

Theoretical Computer Science 233 (2000) 279-286

Theoretical Computer Science

www.elsevier.com/locate/tcs

n and similar papers at core.ac.uk

provic

On slender 0L languages

T.Y. Nishida^{a,*}, A. Salomaa^b

 ^a Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi-machi, 939-03 Toyama, Japan
 ^b Turku Centre for Computer Science and Mathematics Department, University of Turku, 20014 Turku, Finland

> Received August 1997; revised September 1998 Communicated by G. Rozenberg

Abstract

We give a complete proof of Theorem 3.1 in [2]. A pathological exception of Theorem 4.3 in [2] is exhibited and a condition to remove it is mentioned. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: 0L system; Slender language; Factorization of word

1. Introduction

This note supplements a few insufficiencies of our previous paper [2]. The main part of this note is devoted to the proof of Theorem 3.1 in [2], whose original proof was insufficient by McNaughton's comment [1]. A few lemmas in [2] are changed because they are dependent on the insufficient proof. The formulation of the main theorem of [2], Theorem 4.3, is slightly changed to avoid pathological exceptions.

We use notations and definitions in [2] without explicit reference and the argument of this note begins at the beginning of Section 3 of [2]. As for the insufficiency of the proof of Lemma 1.6 in [2] pointed out by McNaughton [1], the value of j_1 which satisfies $|v|j_1 \ge |u|i_2$ if $i_2 \ge i_1$ or $|v|j_1 \le |u|i_2$ if $i_2 < i_1$ suffices for the proof.

2. Complete proof of Theorem 3.1

The proof of Theorem 3.1 in [2] shows that different descendants $x, y \in \tau^n(a)$ of an unbounded letter *a* in a slender 0L system for some n > 0 must have the form

^{*} Corresponding author.

E-mail address: nishida@pu-toyama.ac.jp (T.Y. Nishida)

 $x = (zz')^{i_1}z$ and $y = (zz')^{i_2}z$ for some $z, z' \in \Sigma^*$ and $i_1, i_2 \in \mathbb{N}$. But the proof does not tell whether or not a third word $u \in \tau^n(a)$ has the structure $u = (zz')^{i_3}z$.

To complete the proof of Theorem 3.1 in [2], we first investigate a pair of words which have repetitive structures of two common words. Then we separately consider self-productive, persistent non-self-productive, and nonpersistent letters.

Definition 1. Let $x, y \in \Sigma^+$ be words. Two words $z, z' \in \Sigma^*$ are said to be *prime 2-factors* of x and y if they satisfy

1. $z \neq 1$ (1 is the empty word),

2. $x = (zz')^{i_1}z$ and $y = (zz')^{i_2}z$ for some $i_1 \ge 0$ and $i_2 \ge 0$, and

3. If $x = (uu')^{j_1}u$ and $y = (uu')^{j_2}u$, then $i_1 \ge j_1$ and $i_2 \ge j_2$.

The next property shows that prime 2-factors of different words are unique.

Property 1. Let $x, y \in \Sigma^+$ be words with |x| < |y|. If x and y have prime 2-factors z, z', then z and z' are unique.

Proof. Let u and u' be prime 2-factors of x and y, i.e.,

 $x = (zz')^{i}z = (uu')^{i}u$ and $y = (zz')^{j}z = (uu')^{j}u$.

Then the lengths of these words satisfy

$$|zz'|i + |z| = |uu'|i + |u|$$
 and $|zz'|j + |z| = |uu'|j + |u|$,

so that

(i-j)|zz'| = (i-j)|uu'|.

Because $i \neq j$, we have |zz'| = |uu'| and, thus, |z| = |u| by the above equations. Therefore, z = u and z' = u'. \Box

If an unbounded letter of a slender 0L system is nondeterministic, then the different descendants derived in the same steps have prime 2-factors. Indeed, the proof of Theorem 3.1 in [2] proves the next lemma.

Lemma 2. If a 0L system $G = \langle \Sigma, \tau, \omega \rangle$ is slender, then for every non-deterministic unbounded letter $a \in \Sigma$; $x, y \in \tau^n(a)$ for some n > 0 with $x \neq y$ implies that x and y have prime 2-factors, that is, there are $z, z' \in \Sigma^*$ such that $x = (zz')^i z$ and $y = (zz')^j z$ for some $i \ge 0$ and $j \ge 0$.

