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Abstract

We give a complete proof of Theorem 3.1 in [2]. A pathological exception of Theorem 4.3
in [2] is exhibited and a condition to remove it is mentioned. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

This note supplements a few insu�ciencies of our previous paper [2]. The main part
of this note is devoted to the proof of Theorem 3.1 in [2], whose original proof was
insu�cient by McNaughton’s comment [1]. A few lemmas in [2] are changed because
they are dependent on the insu�cient proof. The formulation of the main theorem of
[2], Theorem 4.3, is slightly changed to avoid pathological exceptions.
We use notations and de�nitions in [2] without explicit reference and the argument

of this note begins at the beginning of Section 3 of [2]. As for the insu�ciency of
the proof of Lemma 1.6 in [2] pointed out by McNaughton [1], the value of j1 which
satis�es |v|j1¿|u|i2 if i2¿i1 or |v|j16|u|i2 if i2 ¡ i1 su�ces for the proof.

2. Complete proof of Theorem 3.1

The proof of Theorem 3.1 in [2] shows that di�erent descendants x; y∈ �n(a) of
an unbounded letter a in a slender 0L system for some n ¿ 0 must have the form
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x=(zz′)i1z and y=(zz′)i2z for some z; z′ ∈�∗ and i1; i2 ∈N. But the proof does not
tell whether or not a third word u∈ �n(a) has the structure u=(zz′)i3z.
To complete the proof of Theorem 3.1 in [2], we �rst investigate a pair of words

which have repetitive structures of two common words. Then we separately consider
self-productive, persistent non-self-productive, and nonpersistent letters.

De�nition 1. Let x; y∈�+ be words. Two words z; z′ ∈�∗ are said to be prime 2-
factors of x and y if they satisfy
1. z 6= 1 (1 is the empty word),
2. x=(zz′)i1z and y=(zz′)i2z for some i1¿0 and i2¿0, and
3. If x=(uu′) j1u and y=(uu′) j2u, then i1¿j1 and i2¿j2.

The next property shows that prime 2-factors of di�erent words are unique.

Property 1. Let x; y∈�+ be words with |x| ¡ |y|. If x and y have prime 2-factors
z; z′, then z and z′ are unique.

Proof. Let u and u′ be prime 2-factors of x and y, i.e.,

x=(zz′)iz=(uu′)iu and y=(zz′) jz=(uu′) ju:

Then the lengths of these words satisfy

|zz′|i + |z|= |uu′|i + |u| and |zz′|j + |z|= |uu′|j + |u|;
so that

(i − j)|zz′|=(i − j)|uu′|:
Because i 6= j, we have |zz′|= |uu′| and, thus, |z|= |u| by the above equations. There-
fore, z= u and z′= u′.

If an unbounded letter of a slender 0L system is nondeterministic, then the di�er-
ent descendants derived in the same steps have prime 2-factors. Indeed, the proof of
Theorem 3.1 in [2] proves the next lemma.

Lemma 2. If a 0L system G= 〈�; �; !〉 is slender; then for every non-deterministic
unbounded letter a∈�; x; y∈ �n(a) for some n ¿ 0 with x 6= y implies that x and y
have prime 2-factors; that is; there are z; z′ ∈�∗ such that x=(zz′)iz and y=(zz′) jz
for some i¿0 and j¿0.

The descendants of an unbounded letter satisfy another important property: which
says that the number of descendants of a speci�c length at given steps is at most one.

Property 3. If a 0L system G= 〈�; �; !〉 is slender and a∈� is an unbounded letter
in G, then for every nonnegative integers n and l

card({w∈ �n(a) | |w|= l};61:
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Proof. Since a is unbounded, for every integer k L(G) has a word v= v0av1a : : : avk .
If there are di�erent words u1 and u2 in �n(a) with |u1|= |u2|, then �n(v) has at least( k
k=2

)
di�erent word of the same length

v′0ui1v
′
1ui2 : : : uik v

′
k

where k=2 of uij ’s are equal to u1 and the others u2 and v
′
j ∈ �n(vj) for j=0; 1; : : : ; k.

Nondeterministic self-productive letters satisfy the next proposition, whose assertion
is the same as Theorem 3.1 in [2].

