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Following arXiv:1501.03019 [hep-th], we study de Sitter space and spherical subregions on a constant 
boundary Euclidean time slice of the future boundary in the Poincaré slicing. We show that as in 
that case, complex extremal surfaces exist here as well: for even boundary dimensions, we isolate the 
universal coefficient of the logarithmically divergent term in the area of these surfaces. There are parallels 
with analytic continuation of the Ryu–Takayanagi expressions for holographic entanglement entropy in 
AdS/CFT. We then study the free energy of the dual Euclidean CFT on a sphere holographically using the 
dS/CFT dictionary with a dual de Sitter space in global coordinates, and a classical approximation for the 
wavefunction of the universe. For even dimensions, we again isolate the coefficient of the logarithmically 
divergent term which is expected to be related to the conformal anomaly. We find agreement including 
numerical factors between these coefficients.
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1. Introduction

Generalizations of gauge/gravity duality [1–4] to de Sitter space, 
or dS/CFT [5–7], involve a hypothetical dual Euclidean CFT on 
the future timelike infinity I+ boundary. The late time wave-
function of the universe with appropriate boundary conditions 
is equated with the partition function of the dual CFT. Further 
work on dS/CFT including higher spin realizations appears in e.g.
[8–15].

Ideas pertaining to entanglement entropy have been of great 
interest in recent times. In AdS/CFT , the Ryu–Takayanagi prescrip-
tion [16,17] (see [18,19] for reviews) maps entanglement entropy 
of a field theory subsystem to the area (in Planck units) of a bulk 
minimal surface (more generally extremal surface [20]) anchored 
at the subsystem interface and dipping into the bulk, in the grav-
ity approximation. Similar ideas were explored in [21] in de Sitter 
space with a view to exploring entanglement entropy in the dual 
CFT with dS/CFT in mind. For strip-shaped subregions on a con-
stant Euclidean time slice of the future boundary, it was found 
that the area of certain complex extremal surfaces has structural 
resemblance with entanglement entropy of dual Euclidean CFTs 
(reviewed in sec. 2). The coefficients of the leading divergent “area 

law” terms in dSd+1 resemble the central charges Cd ∼ i1−d Rd−1
dS

Gd+1

of the CFTds appearing in the 〈T T 〉 correlators in [7]. The ar-
eas of these surfaces obtained thus essentially amount to analytic 
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continuation from the Ryu–Takayanagi expressions for holographic 
entanglement entropy in AdS/CFT . Note that the areas are in gen-
eral not real-valued or positive definite and are distinct from the 
entanglement entropy of bulk fields in de Sitter space e.g. [22].

Towards exploring this further, we study spherical subregions 
in this paper. As in [21], similar complex extremal surfaces can 
be shown to exist in this case too (sec. 3). The area of these sur-
faces exhibits a similar leading area law divergence as well as 
subleading terms: for dSd+1 with even d, this includes a loga-
rithmically divergent term whose coefficient is analogous to the 
“universal” terms in AdS/CFT related to the conformal anomaly 
[17]. In the present case also, we expect this anomaly to arise in 
the free energy of the CFT on a curved space. With this in mind, 
we then calculate in the present case (sec. 4), the free energy of 
the Euclidean CFT on a sphere holographically using the dS/CFT
dictionary ZCFT = � [7] with an auxiliary de Sitter space in global 
coordinates (whose constant time slices are spheres). In the clas-
sical regime, we approximate the wavefunction of the universe �
in terms of the bulk action S of this auxiliary de Sitter space: this 
gives −F = log ZCFT = log � ∼ i S . We find precise agreement be-
tween the coefficients of the logarithmic terms in the complex ex-
tremal surfaces and those in the free energy via the wavefunction 
of the universe, including numerical factors. Since the coefficient 
of the logarithmic term in the free energy is related to the trace 
anomaly for any CFT, this supports the idea that the area of these 
complex extremal surfaces encodes entanglement entropy of the 
dual Euclidean CFT in dS/CFT , as we discuss in sec. 5.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Reviewing de Sitter extremal surfaces: strips

Here we review the study [21] of bulk de Sitter extremal sur-
faces anchored over strip-shaped subregions on the future bound-
ary I+ in the Poincaré slicing. de Sitter space dSd+1 in the 
Poincaré slicing or planar coordinate foliation is given by the met-
ric

ds2 = R2
dS

τ 2
(−dτ 2 + dw2 + dσ 2

d−1) , (1)

where half of the spacetime, e.g. the upper patch, has I+ at τ = 0
and a coordinate horizon at τ = −∞. This may be obtained by 
analytic continuation of a Poincaré slicing of AdS,

z → −iτ , RAdS → −iRdS , t → −iw , (2)

where w is akin to boundary Euclidean time, continued from time 
in AdS (with z the bulk coordinate). The dual Euclidean CFT is 
taken as living on the future τ = 0 boundary I+ . We assume 
translation invariance with respect to the boundary Euclidean time 
direction w , and consider a subregion on a w = const slice of I+ . 
One might imagine that tracing out the complement of this sub-
region then gives entropy in some sense stemming from the infor-
mation lost. In the bulk, we study de Sitter extremal surfaces on 
the w = const slice, analogous to the Ryu–Takayanagi prescription 
in AdS/CFT . Operationally these extremal surfaces begin at the in-
terface of the subsystem (or subregion) and dip into the bulk time 
direction.

