norm used in earlier works [13-151. Further, 
when p = Q = 2, the norms take the usual familiar form. 

The dual space is LY~~[O, 11, 1 /p + I /q = I, generated by the norm 

/I g 11 = (s,’ [g*A2’qg]g12 dt)“‘. 

Holder’s inequality then quickly follows, since 

1 /‘g*Af dt / = 1 1.’ (Al/gg)* (A”“f) dt 1 
0 

< (Jo1 11 A”qg 11;: dt)“‘, ijo1 /I A”“fII;z dt)l” 

_ (lo1 [g*A*/qg]2iq dt)“’ (Jo1 [f*A”‘“f]“‘” dt)“‘. 
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(Here E, denotes the n-dimensional Euclidean vector norm /I x 11 = [cy 11 x2 1l”]r/s). 
Continuous linear functionals have the representation 

(f, g> = Jo1 g*Af & 

where f E Tno[O, 11, g E 2ZnQ[0, l].z 
Now let D denote those elements y E 2ZnP[0, l] satisfying: 

1. For each y there is an s x 1 matrix valued constant 1,4 such that 

(Y + fwY(O) + QY(l>l + fw 

is absolutely continuous. 

2. J(y + H[Py(O) + f&(l)] + +J) - BY = Af, wheref E %W, 11. 
3. My(O) + NY(~) + J;d(KJ)y = 0, 

s 
’ d(K,J)y = 0. 

0 

For ally in D we say that ly = f provided 

J(Y + fW~(0) + QrU)l + f&,4’ - BY = Af. 

Note that either # or f may not be unique. Further, the domain D may not be 
dense in JZn”[O, I]. If Kl J contains rows which are absolutely continuous, D 
may be orthogonal to the subspace spanned by their conjugate transposes. 

In order to handle these complexities we define a linear relation rather than 
an operator. Let L be the linear relation given by 

L = {(y, f): Zy = f, y E D} C ZmBIO, l] x e%“[O, 11. 

It is this linear relation we wish to consider in detail, specifically we wish to 
determine its adjoint, determine when it is self-adjoint, project it onto subspaces, 
where it is uniquely and densely defined, and determine spectral resolutions 
for it where possible. The setting, as indicated, is that of a linear relation. We 
refer to Arens’ paper [l] for details. 

* Other equivalent norms are possible. If llfll E= denotes (& iIfc ilnYP, then llfll = 
(St // A1’rllgD dt)‘lp is (perhaps) even more natural. HGlder’s inequality then is 

Continuous linear functionals have the same form. 
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3. THE ADJOINT OF L 

Just as operators have, so do linear relations have adjoints. They are determined 
in much the same way as adjoint operators. Further, if a linear relation is 
generated by a densely defined operator, then the adjoint relation is generated 
by the adjoint operator. 

If (y, f) EL, then (z, g) EL* if 

<f, z> - <Y, ‘59 = 0. 

As it was used earlier, (f, x) denotes a continuous linear functional generated 
by x E Yn”[O, l] operating on f E -Ynp[O, I], l/p + l/q = 1. Clearly L* C 
Pn*[O, l] x S,‘J[O, 11. In order to find L*, we introduce our candidate, exhibit 
Green’s formula, then derive the result. 

Let D+ denote those elements z E gng[O, I] satisfying: 

1. For each z there is an Y x 1 matrix valued constant 4 such that 

(J*z + J*K* [@40) + Nd)l + J*G*@ 

is absolutely continuous. 

2. -(J*z + J*K* [l@.z(O) + Nz(l)] + J*Kl*$)’ - B*x = Ag, where 
g E =%“[O, 1 I. 

3. l%(O) + &z(I) + j; dH*( J*z) = 0, 

s l dH,*(J*x) = 0. 
0 

For all z E D+ we say that 1+x = g, provided 

-(J*z + J*K* [&b(O) + i%(l)] + J*&*+) - B * x = Ag. 

The linear relation L+ is given by 

L+ = {(z, g): Z+.z = g, z E D+} C Pn”[O, l] x 9%‘~[0, 11. 