The descendants of an unbounded letter satisfy another important property: which says that the number of descendants of a specific length at given steps is at most one.

Property 3. If a 0L system $G = \langle \Sigma, \tau, \omega \rangle$ is slender and $a \in \Sigma$ is an unbounded letter in G, then for every nonnegative integers n and l

 $\operatorname{card}(\{w \in \tau^n(a) \mid |w| = l\}, \leq 1.$

Proof. Since *a* is unbounded, for every integer *k* L(G) has a word $v = v_0 a v_1 a \dots a v_k$. If there are different words u_1 and u_2 in $\tau^n(a)$ with $|u_1| = |u_2|$, then $\tau^n(v)$ has at least $\binom{k}{k/2}$ different word of the same length

$$v_0'u_{i_1}v_1'u_{i_2}\ldots u_{i_k}v_k'$$

where k/2 of u_{i_j} 's are equal to u_1 and the others u_2 and $v'_j \in \tau^n(v_j)$ for j = 0, 1, ..., k.

Nondeterministic self-productive letters satisfy the next proposition, whose assertion is the same as Theorem 3.1 in [2].

Proposition 4. Let $G = \langle \Sigma, \tau, \omega \rangle$ be a slender 0L system. If $a \in \Sigma$ is a nondeterministic self-productive letter in G, then for every $n \in \mathbb{N}_+$ there exist $z, z' \in \Sigma^*$ and a finite set of integers I_n such that $\tau^n(a) = \{(zz')^i z \mid i \in I_n\}$.

A detailed observation of prime 2-factors will be needed in the proof of this proposition.

Lemma 5. Let $z, z' \in \Sigma^*$ be prime 2-factors of some words x and y with $x = (zz')^{i_1}z$ and $y = (zz')^{i_2}z$ and $i_1 < i_2$. If

xuy = yux

for some $u \in \Sigma^*$, then $u = (z'z)^j z'$ for some $j \in \mathbb{N}$.

Proof. By the assumptions we have

$$u(zz')^{i_2-i_1} = (z'z)^{i_2-i_1}u.$$
(1)

Because *u* begins with z'z, *u* has the factorization $u = (z'z)^j r$ where $j \ge 0$, |r| < |z'z|, and *r* is a prefix of z'z if $|u| \le |(z'z)^{i_2-i_1}|$. If $|u| > |(z'z)^{i_2-i_1}|$, *u* has the factorization $u = (z'z)^{i_2-i_1}u'$ such that $u'(zz')^{i_2-i_1} = (z'z)^{i_2-i_1}u'$. Repeating this process, we have $u = (z'z)^{n(i_2-i_1)}u' = u'(zz')^{n(i_2-i_1)}$ with $|u'| \le |(z'z)^{i_2-i_1}|$. Now *u* has the factorization $u = (z'z)^j r$ for some prefix *r* of z'z. Then Eq. (1) implies

$$r(zz')^{i_2-i_1} = (z'z)^{i_2-i_1}r.$$
(2)

The initial segment of length |rzz'| of (2) shows that rzz' = z'zr so that

$$(rz)(z'z) = (z'z)(rz).$$

Now by Lemma 1.2 in [2] we have $z'z = s^l$, $z = vs^p$, $z' = s^{l-p-1}v'$, and $r = s^{m-p-1}v'$ for some v'v = s. Since z and z' are prime 2-factors of x and y, the following equations hold:

$$x = (zz')^{i_1}z = z(z'z)^{i_1} = vs^{p+i_1l} = (vv')^{p+i_1l}v.$$

The definition of prime 2-factors implies that p=0 and l=1, i.e., z=v, z'=v', and $r=(z'z)^{m-1}z'$. Since |r| < |z'z|, we have r=z'. \Box

Proof of Proposition 4. By Lemma 2, for every $n \in \mathbb{N}_+$ and $x_1, x_2, \in \tau^n(a), x_1$ and x_2 have prime 2-factors $z, z' \in \Sigma^*$ with $x_1 = (zz')^{i_1}z$ and $x_2 = (zz')^{i_2}z$ for some $i_1 < i_2$. Let x_3 be a word in $\tau^n(a)$. We may assume that $|x_2| < |x_3|$, for otherwise let the shorter two words have prime 2-factors z and z'.