For a strip-shaped subregion on I+ (with width say along x), 
parameterizing the spatial part in (1) as dσ 2

d−1 = ∑d−1
i=1 dx2

i , the 
dSd+1 area functional on a w = const slice is

SdS = Rd−1
dS Vd−2

4Gd+1

∫
dτ

τ d−1

√( dx

dτ

)2 − 1 ,

ẋ2 = −A2τ 2d−2

1 − A2τ 2d−2
, (3)

with dx
dτ ≡ ẋ, and the constant A2 is the conserved quantity ob-

tained in the extremization. First let us consider dS4 with the bulk 
time parametrized by real τ with the range −∞ < τ < 0 and cor-
respondingly real surfaces, described in [21]. These surfaces are 
obtained by taking A2 < 0, which gives ẋ2 = |A|2τ 4

1+|A|2τ 4 . For real τ , 
we note that a crucial sign difference from the AdS case implies 
the absence of a turning point where ẋ → ∞. These are timelike 
surfaces with ẋ2 → 0 as τ → 0 (anchored on the subregion bound-
ary at I+ , dipping into the past): as |τ | → ∞, we have ẋ2 → 1
asymptoting to a null surface. An extremal surface can then be 
constructed by taking two half-extremal-surfaces bending “inward” 
and joining them with a cusp (see Fig. 1 in [21]). Since these are 

real surfaces, it is natural to take SdS = Rd−1
dS Vd−2
4Gd+1

∫ dτ
τd−1

√
1 − ẋ2 as 

for a real timelike surface. The area decreases as |A|2 increases: 
as |A|2 → ∞, these real surfaces become null with ẋ2 → 1 and 
are the analogs of surfaces with minimal (zero) area. They are re-
strictions (to a boundary Euclidean time slice) of the boundary of 
the past lightcone wedge of the boundary subregion, with vanish-
ing area, and no bearing on entanglement. One can also consider 
half-extremal-surfaces bending “outward” from the interface: again 
minimal area surfaces are null with zero area. Taking A2 = 0 gives 
disconnected surfaces x(τ ) = const, again with no turning point: 
it is then natural to take τ to extend all the way to |τ | → ∞
which gives SdS ∼ Rd−1

dS
Gd+1

Vd−2
εd−2 with no cutoff-independent terms (en-

coding the interesting finite size-dependent part of entanglement). 
Thus real dS extremal surfaces do not give interesting entangle-
ment structure. Real codim-1 surfaces have similar behavior.

With dS/CFT in mind, we now consider A2 > 0: this gives a 
complex surface.1 For dS4, we have x(τ ) ∼ ±i Aτ 3 + x(0) as τ ∼ 0, 
so that x(τ ) representing a spatial direction in the CFT is real-
valued only if τ is pure imaginary. More generally, requiring that 
the width �x = l be real-valued suggests that τ takes imaginary 
values, parametrized as τ = iT with T real. There is now a turn-
ing point τ∗ = i√

A
which is the “deepest” location this (smooth) 

complex surface dips upto in the bulk (with |ẋ| → ∞): in other 
words, |τ | ≤ |τ∗|. The width condition �x = l can be shown to give 
τ∗ = il, so that large width l → ∞ implies |τ∗| → ∞. It is worth 
noting that the τ -parametrization here lies outside the original de 
Sitter parametrization where τ was a real coordinate: instead for 
this complex solution to the extremization (with width l), τ runs 
along the imaginary axis, ranging from iε to il. The correspond-
ing surface x(τ ) does not directly correspond to any real bulk dS4
subregion: instead, complexified τ suggests an effective analytic 
continuation of (1) to Euclidean AdS and a corresponding extremal 
surface. For even d, similar analysis can be done [21] with com-
plex surface saddle points of the area functional arising by taking 
A2 < 0 and similar paths τ = iT (the details are different from 
dS4). The area of these surfaces is

SdS = −i
Rd−1

dS

4Gd+1
Vd−2

τ∗∫
τUV

dτ

τ d−1

1√
1 − (−1)d−1 A2τ 2d−2

= i1−d Rd−1
dS

2Gd+1
Vd−2

( 1

εd−2
− cd

1

ld−2

)
, (4)

where τUV = iε and τ∗ = il, and the integral is as in AdS (with cor-
responding constant cd). Note that here we have used the relation 
τUV = iε for the ultraviolet cutoff in the dual Euclidean field the-
ory suggested by previous investigations in dS/CFT (see e.g. [7–9,
13]) with time evolution mapping to renormalization group flow.