Proposition 4. Let G= 〈�; �; !〉 be a slender 0L system. If a∈� is a nondeterministic
self-productive letter in G; then for every n∈N+ there exist z; z′ ∈�∗ and a �nite
set of integers In such that �n(a)= {(zz′)iz | i∈ In}.

A detailed observation of prime 2-factors will be needed in the proof of this propo-
sition.

Lemma 5. Let z; z′ ∈�∗ be prime 2-factors of some words x and y with x=(zz′)i1z
and y=(zz′)i2z and i1 ¡ i2. If

xuy=yux

for some u∈�∗; then u=(z′z) jz′ for some j∈N.

Proof. By the assumptions we have

u(zz′)i2−i1 = (z′z)i2−i1u: (1)

Because u begins with z′z, u has the factorization u=(z′z) jr where j¿0, |r|¡ |z′z|,
and r is a pre�x of z′z if |u|6|(z′z)i2−i1 |. If |u| ¿ |(z′z)i2−i1 |, u has the factor-
ization u=(z′z)i2−i1u′ such that u′(zz′)i2−i1 = (z′z)i2−i1u′. Repeating this process, we
have u=(z′z)n(i2−i1)u′= u′(zz′)n(i2−i1) with |u′|6|(z′z)i2−i1 |. Now u has the factoriza-
tion u=(z′z) jr for some pre�x r of z′z. Then Eq. (1) implies

r(zz′)i2−i1 = (z′z)i2−i1r: (2)

The initial segment of length |rzz′| of (2) shows that rzz′= z′zr so that

(rz)(z′z)= (z′z)(rz):

Now by Lemma 1.2 in [2] we have z′z= sl, z= vsp, z′= sl−p−1v′, and r= sm−p−1v′

for some v′v= s. Since z and z′ are prime 2-factors of x and y, the following equations
hold:

x=(zz′)i1z= z(z′z)i1 = vsp+i1l=(vv′)p+i1lv:
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The de�nition of prime 2-factors implies that p=0 and l=1, i.e., z= v, z′= v′, and
r=(z′z)m−1z′. Since |r|¡ |z′z|, we have r= z′.

Proof of Proposition 4. By Lemma 2, for every n∈N+ and x1; x2; ∈ �n(a), x1 and x2
have prime 2-factors z; z′ ∈�∗ with x1 = (zz′)i1z and x2 = (zz′)i2z for some i1 ¡ i2. Let
x3 be a word in �n(a). We may assume that |x2| ¡ |x3|, for otherwise let the shorter
two words have prime 2-factors z and z′.
Since a is self-productive, there is a word v0av1av2av3 ∈ �l(a) for some l∈N+ in

which v0, v1, and v2 have no occurrences of a and v3 may have some occurrences of a.
Let v′i ∈ �n(vi) i=0; 1; 2; 3 be �xed words. Since

w1 = v′0x1v
′
1x2v

′
2x2v

′
3; w2 = v′0x2v

′
1x1v

′
2x2v

′
3; w3 = v′0x2v

′
1x2v

′
2x1v

′
3 ∈ �l+n(a)

and |w1|= |w2|= |w3|, we have w1 =w2 =w3 by Property 3. Then by Lemma 5 v′1 =
(z′z) j1z′ and v′2 = (z

′z) j2z′. Under the same circumstances �l+n(a) contains

w4 = v′0x1v
′
1x3v

′
2x2v

′
3 and w5 = v′0x2v

′
1x3v

′
2x1v

′
3

with |w4|= |w5|. Then by Property 3 w4 =w5 and by Lemma 5
v′1x3v

′
2 = (z

′z) jz′=(z′z) j1z′(zz′) j3z(z′z) j2z′

where j= j1 + j2 + j3 + 1. Hence every word in �n(a) has the form (zz′)iz.

If a persistent unbounded letter is not self-productive, then the letter makes at most
two descendants in every step.

Lemma 6. Let G= 〈�; �; !〉 be a slender 0L system. If a nondeterministic persistent
unbounded letter a in G is not self-productive; then for every n∈N card(�n(a))62.