Since *a* is self-productive, there is a word $v_0av_1av_2av_3 \in \tau^l(a)$ for some $l \in \mathbb{N}_+$ in which v_0 , v_1 , and v_2 have no occurrences of *a* and v_3 may have some occurrences of *a*. Let $v'_i \in \tau^n(v_i)$ i = 0, 1, 2, 3 be fixed words. Since

$$w_1 = v'_0 x_1 v'_1 x_2 v'_2 x_2 v'_3, \quad w_2 = v'_0 x_2 v'_1 x_1 v'_2 x_2 v'_3, \quad w_3 = v'_0 x_2 v'_1 x_2 v'_2 x_1 v'_3 \in \tau^{l+n}(a)$$

and $|w_1| = |w_2| = |w_3|$, we have $w_1 = w_2 = w_3$ by Property 3. Then by Lemma 5 $v'_1 = (z'z)^{j_1}z'$ and $v'_2 = (z'z)^{j_2}z'$. Under the same circumstances $\tau^{l+n}(a)$ contains

$$w_4 = v'_0 x_1 v'_1 x_3 v'_2 x_2 v'_3$$
 and $w_5 = v'_0 x_2 v'_1 x_3 v'_2 x_1 v'_3$

with $|w_4| = |w_5|$. Then by Property 3 $w_4 = w_5$ and by Lemma 5

$$v_1'x_3v_2' = (z'z)^j z' = (z'z)^{j_1} z'(zz')^{j_3} z(z'z)^{j_2} z'$$

where $j = j_1 + j_2 + j_3 + 1$. Hence every word in $\tau^n(a)$ has the form $(zz')^i z$. \Box

If a persistent unbounded letter is not self-productive, then the letter makes at most two descendants in every step.

Lemma 6. Let $G = \langle \Sigma, \tau, \omega \rangle$ be a slender 0L system. If a nondeterministic persistent unbounded letter a in G is not self-productive, then for every $n \in \mathbb{N}$ card $(\tau^n(a)) \leq 2$.

Proof. Since *a* is persistent and not self-productive, there is a sequence of letters $a = a_0, a_1, \ldots, a_n = a$ such that $s_i a_i t_i \in \tau(a_{i-1})$ for some $s_i t_i \in \Sigma^*$ and $a \notin alph(\tau^*(s_i t_i))$ for every $i = 1, 2, \ldots, n$.

We first claim that for every $i = 1, 2, ..., n \tau(a_{i-1})$ does not contain a word $s'_i bt'_i$ where b is a persistent letter and $b \neq a_i$. Let us assume the converse, that is, $u, v \in \tau^i(a)$ where u has an occurrence of a_i and v has an occurrence of b. Then $u = u_1 a_i u_2$ and we have

$$z_1 = u'_1 w'_1 u_1 a_i u_2 w'_2 u'_2, \quad z_2 = u'_1 w'_1 v w'_2 u'_2 \in \tau^{n+i}(a),$$

where $w_1 a w_2 \in \tau^{n-i}(a_i)$, and $w'_j \in \tau^i(w_j)$ and $u'_j \in \tau^n(u_j)$ j = 1, 2. Since persistent letters have derivations in which they do not disappear, we can assume $|u_1u_2|_P \leq |u'_1u'_2|_P$ where P is the set of persistent letters. Lemma 2 says that $z_1 = (xy)^{i_1}x$ and $z_2 = (xy)^{i_2}x$ for some $x, y \in \Sigma^*$ and $i_1, i_2 \in \mathbb{N}$. Because a_i occurs once in $z_1, z_1 = xyx$ or $z_1 = x$ but the latter case makes z_2 have more than one occurrences of a_i . So we have $z_1 = xyx$ and $z_2 = x$. Hence

$$u_1'w_1'u_1a_iu_2w_2'u_2' = u_1'w_1'vw_2'u_2'yu_1'w_1'vw_2'u_2'.$$

Then y is a subword of $u_1a_iu_2$ and the inequality

 $|u_1u_2|_P \ge |vw_2'u_2'u_1'w_1'v|_P$

holds. But this inequality contradicts with the following

 $|u_1u_2|_P \leq |u_1'u_2'|_P < |vw_2'u_2'u_1'w_1'v|_P.$

Therefore, we have shown that a_i is the only persistent letter derived by a in i steps.