SdS in (4) bears structural resemblance to entanglement en-

tropy in a dual CFT with central charge Cd ∼ i1−d Rd−1
dS

Gd+1
. The first 

term Sdiv
dS ∼ i1−d Rd−1

dS
Gd+1

Vd−2
εd−2 resembles an area law divergence [25,

26], proportional to the area of the interface between the sub-
region and the environment, in units of the ultraviolet cutoff. It 
appears independent of the shape of the subregion, expanding (3)
and assuming that ẋ is small near the boundary τUV . Written as 
Cd

Vd−2
εd−2 , we see that it is also proportional to the central charge 

Cd ∼ i1−d Rd−1
dS

Gd+1
representing the number of degrees of freedom in 

the dual (non-unitary) CFT: these arose in the 〈T T 〉 correlators ob-

tained in [7]. In dS4, the central charge C ∼ − R2
dS

G4
is real and nega-

tive, while in dS3, dS5, it is imaginary. The second term is a finite 
cutoff-independent piece. Unlike dS4, note that SdS in dSd+1 with 
even d is not real-valued: e.g. in dS3, we obtain SdS ∼ −i RdS

G3
log l

ε

while in dS5, we have SdS ∼ i
R3

dS
G5

V 2(
1
ε2 − c4

1
l2

). Similar complex 
surfaces can be studied in the dS black brane [15] which are dual 
to the CFT at uniform energy density: then the finite part resem-
bles an extensive thermal entropy, again with a coefficient central 
charge as above. It is interesting to note that a replica calcula-
tion of entanglement entropy in a free 3d Sp(N) theory for the 
half-plane [27] gives behavior similar to the leading area law di-
vergence here (although the Sp(N) theory is dual to the higher 

1 Complex geodesics and surfaces have also appeared in e.g. [23,24].
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spin dS4 theory [9] and it is unclear if geometric objects such as 
extremal surfaces are of relevance).

While there is structural resemblance with entanglement en-
tropy, there are questions. Since these are bulk complex extremal 
surfaces, changing the sign in the square root branch in (3) in-
troduces an overall ±i factor. Fixing this in (4) as −i makes the 
leading divergence to be of the form of the area law Cd

Vd−2

εd−2 with 
Cd the central charges in [7]. The resulting expressions are cor-
roborated by and essentially amount to analytic continuation from 
the Ryu–Takayanagi expressions for holographic entanglement en-
tropy in AdS/CFT . While this is suggestive, it would be useful to 
explore this further with a view to associating these complex ex-
tremal surfaces and corresponding area with entanglement entropy 
in dS/CFT .

Here we study spherical subregions and the corresponding 
complex extremal surfaces. For dSd+1 with even d, there is a term 
in the area with logarithmic dependence on the cutoff ε whose 
coefficient can be compared with that obtained from the confor-
mal anomaly appearing in the free energy of the CFT on a sphere 
holographically using dS/CFT . We obtain agreement between both 
sides: this vindicates the signs we have used above in defining 
these complex surfaces, and analytic continuation.

3. Spherical extremal surfaces in de Sitter space

Building on [21] for strip-shaped subregions, here we con-
sider spherical subregions on the boundary I+ , with radius l
parametrized as 0 ≤ r ≤ l. Since we are interested in spherical 
entangling surfaces, we will parametrize dσ 2

d−1 in (1) in polar co-
ordinates. Then the w = const surface (i.e. a constant boundary 
Euclidean time surface) is a bulk d-dim subspace with metric

ds2 = R2
dS

τ 2

(
−dτ 2 + dr2 + r2d�2

d−2

)
. (5)

The bulk surface on the w = const slice bounding this subre-
gion and dipping into the τ -direction is bulk codim-2: let us 
parametrize this as r = r(τ ). Its area functional in Planck units is

SdS = 1

4Gd+1

∫ d−2∏
i=1

RdSrd�i

τ

RdS

τ

√
dr2 − dτ 2

= Rd−1
dS �d−2

4Gd+1

∫
dτ

τ d−1
rd−2

√( dr

dτ

)2 − 1 . (6)

The variational equation of motion for an extremum ∂
∂τ ( ∂L

∂ ṙ ) = ∂L
∂r

gives

∂

∂τ

( rd−2

τ d−1

ṙ√
ṙ2 − 1

)
= d − 2

τ d−1
rd−3

√
ṙ2 − 1 , (7)

where dr
dτ ≡ ṙ. It can be seen that

r(τ ) =
√

l2 + τ 2 (8)

is an extremal surface that solves (7), thus extremizing SdS , using

ṙ = τ√
l2 + τ 2

, ṙ2 − 1 = −l2

l2 + τ 2
. (9)

This satisfies the boundary conditions which require the surface 
to be anchored at the subregion interface, i.e. r → l as τ → 0. 
Unlike the strip case, there are no parameters for the surface in 
this case2 for d > 2. We see from (8), (9), that for τ real, there is 
no bulk turning point where dr

dτ → ∞ with the surface turning 
around smoothly: instead the surface asymptotically approaches 
r2 → τ 2. Furthermore this surface has r(τ ) ≥ l whereas all in-
terior points within the subregion satisfy 0 ≤ r ≤ l with r → l
near τ ∼ 0, so that this surface bends “outwards” from the sub-
region boundary. This is a real timelike surface with ṙ ≤ 1. It is 
then more natural to consider, rather than (6), the area as SdS =
Rd−1

dS �d−2
4Gd+1

∫ dτ
τd−1 rd−2

√
1 − ṙ2 which is real-valued. Since the surface 

does not “end” at any finite τ , we consider the whole τ -range and 

obtain SdS = Rd−1
dS �d−2l
4Gd+1

∫ −ε
−∞

dτ
τd−1 (l2 + τ 2)(d−3)/2, taking τUV = −ε . 