Proof. Since a is persistent and not self-productive, there is a sequence of letters
a= a0; a1; : : : ; an= a such that siaiti ∈ �(ai−1) for some siti ∈�∗ and a =∈ alph(�∗(siti))
for every i=1; 2; : : : ; n.
We �rst claim that for every i=1; 2; : : : ; n �(ai−1) does not contain a word s′ibt

′
i

where b is a persistent letter and b 6= ai. Let us assume the converse, that is, u; v∈ �i(a)
where u has an occurrence of ai and v has an occurrence of b. Then u= u1aiu2 and
we have

z1 = u′1w
′
1u1aiu2w

′
2u

′
2; z2 = u′1w

′
1vw

′
2u

′
2 ∈ �n+i(a);

where w1aw2 ∈ �n−i(ai), and w′
j ∈ �i(wj) and u′j ∈ �n(uj) j=1; 2. Since persistent letters

have derivations in which they do not disappear, we can assume |u1u2|P6|u′1u′2|P where
P is the set of persistent letters. Lemma 2 says that z1 = (xy)i1x and z2 = (xy)i2x for
some x; y∈�∗ and i1; i2 ∈N. Because ai occurs once in z1, z1 = xyx or z1 = x but the
latter case makes z2 have more than one occurrences of ai. So we have z1 = xyx and
z2 = x. Hence

u′1w
′
1u1aiu2w

′
2u

′
2 = u

′
1w

′
1vw

′
2u

′
2yu

′
1w

′
1vw

′
2u

′
2:
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Then y is a subword of u1aiu2 and the inequality

|u1u2|P¿|vw′
2u

′
2u

′
1w

′
1v|P

holds. But this inequality contradicts with the following

|u1u2|P6|u′1u′2|P ¡ |vw′
2u

′
2u

′
1w

′
1v|P:

Therefore, we have shown that ai is the only persistent letter derived by a in i steps.
Next let {u; v1; v2}⊆ �n(a) for some n. Then v1 and v2 do not contain any per-

sistent letters nor any ancestors of persistent letters, in other words, they are words
over mortal letters. Since a is unbounded, for arbitrarily large k ∈N there is a word
w=w1w2 · · ·wk ∈L(G) where wi=wi0awi1awi2a for i=1; 2; : : : ; k−1. Then �n(wi) has
the words of the same length,

w′
i0v1w

′
i1uw

′
i2v2 and w′

i0v2w
′
i1uw

′
i2v1;

where w′
ij ∈ �n(wij) j=0; 1; 2. Because L(G) is slender, v1w′

i1uw
′
i2v2 = v2w

′
i1uw

′
i2v1 holds

for all but �xed number of i’s. By Lemmas 2 and 5, v1 = (xy)i1x; v2 = (xy)i2x and u
is a subword of (xy)j for su�ciently large j. This means that u is a word over
mortal letters and that a is also mortal. This is a contradiction. Thus card�n(a)62 for
every n.

Finally, we consider nonpersistent letters. A nonpersistent unbounded letter is a de-
scendant of a persistent unbounded letter. So the next lemma exhausts all cases.

Lemma 7. Let G= 〈�; �; !〉 be a slender 0L system and let a be a persistent un-
bounded letter in G. If b is a descendant of a; then b derives a or b is deterministic.

Proof. Let sbt ∈ �n(a) for some n¿0 and s; t ∈�∗. If b is nondeterministic, i.e.,
{u; v}∈ �k(b) for some k¿0, then we have |u| 6= |v| and we can assume |u|¡|v|.
The set �n+k(a) has a subset {s′ut′; s′vt′} where s′ ∈ �k(s) and t′ ∈ �k(t). Since b is
unbounded, there exist some words x; y∈�∗ and some integers 06i1¡i2 such that
u=(xy)i1x and v=(xy)i2x. Since a is persistent, there is a word z ∈ �n+k(a) such that
z derives a. Because G is slender and a is unbounded in G, the same argument of
the proof of Lemma 6 shows that a subword aw1aw2a of a word in L(G) implies the
equality

(xy)i1xt′w′
1zw

′
2s

′(xy)i2x=(xy)i2xt′w′
1zw

′
2s

′(xy)i1x∈ �n+k(aw1aw2a)
in which w′

j ∈ �n+k(wj) j=1; 2. Then z is a subword of (xy)j for su�ciently large j.
This implies that xy derives a and b also derives a.