Next let $\{u, v_1, v_2\} \subseteq \tau^n(a)$ for some *n*. Then v_1 and v_2 do not contain any persistent letters nor any ancestors of persistent letters, in other words, they are words over mortal letters. Since *a* is unbounded, for arbitrarily large $k \in \mathbb{N}$ there is a word $w = w_1 w_2 \cdots w_k \in L(G)$ where $w_i = w_{i0} a w_{i1} a w_{i2} a$ for i = 1, 2, ..., k - 1. Then $\tau^n(w_i)$ has the words of the same length,

$$w'_{i0}v_1w'_{i1}uw'_{i2}v_2$$
 and $w'_{i0}v_2w'_{i1}uw'_{i2}v_1$,

where $w'_{ij} \in \tau^n(w_{ij})$ j = 0, 1, 2. Because L(G) is slender, $v_1w'_{i1}uw'_{i2}v_2 = v_2w'_{i1}uw'_{i2}v_1$ holds for all but fixed number of *i*'s. By Lemmas 2 and 5, $v_1 = (xy)^{i_1}x$, $v_2 = (xy)^{i_2}x$ and *u* is a subword of $(xy)^j$ for sufficiently large *j*. This means that *u* is a word over mortal letters and that *a* is also mortal. This is a contradiction. Thus $\operatorname{card}\tau^n(a) \leq 2$ for every *n*. \Box

Finally, we consider nonpersistent letters. A nonpersistent unbounded letter is a descendant of a persistent unbounded letter. So the next lemma exhausts all cases.

Lemma 7. Let $G = \langle \Sigma, \tau, \omega \rangle$ be a slender 0L system and let a be a persistent unbounded letter in G. If b is a descendant of a, then b derives a or b is deterministic.

Proof. Let $sbt \in \tau^n(a)$ for some n > 0 and $s, t \in \Sigma^*$. If b is nondeterministic, i.e., $\{u, v\} \in \tau^k(b)$ for some k > 0, then we have $|u| \neq |v|$ and we can assume |u| < |v|. The set $\tau^{n+k}(a)$ has a subset $\{s'ut', s'vt'\}$ where $s' \in \tau^k(s)$ and $t' \in \tau^k(t)$. Since b is unbounded, there exist some words $x, y \in \Sigma^*$ and some integers $0 \le i_1 < i_2$ such that $u = (xy)^{i_1}x$ and $v = (xy)^{i_2}x$. Since a is persistent, there is a word $z \in \tau^{n+k}(a)$ such that z derives a. Because G is slender and a is unbounded in G, the same argument of the proof of Lemma 6 shows that a subword aw_1aw_2a of a word in L(G) implies the equality

$$(xy)^{i_1}xt'w_1'zw_2's'(xy)^{i_2}x = (xy)^{i_2}xt'w_1'zw_2's'(xy)^{i_1}x \in \tau^{n+k}(aw_1aw_2a)$$

in which $w'_j \in \tau^{n+k}(w_j)$ j = 1, 2. Then z is a subword of $(xy)^j$ for sufficiently large j. This implies that xy derives a and b also derives a. \Box

Proposition 4 and Lemmas 6 and 7 completes the proof of Theorem 3.1 in [2]. In this note the theorem has a different number.

Theorem 8. If a 0L system $G = \langle \Sigma, \tau, \omega \rangle$ is slender, then G satisfies the following condition:

(8.1) For every unbounded letter a in Σ and for every $n \in \mathbb{N}_+$ there exist $zz' \in \Sigma^+$ and a finite set $I \subset \mathbb{N}$ such that $\tau^n(a) = \{(zz')^i z \mid i \in I\}$.

Proof. An unbounded letter is persistent or a descendant of a persistent letter. If *a* is self-productive, Proposition 4 shows the condition. If *a* is persistent and not self-productive, then Lemmas 2 and 6 verify condition (8.1). If *a* is a descendant of a persistent letter and *a* is not persistent, then *a* is deterministic by Lemma 7. Finally every deterministic letter obviously satisfies condition (8.1). \Box

Now we modify the discussion after Theorem 3.1 in [2]. The following arguments work instead of Lemmas 3.5, 3.6, and 4.5 in [2], whose proofs depend on the insufficient proof of Theorem 3.1 in [2]. Lemma 3.5 is used in the proof of Lemma 3.6 only and we prove in this note a lemma corresponding to Lemma 3.6 without Lemma 3.5. So we omit Lemma 3.5 in [2]. We give, in the next section, new versions of Lemmas 3.6 and 4.5 as well as pathological exceptions of the main theorem (Theorem 4.3) of [2] and a new condition to avoid them.