This gives SdS = R2
dS

4G4

A1
ε [for dS4, with A1 = 2π l the interface area 

of the circular subregion], and SdS = R3
dS

8G5

A2
ε2 + π R3

dS
2G5

log l
ε [for dS5, 

with A2 = 4π l2 the 2-sphere interface area]. Note that there are 
no interesting finite cutoff-independent pieces for these surfaces 
since those contributions die at |τ | → ∞.

From the point of view of the dual Euclidean CFT, we expect 
that the central charge coefficients in the extremal surface area 
(interpreted as entanglement entropy) must match those of the 
CFT. For the leading area law divergence (which is not sensitive 
to the detailed geometry of the subregion) of a spherical subre-
gion, the scaling must be the same as for the strip, matching the 
central charges obtained in [7] which are negative or imaginary. 
In addition there are expected to be universal coefficients for the 
sphere case which should match CFT anomaly coefficients. Further 
we would also intuitively expect that there exist interesting fi-
nite cutoff-independent parts which are size-dependent measures 
of entanglement entropy from the CFT point of view. Given these 
expectations, the real surfaces discussed above are unsatisfactory.

This suggests that we consider imaginary τ parametrized as 
τ = iT with T real, as for the strip case. Thus (8) becomes

r2 = l2 − T 2 ⇒ rmin = 0 at the turning point

τ∗ = il ⇒ �r = l . (10)

Now r(τ ) maps each point on the surface directly to a correspond-
ing real-valued spatial location within the subregion in the dual 
CFT (i.e. the surface bends “inward”). We require that the bound-
ary subregion radial parameter r be real-valued in (8) since this 
represents a spatial direction in the CFT: this excludes more gen-
eral paths in complex τ -space. The range of τ is now restricted, 
and the subregion size given by �r ≡ rmax − rmin is bounded. (Per-
haps more general complex paths and surfaces exist if both r, τ
are complexified.)

Thus using (8), (9), (10), the area (6) in dSd+1 becomes

SdS = Rd−1
dS �d−2

4Gd+1

τ∗∫
τUV

dτ

τ d−1
(−il)(l2 + τ 2)(d−3)/2 . (11)

The integration is along the path τ = iT , with τUV = iε and τ∗ = il. 
The leading divergence here is of the form of the area law (for 
d > 2), given by

2 For d = 2, with just one spatial dimension, there is no difference between 
a strip and a sphere so the analysis is similar to that in [21]. In detail, from 
(7) we have ṙ2 = −B2τ 2

1−B2τ 2 . With B2 < 0, these are real surfaces parametrized as 
r(τ ) = ±√

τ 2 + (1/B2) + C subject to the boundary conditions e.g. r → ± l
2 as 

τ → 0. “Inward” bending half-extremal-surfaces appropriately joined (Fig. 1 in [21]) 
can be constructed asymptoting to null surfaces with zero area. Alternatively “out-
ward” bending surfaces which extend all the way to |τ | → ∞ are represented 
by e.g. the two half-surfaces rL = −√

(l2/4) + τ 2, rR = √
(l2/4) + τ 2, with area 

SdS = 2 RdS
4G

∫ −ε
−∞

dτ
τ

l/2√
2 2

= RdS
2G log l

2ε .

3 (l /4)+τ 3
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Sdiv
dS = i

d − 2

Rd−1
dS �d−2

4Gd+1

ld−2

τ d−2
UV

= i1−d

d − 2

Rd−1
dS

4Gd+1

Ad−2

εd−2
, (12)

with Ad−2 ≡ ld−2�d−2 the interface area. There is an overal ± sign 
ambiguity in the choice of the square root branch in (6), (11), 
which we have fixed to be + in (12), as in the strip subregions 
reviewed earlier. This sign corresponds to choosing 

√−l2 = −il in 
(11). As for the strip [21], the leading divergence here has the form 

Cd
Ad−2
εd−2 with Cd ∼ i1−d Rd−1

dS
Gd+1

of the form appearing in the 〈T T 〉 cor-
relators in [7]. We also see that analytic continuation using (2)
from the leading area law divergence from the Ryu–Takayanagi ex-

pression in AdS/CFT gives Rd−1

4Gd+1

ld−2�d−2
(d−2)εd−2 −→ i1−d

d−2
Rd−1

dS
4Gd+1

ld−2�d−2
εd−2

which is the sign above.
There are subleading terms: e.g. for dS4, the area (11) gives

SdS = R2
dS�1

4G4
(−il)

τ∗∫
τUV

dτ

τ 2
= −π R2

dS

2G4

( l

ε
− 1

)
. (13)