4.1. THEOREM (Green’s formula). Let (y, Zy) EL, (z, Z+z) EL+. Then 

s ’ [~*U(Y + ~WY(O) + QYUII + HI+)’ - BYI 
0 

- {-(J*z + J*K*[A?k(O) + &(l)] + J*Ki*#)’ - B*z}*y] dt 

== [nz(O) + Nz(l)]* [My(O) + Ny(1) + s,’ d(KJ)y] 

+ [J-%0, + &W + lo1 dfJ*U*4] * F’Y@) + QYUII 
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The proof involves a number of Stieltjes integrations by parts and is similar 
to that found in [ISj. For further reference we recommend [lo, 181. 

We need a slight variation of 1%. Let l++z = g if for some $, $r , 

-(J*z + J*K*+, + J*&*$)’ - B*x = Ag, g E %*[O, 11. 

With no boundary constraints, this generates a larger linear relation L+f. 
Green’s formula for L and L++ is 

s 
’ [z*(ty) - (l++z)* y] dt 

0 

= [a@) + Wl)l* [MY@) + NY(~) + jo14W)y] 

+ [p(O) + &W + jol dfWJ*z)]* [Pr(O) + !JrU>l 

+ [ 5,’ dH,*(J*4] * 4 + C* [ jol dW)y] 

+ [A - @40) - N4)1* [ jo1 W)y]. 

4.2. THEOREM. The domain ofL*, D*, is D+. L* = L+. 

Proof. Green’s formula shows that L+ CL *. To show the reverse inclusion, 
temporarily let y E D n C,l[O, 11. Then 

0 = j’ d(KJ)y = - j1 (KJ) y’ dt, 
0 0 

0 = jol d(K,J)y = - j1 (K,]) y’ dt. 
0 

Further, # may be chosen 0 so that 

Jr’ - By = Af, 

ly = f and (y, f) EL. Let (z, g) EL*. Then 

or 

j1 z*Af dt - j1 g*Ay dt = 0. 
0 0 

Since Jy’ - By = Af, 

Jo1 x*[Jy’ - By] dt - j1 g*Ay dt = 0. 
0 
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If the terms involving y are isolated and integration by parts is performed on 
them, the result is 

Since y vanishes at 0 and at 1, y’ is orthogonal with weight matrix I to constants C. 
Further y’ is orthogonal with weight matrix I to (K’)* and (K,J)* and nothing 
else. (Anything else would imply an extra constraint on 0). Thus for appropriate 

$7 Cl Y 

j*z + lot [B*x + Ag] d5 = C - J*K*+, - J*K,*$. 

Transposing, 

J*z + ]*K*+, + J*K,*4 = -Jb’ [B*z + Ag] df + C. 

Differentiating, 

-(J*z + J*K*+, + J*Kl*#$ - B c z = Ag. 

This implies (z, g) EL++. 
If y is now permitted to be an arbitrary element in D, Green’s formula for L 

and L++ shows 

0 = p(O) + &m + L1 dH,*(J*4]* [PY(O) + QYU>l 

Py(0) + Qy(1) varies over C sn-m, for if not, a linear combination of its rows 
would vanish, putting an extra constraint on D. Likewise # varies over C”. 
Finally if a linear combination of rows of KJ were constant, then so would 
the same linear combination of components of si d(KJ)y be zero. Its coefficient 
from +r - @z(O) - iVZ(l) would be arbitrary. But then the corresponding 
product within 

(J*z + J*KP@40) + N4)l + J*G*#’ 

would vanish. So effectively 

I%(O) + &z(l) + s,’ dH*(J*z) = 0, 

s 
’ dH,*(J*z) = 0, 
II 



260 ALLAN M. KRALL 

and 

+1 = Mz(0) + i%(l). 

Throughout the preceding argument 4 was free. If, however, 4 = #,, + 
Q si d(K,J)y, then a minor variation in the argument and a minor change in 
Green’s formula shows that 4 = #J,, - Q* si dH,*(J * z). These integrals are 
introduced in papers by Coddington [6] and Zimmerberg [22]. 