3. Changes in lemmas and the main theorem

First we restate Lemma 4.5 in [2]. Because of a slight modification of Theorem 4.3 in [2], which is mentioned later, the assertion 2 of the next lemma is changed from the corresponding assertion of Lemma 4.5 in [2] (assertion (i)). The next lemma says nothing about the subword which does not derive a; for example, if a is derived by v_1 , nothing is stated about v_0 , while assertion (i) of Lemma 4.5 in [2] stated $v_0 \in M^*$. But a pathological exception shows that $v_0 \in M^*$ is not always valid.

Lemma 9. Let L(G) be slender and a be a persistent non-deterministic unbounded letter occurring in L(G). If a is non self-productive, then:

- 1. $\tau^{i}(a) = u_{i}a_{i}u'_{i}$ or $\tau^{i}(a) = \{u_{i}a_{i}u'_{i}, 1\}$ for every *i* where a_{i} is an ancestor of *a* and u_{i} and u'_{i} are words over deterministic mortal letters.
- 2. There is a stem letter b such that $v_0bv_1 \in \tau^k(b)$ where a is the only persistent letter derived by v_1 or a is the only persistent letter derived by v_0 and the period of a is a divisor of k.

Proof. 1. By Lemma 6, $\tau^i(a) = \{x_i x'_i x_i, x_i\}$ for every i > 0 if it is not a singleton. Let $\tau^l(a) = \{x_l x_{l_1} a x_{l_2} x_l, x_l\}$ where *l* is the period of *a*. Then

$$\tau^{l+i}(a) = \{\tau^{i}(x_{l}x_{l_{1}})x_{i}x_{i}'x_{i}\tau^{i}(x_{l_{2}}x_{l}), \tau^{i}(x_{l}x_{l_{1}})x_{i}\tau^{i}(x_{l_{2}}x_{l}), \tau^{i}(x_{l})\}.$$

But since $\tau^{l+i}(a)$ has at most two elements and $x_i x'_i x_i \neq x_i$, we have

$$\tau^i(x_l x_{l_1}) x_i \tau^i(x_{l_2} x_l) = \tau^i(x_l),$$

that is $x_i = 1$ and $\tau^i(x_{l_1}x_{l_2}) = 1$ for all $i \in \mathbb{N}_+$. Note that $\tau^l(a)$ cannot be a singleton because *a* is nondeterministic.

2. Since *a* is unbounded and not self-productive, there is a stem letter *b* which produces *a*, that is, $v_0bv_1 \in \tau^k(b)$ and v_0 or v_1 generates *a*. We can assume, without loss of generality, that v_0 generates *a*. We assume that v_0 generates a persistent letter *c* which is different from *a*. Let *p* be the common multiple of periods of *a* and *c*. We note that $\tau^p(a) = \{u, 1\}$ and *a* is the only occurrence of persistent letter in *u*. Since *a* and *c* are persistent, there is a subword $w = aw_1cw_2a$ of a word in L(G) such that $\tau^p(w)$ has the words

 $uw_1'vw_2'$ and $w_1'vw_2'u$

of the same length where $w'_i \in \tau^p(w_i)$ i = 1, 2 and $v \in \tau^p(c)$. Since L(G) is slender, they are identical. Then by Lemma 1.2 in [2], u and $w'_1vw'_2$ are powers of a common word. This implies that any persistent letter occurring in v is a and contradicts the fact that $\tau^p(c)$ contains a word which has an occurrence of c. Thus a is the only persistent letter derived by v_0 .

Let $a_0 = a, a_1, a_2, ..., a_l = a$ be the sequence of words such that a_{i-1} derives a_i i = 1, 2, ..., l. If l is not a divisor of k, there is a subword $aw_1a_iw_2a$ of a word in L(G) with 0 < i < l. Then the same argument as above leads to a contradiction. Hence l is a divisor of k. \Box

The next lemma is the new version of Lemma 3.6 in [2]. The conclusion 1 of the next lemma is added to Lemma 3.6 in [2] because nonself-productive case must be considered separately from self-productive case.