The finite constant cutoff-independent piece π R2
dS

2G4
is a universal 

term. For d even, one of the subleading terms is the universal log-
arithmic term. Expanding (11), this logarithmic term can be seen 
to be

−i

(d−3
2

d−2
2

)
�d−2

4

Rd−1
dS

Gd+1
log

l

ε
, (14)

where 
(ν

k

)
is the (generalized) binomial coefficient of the xk-term 

in the expansion of (1 + x)ν and �d = 2π(d+1)/2

�((d+1)/2)
is the d-dim 

sphere volume. The argument in the logarithmic term is obtained 
as τ∗

τUV
= il

iε . Explicitly, the coefficients (14) for dS3, dS5, dS7 are

−i
RdS

2G3
[dS3] , −i

π R3
dS

2G5
[dS5] ,

−i
π2 R5

dS

4G7
[dS7] . (15)

These coefficients resemble those arising in the 〈T T 〉 correlators 
in [7], except that the numerical factors are unambiguously fixed 
here. For dS3, the area contains only the logarithmic term and the 
coefficient can be calculated directly3 from (6), (11): writing this 
area as c

3 log l
ε gives the central charge c = −i 3RdS

2G3
which can be 

seen to be the analytic continuation of the known AdS3 central 
charge 3RAdS

2G3
.

Note that −i
Rd−1

dS
Gd+1

under the analytic continuation (2) becomes 

(−1)
d
2 −1 Rd−1

AdS
Gd+1

which we recall arises in the universal coefficient of 
the logarithmic term in the AdS case for spherical surfaces [17]
(and the numerical factors also corroborate). This coefficient is pro-
portional to the a central charge appearing in the trace anomaly of 
the CFT on a sphere (for even d): note that in Einstein gravity, the 

central charges a, c are the same, with a ∼ Rd−1
AdS

Gd+1
[28–31].

This suggests that in dS/CFT , the coefficients of the logarith-
mic term for these complex extremal surfaces are the analogs of 

3 Explicitly the surface is parametrized by the two half-surfaces xL =
−√

(l2/4) − T 2, xR = √
(l2/4) − T 2 satisfying the boundary conditions xL → −l/2, 

xR → l/2 as τ = iT → 0 and xL , xR → 0 as τ → τ∗ = il/2. It is easy to check that 
these join smoothly at τ∗: the resulting surface can be recognized as a continuation 
of the AdS3 case. The area is SdS = 2 RdS

4G3

∫ il/2
iε

dτ
τ (−il) 1√

l2+τ 2
, with log-coefficient as 

above.
these a-type central charges in the Einstein gravity approximation. 
These coefficients match with those in the logarithmically diver-
gent terms in the CFT free energy evaluated using dS/CFT as we 
discuss now.

4. � ∼ ei S , CFT on sphere and conformal anomaly

For what follows, it is useful to recall the dS/CFT correspon-
dence for de Sitter space. A version of dS/CFT [5–7] states that 
quantum gravity in de Sitter space is dual to a Euclidean CFT living 
on the boundary I+ . More specifically, the CFT partition function 
with specified sources φi0(x) coupled to operators Oi is identified 
with the bulk wavefunction of the universe as a functional of the 
boundary values of the fields dual to Oi given by φi0(x). In the 
classical regime this becomes ZCFT = �[φi0(x)] ∼ eiScl[φi0] where 
we need to impose regularity conditions on the past cosmologi-
cal horizon τ → −∞: e.g. scalar modes satisfy φk(τ ) ∼ eikτ , which 
are Hartle–Hawking (or Bunch–Davies) initial conditions. Opera-
tionally, certain dS/CFT observables can be obtained by analytic 
continuation (2) from AdS (see e.g. [7], as well as [8]).

For even dimensions d, the free energy of the CFTd on a sphere 
is expected to contain a logarithmic divergence whose coefficient 
is related to the integrated conformal anomaly of the CFT. Since 
the (nonunitary) CFT here is that dual to de Sitter space, this can 
be calculated holographically using the dS/CFT dictionary ZCFT = �

[7] with an auxiliary de Sitter space in global coordinates whose 
constant time slices are spheres. In the classical regime, we ap-
proximate the Hartle–Hawking wavefunction of the universe � in 
terms of the bulk action S of this auxiliary de Sitter space: this 
gives −F = log ZCFT = log � ∼ i S . We can then calculate the coeffi-
cient of the logarithmic term in the classical approximation.

de Sitter space dSd+1 in global coordinates, with scale RdS , is

ds2 = −dt2 + R2
dS

(
cosh

t

RdS

)2
d�2

d . (16)

The spatial slices are d-spheres, with minimum radius RdS at t = 0. 
This is a solution to Einstein gravity RMN = d

R2
dS

gMN with cosmolog-

ical constant  = d(d−1)

2R2
dS

. The on-shell bulk action is

S = 1

16πGd+1

∫
dd+1x

√−g(R − 2)

= 1

16πGd+1

∫
dtdd�d Rd

dS

(
cosh

t

RdS

)d 2d

R2
dS

, (17)

where R − 2 = d(d+1)−d(d−1)

R2
dS

and �d the d-dim sphere volume. 