Note further there is nothing to stop a portion of Hr or (KrJ) from being 
identical with H or (KJ). Hence integrals involving Hand (KJ) may also appear 
in the differential equations. 

4. SELF-ADJOINT DIFFERENTIAL BOUNDARY RELATIONS 

In this section we restrict our attention to the Hilbert space A?~2[0, 11, generated 
by the inner product 

(Y, z> = 1”’ z*Ay dt, 

and characterize those linear relations which are self-adjoint, i.e., those linear 
relations L which satisfy L = L”. 

5.1. THEOREM. The linear relation L is self-adjoint if and only if: 

(1) J = -J*, J’ + B - B* = 0; 

(2) m = n, Y = s; 

(3) d(KJ) = d(CH*)J*, d(CH*) = d(KJ)J*-l, where C = MJ(O)-lP* - 
NJ(l)YQ*; 

(4) MJ(O)-l M” - NJ(l)-VV* = 0; 

(5) dH[PJ(O)-l P* - QJ(l)-’ Q*] = 0; 

(6) d(K,J) = d(EH,*)J*, d(EH,*) = d(K, J)J*-I, where E is a nonsinguZar 
r x r matrix under which dH,[E * #J + #] = 0. 

Proof. We note that the assumptions concerning M, N, P * Q, il?l, m, E’ . & 
result in the equations 

- MJ(O)-l %‘* + NJ( 1))rm* = I, 

-PJ(O)-l i@* + Q J(l)+* = 0, 

-MJ(O)-lp”* + NJ(l)-r&* = 0, 

-PJ(O)-l P* + Q J( 1)-l&* = I. 
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Assume that L is self-adjoint. By restricting y to be absolutely continuous and 
vanish at 0 and 1, a comparison of the differential equations shows 

Jy’ - By = -(J*y)’ - B*y. 

If y is locally constant, we find J* is differentiable and 0 = [-J*’ + B - B*] = 0. 
A reinsertion of this into the previous equation establishes J = -J*. 

Since the boundary conditions are equivalent, there must exist nonsingular 
matrices C and E such that 

MY(O) + NYU) + j”l WT)Y = c [4(O) + Qy(1) + j.al dH*(/*y)], 

jol WGJ)Y = E jol W*(J*y). 

This implies M = Cp, N = CQ, and 

j; WJ)Y = c jol dff*(J*y). 

Multiplying M* = P”*C* by -MJ(O)-l and N* = &*C* by NJ(l)-1 and 
adding results in 

-MJ(O)-I M* + NJ(l)-lN* = 0. 

Multiplying M* by -PJ(O), N* by QJ(l)-‘, and adding results in 

C = MJ(O)-l P” - NJ(I)-IQ*. 
In 

jol WJ)Y = jol 4cff*u*Y) 

we vary y to conclude that for arbitrary measurable sets S C [0, 1] 

js d(KJ) I*-' = js d(CH*). 
This implies that (KJ) is absolutely continuous with respect to (CH*). The 
Radon-Nikodym theorem then implies that 

where F,, is the Radon-Nikodym derivative of (KJ) with respect to CH*. 
Likewise 

j d(CH*) = j d(KS)F, ) 
s s 
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where FI is the Radon-Nikodym derivative of (CH*) with respect to (KJ). 
An elementary substitution shows F, = J*, Fl = J*-’ and 

js WJ) = js 4cff*j I*, 
js d(CH*) = js d(KJ) J*-‘. 

We will drop ss and merely write d(-) in the future. 
Similarly 

d(EH,*) = d&J) J*--l, 

d&J) = d(EH,*)J*. 

Finally, comparing the differential equations in general, 

Jdy + JWWO) + QYU>I + JdH,# - Wt 
= -J*’ dty - J* dy - d(KJ)* [i@y(O) + i’@(l)] - d(K,J)* + - B*Y dt. 