Proposition 4 and Lemmas 6 and 7 completes the proof of Theorem 3.1 in [2]. In
this note the theorem has a di�erent number.

Theorem 8. If a 0L system G= 〈�; �; !〉 is slender; then G satis�es the following
condition:
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(8.1) For every unbounded letter a in � and for every n∈N+ there exist zz′ ∈�+
and a �nite set I ⊂N such that �n(a)= {(zz′)iz | i∈ I}.

Proof. An unbounded letter is persistent or a descendant of a persistent letter. If a
is self-productive, Proposition 4 shows the condition. If a is persistent and not self-
productive, then Lemmas 2 and 6 verify condition (8.1). If a is a descendant of a
persistent letter and a is not persistent, then a is deterministic by Lemma 7. Finally
every deterministic letter obviously satis�es condition (8.1).

Now we modify the discussion after Theorem 3.1 in [2]. The following arguments
work instead of Lemmas 3.5, 3.6, and 4.5 in [2], whose proofs depend on the in-
su�cient proof of Theorem 3.1 in [2]. Lemma 3.5 is used in the proof of Lemma
3.6 only and we prove in this note a lemma corresponding to Lemma 3.6 without
Lemma 3.5. So we omit Lemma 3.5 in [2]. We give, in the next section, new ver-
sions of Lemmas 3.6 and 4.5 as well as pathological exceptions of the main theorem
(Theorem 4.3) of [2] and a new condition to avoid them.

3. Changes in lemmas and the main theorem

First we restate Lemma 4.5 in [2]. Because of a slight modi�cation of Theorem 4.3
in [2], which is mentioned later, the assertion 2 of the next lemma is changed from
the corresponding assertion of Lemma 4.5 in [2] (assertion (i)). The next lemma says
nothing about the subword which does not derive a; for example, if a is derived by
v1, nothing is stated about v0, while assertion (i) of Lemma 4.5 in [2] stated v0 ∈M∗.
But a pathological exception shows that v0 ∈M∗ is not always valid.

Lemma 9. Let L(G) be slender and a be a persistent non-deterministic unbounded
letter occurring in L(G). If a is non self-productive; then:
1. �i(a)= uiaiu′i or �

i(a)= {uiaiu′i ; 1} for every i where ai is an ancestor of a and ui
and u′i are words over deterministic mortal letters.

2. There is a stem letter b such that v0bv1 ∈ �k(b) where a is the only persistent
letter derived by v1 or a is the only persistent letter derived by v0 and the period
of a is a divisor of k.

Proof. 1. By Lemma 6, �i(a)= {xix′i xi; xi} for every i¿0 if it is not a singleton. Let
�l(a)= {xlxl1axl2xl; xl} where l is the period of a. Then

�l+i(a)= {�i(xlxl1 )xix′i xi�i(xl2xl); �i(xlxl1 )xi�i(xl2xl); �i(xl)}:
But since �l+i(a) has at most two elements and xix′i xi 6= xi, we have

�i(xlxl1 )xi�
i(xl2xl)= �

i(xl);

that is xi=1 and �i(xl1xl2 ) = 1 for all i∈N+. Note that �l(a) cannot be a singleton
because a is nondeterministic.
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2. Since a is unbounded and not self-productive, there is a stem letter b which
produces a, that is, v0bv1 ∈ �k(b) and v0 or v1 generates a. We can assume, without
loss of generality, that v0 generates a. We assume that v0 generates a persistent letter c
which is di�erent from a. Let p be the common multiple of periods of a and c. We
note that �p(a)= {u; 1} and a is the only occurrence of persistent letter in u. Since
a and c are persistent, there is a subword w= aw1cw2a of a word in L(G) such that
�p(w) has the words

uw′
1vw

′
2 and w′

1vw
′
2u

of the same length where w′
i ∈ �p(wi) i=1; 2 and v∈ �p(c). Since L(G) is slender,

they are identical. Then by Lemma 1.2 in [2], u and w′
1vw

′
2 are powers of a common

word. This implies that any persistent letter occurring in v is a and contradicts the fact
that �p(c) contains a word which has an occurrence of c. Thus a is the only persistent
letter derived by v0.
Let a0 = a; a1; a2; : : : ; al= a be the sequence of words such that ai−1 derives ai i=1; 2;

: : : ; l. If l is not a divisor of k, there is a subword aw1aiw2a of a word in L(G) with
0¡i¡l. Then the same argument as above leads to a contradiction. Hence l is a
divisor of k.