We have suppressed writing the surface terms and counterterms 
for canceling the leading divergences in this action since the log-
arithmic term we are interested in arises solely from the bulk 
action: this is motivated by similar arguments in AdS/CFT (see e.g.
[28–31] and the review [4]). This gives

S = 2d �d Rd−1
dS

16πGd+1

∫
dt

RdS

(
cosh

t

RdS

)d

= Rd−1
dS

16πGd+1

2d �d

2d

∫
d
( t

RdS

)
edt/RdS(1 + e−2t/RdS)d . (18)

With τ = −2RdSe−t/RdS , the metric (16) at asymptotically late 
times becomes of Poincaré form ds2 ∼ R2

dS
τ 2 (−dτ 2 + R2

dSd�2
d). It is 

useful to write the bulk action by redefining y = et/RdS = 2RdS−τ and 
we obtain

S = Rd−1
dS 2d �d

d

yUV∫
dy yd−1

(
1 + 1

2

)d
. (19)
16πGd+1 2 y
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The upper limit of integration here is at large t i.e. the future cutoff 
τUV . The lower limit will not be important in what follows as long 
as some regularity conditions are satisfied (see e.g. the Hartle–
Hawking prescription [32]).

The expansion of this action has a logarithmic term for d even. 
Now the wavefunction of the universe in the classical approxima-
tion is � = eiS and the free energy is −F ≡ log Z = log� ≡ i S [7]. 
Thus the logarithmic term in the free energy can be found by ex-
panding the action (19), which arises as

i S = . . . + i

(
d
d
2

)
2d �d

16π 2d

Rd−1
dS

Gd+1
log

RdS

ε
+ . . .

= −i

(
d
d
2

)
2d �d

16π 2d

Rd−1
dS

Gd+1
logε + . . . , (20)

where the cutoff is yUV = 2RdS
ε and 

(ν
k

)
is the binomial coefficient. 

In Euclidean AdSd+1 with metric ds2 = dρ2 + R2
AdS sinh2(

ρ
RAdS

)d�2
d

(the expected gravity dual for a conventional unitary Euclidean 
CFT on a sphere), a similar calculation yields the anomaly coeffi-
cient as is well known [28–31]: the Euclidean AdS action is SEAdS =

1
16πGd+1

∫
εz

dzddx
√

g(R + 2||) (and Z ∼ e−SEAdS
), and the relevant 

terms arise in the expansion near the boundary. Under the ana-
lytic continuation z → −iτ , RAdS → −iRdS , we have −SEAdS → i SdS

and the −i
Rd−1

dS
Gd+1

factor above continues to (−1)
d
2 −1 Rd−1

AdS
Gd+1

in EAdS. 
Near the boundary z = εz , an asymptotically EAdS5 space ds2 =
R2

AdS
z2 (dz2 + ĝμνdxμdxν) gives −SEAdS5 ∼ R3

AdS
G5

( #
ε4

z
− #

ε2
z

− # logεz +
. . .), with the # being positive coefficients for S4 boundary (and 
z = 2RAdSe−ρ/RAdS near the boundary). Most terms analytically con-
tinue to give pure imaginary terms: with εz → −iετ , the log-term 
continues as log εz → log |ετ | + i π

2 , the final term giving a real fac-
tor in � (see [33] for interesting discussions on relations of the 
coefficient of this logarithmic term to the Hartle–Hawking factor 
|�|2). From the point of view of the dS calculation (19), τ being 
real makes the action real and so i S is pure imaginary: a real part 
in � is obtained by deforming the contour slightly in the far past, 
e.g. yIR ∼ 2RdS

|τIR|−iε̃ ∼ iε̃ as τIR → −∞. Then the logarithmic term 

gives a real term as i S ∼ . . . − iπ R3
dS

2G5
log yIR ∼ − iπ R3

dS
2G5

(log i) = π2 R3
dS

4G5

and correspondingly the Hartle–Hawking factor |�|2 ∼ exp[π2 R3
dS

2G5
]

(this agrees with [33] using M3
Pl = 1

8πG5
). We also note previous 

work [34] on the conformal anomaly in dS/CFT (which is however 
not based on the wavefunction of the universe).

The coefficient of this logarithmic term in (20) in the free en-
ergy via � can be seen to be the same as that in the logarithmic 
term (14) in the complex spherical extremal surfaces. They appear 
to be the analogs of the a-type central charges in dS/CFT .

Further light is shed on this calculation in light of [35]. A con-
formal mapping was used there to transform the entanglement 
entropy of a spherical subsystem in AdS/CFT to the thermal en-
tropy of the CFT in the static patch of an auxiliary de Sitter space. 
For AdS, this allows a precise comparison with the coefficient of 
the logarithmic term appearing in the extremal surface area. These 
coefficients are related to the conformal anomaly and the central 
charge a (which is also c) [17] in the Einstein gravity approxima-
tion (see also [36,37] for higher derivative theories).