By permitting y to vary, this implies upon canceling 

dH[C*n;l - P] = 0, dH[C*1ci - Q] = 0, dH,[E* 4 + $1 = 0. 

Multiplying the first by -J(O)*-‘I’*, the second by J(l)*-lQ*, and adding 
results in 

dH[PJ(O)-l P” - QJ(l)-IQ*] = 0. 

Conversely, suppose conditions l-6 of the theorem hold. Then from the 
equations noted at the beginning of the proof and from condition 4, we find 

and 

(MJ(O)-1 NJ(l)-1) ($*) = 0, 

PfJ(OY NJ(l)-l) (:;*) = 0. 

Employing an argument analogous to that of [8, pp. 289-2911 we find there exists 
a nonsingular matrix T such that M = Tp, N = TQ. A further simplification 
shows T = C. 

Similarly, modulo multiplication by dH, 

(PJW1 QJ(l>-'1 ($*) = 0 
and 

PJKW' QJOY) ($1) = 0. 
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Consequently, modulo dH, there exists a nonsingular matrix TI such that 
P = TIi@, Q = TIN. A further simplification shows TI = -C* and that 
dH[P + C*A?] = 0, dH[Q + C*m] = 0. 
Hence 

{J(Y + H[PY(O) + QYU) + f&U - BY> dt 
= Jdy + JWPy(O) + QyU)l + JdH, - BY dt 
= Jdy + dJy - B*y dt - JdH[C*A?y(O) + C*my(l)] - JdH,E* + 
=- 4J*A - dFJ)* [@Y(O) + ~,Cl,l - 4&J)* $ - B*Y dt 
= (-(J*Y + J*K* [*y(O) + Ny(l)l + J*K~*(#>’ - B*Y) dt. 

Further, 

E jol dHl*(J*y) = jol WGJ) J*-‘(J*Y> = jol dKJ)y, 

C [4(O) + QY(~) + jol dH*(Jy)] = MY(O) + NY(~) + jolWJ)y, 

and L is self-adjoint. 
If 

# = $0 + Q jol W,J)y, 

= $0 + QE jol dHl*(J*r>, 

then it is easy to see dH,[E* +,, + #,,I = 0 and dH,[E*Q* - QE] j: dH,*( Jy) = 0. 
Consequently the differential equation generating a self-adjoint linear relation 
in this case is 

J(Y t W’y(O) + QyU)l + H,QE j1 W*(J*y) + GA,) - BY = 4 
0 

where QE = E*Q*. It is precisely this equation which is considered by 
Coddington [6] and Zimmerberg [22]. Differences in notation, however, almost 
preclude exhibiting the connection in detail. 

In closing this section we would like to give three examples. First, if J = 
(l/i)l, B = iP, A = 1, and M, N, P, Q are replaced by (l/i),& (l/i)B, C, D, 
then L is the same as the linear relation M discussed in [15]. Second, if H, 
HI, K, KI are all zero, then Theorem 5.1 is the classical result. Third, if 

J = (“, ;)T A = (iw ;), B = (t ;), 

Hz-K= 
( 

0 H(t - l/2) 0 0 
-H(t - l/2) 0 1 ’ 

HI=KI= o o, 
( 1 

1 0 
M=OO, ( ! 

505/24/2-8 
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then L is equivalent to the self-adjoint second-order problem 

-YV + w - 3)Y’(O) + qt - &)Y(l) +p1y = -wf, 
Y(O) + Ye?) = 0, 

W(l) + DY(&> = 0, 

where Dy = -y’(t) + 8(t - 3) y’(O), H(t - 8) is the Heaviside function 
jumping from 0 to 1 at t = 4, and 8(t - $), 8’(t - 4) are its first and second 
generalized derivatives. 