The next lemma is the new version of Lemma 3.6 in [2]. The conclusion 1 of the
next lemma is added to Lemma 3.6 in [2] because nonself-productive case must be
considered separately from self-productive case.

Lemma 10. Let a; b∈� be nondeterministic unbounded persistent letters which satisfy
the condition that; for every nonnegative integer N; there exists a word w∈L(G) such
that |w|a¿N and |w|b¿N . Then:
1. a and b are not self-productive and a= b.
2. a and b are self-productive and

unu′n= tnvnv
′
nt

−1
n

for every n∈N+ where �n(a)= {(unu′n)iun | i∈ In} and �n(b)= {(vnv′n) jvn | j∈ Jn}
are the factorizations given by Theorem 8 and tn is a su�x of vnv′n.

Proof. If a and b are not self-productive, then the previous lemma says that a= b. For
otherwise, the fact that there is a stem letter c such that v0cv1 ∈ �k(c) and v0 generates
a and v1 generates b, or vice versa, implies that L(G) is not slender.
Next, consider the case that a is self-productive and b is not self-productive. Let l be

the period of b and �l(b)= {v; 1}. By Theorem 8 we have �l(a)= {(ulu′l)iul | i∈ Il}.
Let (ulu′l)

i1ul and (ulu′l)
i1+cul be two words in �l(a), d be the least common multi-

ple of c|ulu′l| and |v|, and k be min(|w|a; |w|b). Then any word in �l(w) which has
id=|v| occurrences of v and (k − i)d=c|ulu′l| occurrences of (ulu′l)i1+cul with the other
occurrences of a is replaced for (ulu′l)

i1ul has the same length. This contradicts the
slenderness of L(G).
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If a and b are self-productive, then the same argument as above shows the equation

(unu′n)
iunx= x(vnv′n)

jvn;

where �n(b)= {(vnv′n) jvn | j∈ Jn}. We note that there are arbitrarily large i and j which
ful�ll the above equation. Then by Lemma 1.1 in [2],

(unu′n)
iun=yz and vn(v′nvn)

j = zy:

Now the lemma follows from Lemma 1.6 in [2].

Finally, we change the condition (4) of the assertion (i) of Theorem 4.1 in [2] in
order to avoid pathological cases examplifed below.

Example 11. Let G= 〈{a; b; c}; �; b〉 where �(a)= {a; 1}, �(b)= {abc}, and �(c)= c2
be a 0L system. Then

�i(b)= a[i]bc2
i−1;

where a[i] stands for the set a[i] = {1; a; a2; : : : ; ai}. Since every word in L(G) has
di�erent length, L(G) is thin. But (�i(b))i¿0 is not an ultimately extended free generated
sequence.

Such pathological cases are excluded by the following slight change.

Condition (4) of the assertion (i) of Theorem 4.3 in [2]. w has a factorization w=w1
w2 · · ·wl such that, (a) the 0L system Gi= 〈�; �; wi〉 generates a slender language
of type (1), (2), or (3); or (b) there is a stem letter wj = aj such that aj has a
production uajv∈ �n(aj) where u has, say, an unbounded nondeterministic letter and
v has deterministic letters only. In this case if � is modi�ed to �′ where uaj ∈ �′n(aj),
then 〈�; �′; aj〉 generates a slender language of type (2) and if � is modi�ed to �′′
where ajv∈ �′′n(aj); then 〈�; �′′; aj〉 generates a slender language of type (1).

The proof to Theorem 4.3 in [2] is now clear in all cases. If a stem letter which
generates a nondeterministic unbounded letter a generates no other persistent letter,
we just follow the proof given in [2]. The case in which a stem letter generates
deterministic persistent letters falls into the condition (4) above.
A futher characterization of such cases, as well as the general problem about the

decidability of slenderness for 0L languages, remains open.
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