It would appear that a similar argument is at play here modulo 
some caveats (below). The CFT in this case, intrinsically Euclidean, 
lives on the flat Euclidean space on the future boundary I+ of 
de Sitter space and is nonunitary. We use a conformal mapping 
to transform this flat d-dim Euclidean space ds2 = dt2 + dr2 +
E E
r2d�2
d−2 to a sphere: this is given by the coordinate transforma-

tion

tE = l
cos θ sin ρ

l

1 + cos θ cos ρ
l

, r = l
sin θ

1 + cos θ cos ρ
l

:

ds2
E = �2[cos2 θdρ2 + l2(dθ2 + sin2 θd�2

d−2)] ,

� = 1

1 + cos θ cos ρ
l

. (21)

Removing the conformal factor �2, this space becomes ds̃2 =
cos2 θdρ2 + l2(dθ2 + sin2 θd�2

d−2). Demanding that this space be 
smooth, we must avoid a conical singularity at θ = π

2 : then the 
coordinate ρ must be taken to be periodic with period �ρ = 2π l. 
This space can then be seen to be a d-sphere ds̃2 = l2(dθ2

1 +
sin2 θ1dθ2

2 + sin2 θ1 sin2 θ2d�2
d−2), using a coordinate transforma-

tion sin θ = sin θ1 sin θ2, tan ρ
l = cos θ2 tan θ1.

The free energy F of the Euclidean CFT on this sphere is ex-
pected to exhibit a logarithmically divergent term (in even dimen-
sions) whose coefficient is related to the conformal anomaly. In 
general, we have an expansion −FCFT = log ZCFT = (non-universal 
terms) + a logε + (finite), with ε the ultraviolet cutoff. The CFT 
energy–momentum tensor [7] is defined as Tij = 2√

h
δZCFT
δhij = 2√

h
δ�

δhij

which becomes Tij ∼ 2√
h

δ(−FCFT )

δhij ∼ i 2√
h

δS
δhij in the classical ap-

proximation for � . Under an infinitesimal conformal transforma-
tion hij → (1 + 2δλ)hμν , i.e. δhij = −(2δλ)hij , we have δFCFT

δλ
=∫

ddx
√

h〈T k
k〉 + (div), which is the integrated trace anomaly. Due 

to conformal invariance, this must be equivalent to simply shift-
ing the ultraviolet cutoff ε → (1 − δλ)ε . This gives the coefficient 
a = ∫ 〈T k

k〉. This argument does not appear to require unitarity 
of the conformal field theory. We have calculated this free en-
ergy holographically assuming the nonunitary CFT has a de Sitter 
gravity dual and using the dS/CFT dictionary ZCFT = � [7] with 
an auxiliary de Sitter space in global coordinates (where constant 
time slices are spheres). As we have seen, we find agreement with 
the coefficients of the logarithmic terms in the complex extremal 
surfaces earlier. The fact that these coefficients are pure imaginary 
is expected from the i in the relation −F ∼ i Sbulk .

Finally, we expect that from the point of view of a CFT replica 
calculation, the entanglement entropy is S E E

CFT = − limn→1 ∂ntrρn
A

where trρn
A = Zn

(Z1)n with Zn the partition function on the n-sheeted 
replica space. A scale change is expected to be of the form 
l ∂
∂l S E E

CFT ∼ ∫ 〈Tμ
μ〉 which is then related to the free energy FCFT

so that the logarithmic term coefficient in S E E
CFT would be of the 

form a log l
ε . This argument does not depend on unitarity. Thus if 

S E E
CFT is evaluated from the bulk side as the area SdS of appropriate 

extremal surfaces, we expect the log-coefficients to match: this is 
vindicated for the complex surfaces we have been discussing.

5. Discussion

We have studied complex extremal surfaces for spherical sub-
regions on a constant boundary Euclidean time slice of the future 
boundary of de Sitter space, building on [21]: as in that case, this 
ends up being quite different from the AdS case due to sign differ-
ences which makes the bulk quite different in structure. For even 
boundary dimensions, there is a logarithmically divergent term in 
the area of these surfaces whose coefficient is a universal term. 
Comparing this with a corresponding coefficient (related to the in-
tegrated conformal anomaly) in a logarithmically divergent term 
in the free energy of the dual Euclidean CFT on a sphere using the 
dS/CFT dictionary for a dual de Sitter space in global coordinates 
in a classical approximation for the wavefunction � ∼ eiS , we find 
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agreement including numerical factors. This coefficient is of the 

form −iνd
Rd−1

dS
Gd+1

where νd is a real positive numerical factor. Our 
analysis here and in [21] has effectively enlarged the original ques-
tion of finding solutions to the extremization problem in de Sitter 
space (Poincaré slicing) with our boundary conditions, since the 
τ -parametrization being complex lies outside the original de Sit-
ter τ -range: the eventual answers pass the checks of agreement of 
various central charges based on ZCFT = � . Perhaps this agreement 
is not surprising since both sides in this Einstein gravity approxi-
mation effectively amount to analytic continuation from the AdS
case (where there is agreement), but it shows consistency between 
the two sides in the present case.