5. SELF-ADJOINT OPERATORS ON SUBSPACES OF L2Tm2[0, I] 

Let the columns of HI be suitably rearranged such that HI = (H,H,), where 
the first s, form a maximal n x s, absolutely continuous matrix H, satisfying 
JH,’ = AH,, with the columns of Ho in 6p,“[O, 11. Let Zi denote the subspace 
of 9..~[0, 11 spanned by the columns of H,, . 
’ Likewise let the rows of Ki be suitably rearranged such that Ki = @), 
where the first r, when multiplied by J forms a maximal rl x 71 absolutely con- 
tinuous matrix Kc J satisfying (Kc J)’ = J&A with the columns of K,* in 
zn*[O, 11. Let Z,* denote the subspace of -Ep,Q[O, l] spanned by the columns 
of K,*. 

The system describing L can be written in the form 

J(Y + HF’y(0) + QYU)I + H&Y - BY = Af - A%~J, > 

where # = @), 

MY(O) + NY(l) - s,l WJ)Y = 0, 

s l W,J)Y = 0, 
0 

s 

1 

KoAy dt = 0. 
0 

If ly = f is written as 1,y + Ho+, , then 1,~ = f - Ho+, . Consequently L 
is defined on D C Ytl, but is uniquely defined only in _Ep,“[O, l]/%i . 

Similarly the system describing L* is 

-(J*z + J*K* [@z(O) + mz(l)] + J*Ks*&)‘-B*z = Ag + AK,*+,, 



STIELTJES OPERATORS AND SYSTEMS 265 

where + = (k), 

l%(O) + &z(l) + J’ dH*(J*x) = 0, 
0 

I 
l dH,*(J*x) = 0, 

0 

s 

1 

H,*Az dt = 0. 
0 

If Z+z = g is written as Z,+z - Ko*& , then ZSj-z = g + KO*$G . Consequently 
L* is defined on D* C XiL, but is uniquely defined only in -.Yng[O, 11/X,*. 

If the extra integral terms used by Coddington [6] and Zimmerberg [22] are 
present, then the same situation results with the integral terms within the 
parentheses to be differentiated. 

The difficulties with uniqueness are considerably simplified if p = q = 2, 
%i = X1* and the linear relationL is self-adjoint. L is then defined in D C HI’ 
and is uniquely defined in znz[O, l]/Xi N Xi’. Therefore if lcrc is determined 
by projecting I onto SrL, a unique operator is defined which has domain dense 
in Xi’- and range also in Hi’. 

We assume without loss of generality that the columns of Ho are mutually 
orthonormal. If Zy = Z,y + Ho+, is orthogonal to #i , then 

and 
(4~ + HoA 9 Ho) = 0, 

A = -GY> Ho). 

Hence the operator Z projected onto Si is given by 

ZY = 4~ - Ho&y, Ho). 

It is this expression with the integral term present in I, which is determined by 
Coddington [6]. 

An inspection shows 

6.1. THEOREM. The linear reZation L is self-adjoint ;f and onZy ;f the projected 
operator Z is self-adjoint. 

7. EIGENFUNCTION EXPANSIONS 

There are several variations of spectral resolutions or eigenfunction expansions 
in the literature. First the author in the regular case has discussed four situations. 
In [12], assuming J = 1, A = I, H and K are absolutely continuous, and 
HI = 0, Ki = 0, a nonself-adjoint eigenfunction series expansion was developed. 



266 ALLAN M. KRALL 

Likewise in [12] if J = il, A == I, H and K are absolutely continuous, and 
HI =:- 0, k; = 0, a self-adjoint eigenfunction series expansion was found. In 
[14] the first was extended to permit H and K to be singular Stieltjes measures, 
but either H or K was required to be continuous. The second was also extended 
to permit H, K, HI , Kl to be singular Stieltjes measures. 

Coddington [6] derived both regular and singular self-adjoint spectral 
resolutions for both nth order and vector problems under the assumption that 
H, K, HI , Kl were absolutely continuous. These results overlap with and 
generalize the self-adjoint expansion in [14]. Dijksma and de Snoo [9] extended 
Coddington’s expansions to include pointwise convergence. Most recently 
Coddington and Dijksma [7] have derived expansions with self-adjoint case 
which permit H, K, HI, Kl to be arbitrary Stieltjes measures of bounded 
variation. 
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