Lemma 10. Let $a, b \in \Sigma$ be nondeterministic unbounded persistent letters which satisfy the condition that, for every nonnegative integer N, there exists a word $w \in L(G)$ such that $|w|_a > N$ and $|w|_b > N$. Then:

- 1. a and b are not self-productive and a = b.
- 2. a and b are self-productive and

$$u_n u'_n = t_n v_n v'_n t_n^{-1}$$

for every $n \in \mathbb{N}_+$ where $\tau^n(a) = \{(u_n u'_n)^i u_n \mid i \in I_n\}$ and $\tau^n(b) = \{(v_n v'_n)^j v_n \mid j \in J_n\}$ are the factorizations given by Theorem 8 and t_n is a suffix of $v_n v'_n$.

Proof. If a and b are not self-productive, then the previous lemma says that a = b. For otherwise, the fact that there is a stem letter c such that $v_0 cv_1 \in \tau^k(c)$ and v_0 generates a and v_1 generates b, or vice versa, implies that L(G) is not slender.

Next, consider the case that *a* is self-productive and *b* is not self-productive. Let *l* be the period of *b* and $\tau^l(b) = \{v, 1\}$. By Theorem 8 we have $\tau^l(a) = \{(u_l u'_l)^i u_l | i \in I_l\}$. Let $(u_l u'_l)^{i_1} u_l$ and $(u_l u'_l)^{i_1+c} u_l$ be two words in $\tau^l(a)$, *d* be the least common multiple of $c|u_l u'_l|$ and |v|, and *k* be min $(|w|_a, |w|_b)$. Then any word in $\tau^l(w)$ which has id/|v| occurrences of *v* and $(k - i)d/c|u_l u'_l|$ occurrences of $(u_l u'_l)^{i_1+c} u_l$ with the other occurrences of *a* is replaced for $(u_l u'_l)^{i_1} u_l$ has the same length. This contradicts the slenderness of *L*(*G*).

If a and b are self-productive, then the same argument as above shows the equation

$$(u_n u'_n)^i u_n x = x (v_n v'_n)^J v_n,$$

where $\tau^n(b) = \{(v_n v'_n)^j v_n | j \in J_n\}$. We note that there are arbitrarily large *i* and *j* which fulfill the above equation. Then by Lemma 1.1 in [2],

$$(u_n u'_n)^i u_n = yz$$
 and $v_n (v'_n v_n)^j = zy.$

Now the lemma follows from Lemma 1.6 in [2]. \Box

Finally, we change the condition (4) of the assertion (i) of Theorem 4.1 in [2] in order to avoid pathological cases examplifed below.

Example 11. Let $G = \langle \{a, b, c\}, \tau, b \rangle$ where $\tau(a) = \{a, 1\}, \tau(b) = \{abc\}$, and $\tau(c) = c^2$ be a 0*L* system. Then

 $\tau^i(b) = a^{[i]} b c^{2^i - 1},$

where $a^{[i]}$ stands for the set $a^{[i]} = \{1, a, a^2, \dots, a^i\}$. Since every word in L(G) has different length, L(G) is thin. But $(\tau^i(b))_{i\geq 0}$ is not an ultimately extended free generated sequence.

Such pathological cases are excluded by the following slight change.

Condition (4) of the assertion (i) of Theorem 4.3 in [2]. w has a factorization $w = w_1$ $w_2 \cdots w_l$ such that, (a) the 0L system $G_i = \langle \Sigma, \tau, w_i \rangle$ generates a slender language of type (1), (2), or (3); or (b) there is a stem letter $w_j = a_j$ such that a_j has a production $ua_j v \in \tau^n(a_j)$ where u has, say, an unbounded nondeterministic letter and v has deterministic letters only. In this case if τ is modified to τ' where $ua_j \in \tau'^n(a_j)$, then $\langle \Sigma, \tau', a_j \rangle$ generates a slender language of type (2) and if τ is modified to τ'' where $a_i v \in \tau''^n(a_j)$, then $\langle \Sigma, \tau'', a_j \rangle$ generates a slender language of type (1).

The proof to Theorem 4.3 in [2] is now clear in all cases. If a stem letter which generates a nondeterministic unbounded letter a generates no other persistent letter, we just follow the proof given in [2]. The case in which a stem letter generates deterministic persistent letters falls into the condition (4) above.

A futher characterization of such cases, as well as the general problem about the decidability of slenderness for 0L languages, remains open.

References

- [1] R. McNaughton, ACM Computing Rev. 38 (5) (1997) 265.
- [2] T.Y. Nishida, A. Salomaa, Slender 0L languages, Theoret. Comput. Sci. 158 (1996) 161-176.