From the point of view of the dual Euclidean CFT, we expect 
that the central charge coefficients in the extremal surfaces area 
(interpreted as entanglement entropy) must match those in the 
dual Euclidean CFT obtained in [7] (which are negative or imag-
inary): this includes the leading area law divergence as well as 
subleading universal coefficients. We would also intuitively expect 
finite cutoff-independent parts which are size-dependent measures 
of entanglement entropy in the CFT. These expectations point to 
the complex extremal surfaces we have been considering which 
exhibit these features. The resulting analysis for these codim-2 
complex extremal surfaces in de Sitter space in the end boils down 
to analytic continuation from the Ryu–Takayanagi formulation in 
AdS (and thus resembles known AdS/CFT results with is or minus 
signs in appropriate places): however this was not obvious to be-
gin with. Perhaps the other surfaces we have discussed are also of 
interest, in other contexts.

The investigations here and those in [21] thus support the idea 
that the areas of these complex extremal surfaces encode entan-
glement entropy of the dual Euclidean CFT in dS/CFT , using the 
formulation ZCFT = � with � the wavefunction of the universe 
[7]. It also suggests that in dS/CFT , the coefficients of the loga-
rithmic terms for these complex extremal surfaces are perhaps the 
analogs of the a-type central charges. Relatedly it may be inter-
esting to study analogs of [38] in the de Sitter case. It is clear 
however that all our calculations are in the bulk and so cannot 
clearly pinpoint the interpretation of entanglement entropy. (As 
an aside however, in the 2d CFT dual to dS3 with central charge 
∼ −i RdS

G3
, a replica calculation of entanglement entropy [39,17] ap-

pears to give ∼ −i RdS
G3

log l
ε under certain assumptions, most im-

portantly the existence of twist sector ground states.) In general 
the notion of entanglement entropy requires certain basic assump-
tions on the CFT Hilbert space, most importantly the existence of 
a ground state. The dual CFT for the pure de Sitter theory here ap-
pears to have pathologies in general such as complex conformal 
dimensions (the higher spin dS/CFT of [9] appears better-behaved 
in this regard, but geometric extremal surfaces may not be of rel-
evance in this case). Also the CFT is intrinsically Euclidean, with 
no notion of time evolution (while the dual bulk time direction 
emerges). Thus the use of a conformal transformation along the 
lines of [35] to map the reduced density matrix to e.g. a ther-
mal one appears more delicate, in such nonunitary CFTs. It would 
appear that this CFT entanglement entropy, assuming it exists, en-
codes CFT correlations and is thus likely, if only indirectly, to also 
encode bulk de Sitter expectation values which have intricate con-
nections to the dual CFT correlation functions [7]. These issues 
would be interesting to explore further.

Acknowledgements

It is a pleasure to thank Shamik Banerjee for several useful dis-
cussions and initial collaboration. This work is partially supported 
by a grant to CMI from the Infosys Foundation.
References

[1] J.M. Maldacena, The large N limit of superconformal field theories and super-
gravity, Adv. Theor. Math. Phys. 2 (1998) 231;
J.M. Maldacena, Int. J. Theor. Phys. 38 (1999) 1113, arXiv:hep-th/9711200.

[2] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-
critical string theory, Phys. Lett. B 428 (1998) 105, arXiv:hep-th/9802109.

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 
253, arXiv:hep-th/9802150.

[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, 
string theory and gravity, Phys. Rep. 323 (2000) 183, arXiv:hep-th/9905111.

[5] A. Strominger, The dS/CFT correspondence, J. High Energy Phys. 0110 (2001) 
034, arXiv:hep-th/0106113.

[6] E. Witten, Quantum gravity in de Sitter space, arXiv:hep-th/0106109.

[7] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field 
inflationary models, J. High Energy Phys. 0305 (2003) 013, arXiv:astro-ph/
0210603.

[8] D. Harlow, D. Stanford, Operator dictionaries and wave functions in AdS/CFT 
and dS/CFT, arXiv:1104.2621 [hep-th].

[9] D. Anninos, T. Hartman, A. Strominger, Higher spin realization of the dS/CFT 
correspondence, arXiv:1108.5735 [hep-th].

[10] G.S. Ng, A. Strominger, State/operator correspondence in higher-spin dS/CFT, 
Class. Quantum Gravity 30 (2013) 104002, arXiv:1204.1057 [hep-th].

[11] D. Das, S.R. Das, A. Jevicki, Q. Ye, Bi-local construction of Sp(2N)/dS higher 
spin correspondence, J. High Energy Phys. 1301 (2013) 107, arXiv:1205.5776 
[hep-th].

[12] D. Anninos, F. Denef, D. Harlow, The wave function of Vasiliev’s universe – a 
few slices thereof, Phys. Rev. D 88 (2013) 084049, arXiv:1207.5517 [hep-th].

[13] D. Das, S.R. Das, G. Mandal, Double trace flows and holographic RG in dS/CFT 
correspondence, arXiv:1306.0336 [hep-th].

[14] S. Banerjee, A. Belin, S. Hellerman, A. Lepage-Jutier, A. Maloney, Dj. Radicević, S. 
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