# On slender 0L languages 

T.Y. Nishida ${ }^{\mathrm{a}, *}$, A. Salomaa ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi-machi, 939-03 Toyama, Japan<br>${ }^{\mathrm{b}}$ Turku Centre for Computer Science and Mathematics Department, University of Turku, 20014 Turku, Finland

Received August 1997; revised September 1998
Communicated by G. Rozenberg


#### Abstract

We give a complete proof of Theorem 3.1 in [2]. A pathological exception of Theorem 4.3 in [2] is exhibited and a condition to remove it is mentioned. (c) 2000 Elsevier Science B.V. All rights reserved.


Keywords: 0L system; Slender language; Factorization of word

## 1. Introduction

This note supplements a few insufficiencies of our previous paper [2]. The main part of this note is devoted to the proof of Theorem 3.1 in [2], whose original proof was insufficient by McNaughton's comment [1]. A few lemmas in [2] are changed because they are dependent on the insufficient proof. The formulation of the main theorem of [2], Theorem 4.3, is slightly changed to avoid pathological exceptions.

We use notations and definitions in [2] without explicit reference and the argument of this note begins at the beginning of Section 3 of [2]. As for the insufficiency of the proof of Lemma 1.6 in [2] pointed out by McNaughton [1], the value of $j_{1}$ which satisfies $|v| j_{1} \geqslant|u| i_{2}$ if $i_{2} \geqslant i_{1}$ or $|v| j_{1} \leqslant|u| i_{2}$ if $i_{2}<i_{1}$ suffices for the proof.

## 2. Complete proof of Theorem 3.1

The proof of Theorem 3.1 in [2] shows that different descendants $x, y \in \tau^{n}(a)$ of an unbounded letter $a$ in a slender 0 L system for some $n>0$ must have the form

[^0]$x=\left(z z^{\prime}\right)^{i_{1}} z$ and $y=\left(z z^{\prime}\right)^{i_{2}} z$ for some $z, z^{\prime} \in \Sigma^{*}$ and $i_{1}, i_{2} \in \mathbb{N}$. But the proof does not tell whether or not a third word $u \in \tau^{n}(a)$ has the structure $u=\left(z z^{\prime}\right)^{i_{3}} z$.

To complete the proof of Theorem 3.1 in [2], we first investigate a pair of words which have repetitive structures of two common words. Then we separately consider self-productive, persistent non-self-productive, and nonpersistent letters.

Definition 1. Let $x, y \in \Sigma^{+}$be words. Two words $z, z^{\prime} \in \Sigma^{*}$ are said to be prime 2factors of $x$ and $y$ if they satisfy

1. $z \neq 1$ ( 1 is the empty word),
2. $x=\left(z z^{\prime}\right)^{i_{1}} z$ and $y=\left(z z^{\prime}\right)^{i_{2}} z$ for some $i_{1} \geqslant 0$ and $i_{2} \geqslant 0$, and
3. If $x=\left(u u^{\prime}\right)^{j_{1}} u$ and $y=\left(u u^{\prime}\right)^{j_{2}} u$, then $i_{1} \geqslant j_{1}$ and $i_{2} \geqslant j_{2}$.

The next property shows that prime 2 -factors of different words are unique.
Property 1. Let $x, y \in \Sigma^{+}$be words with $|x|<|y|$. If $x$ and $y$ have prime 2 -factors $z, z^{\prime}$, then $z$ and $z^{\prime}$ are unique.

Proof. Let $u$ and $u^{\prime}$ be prime 2-factors of $x$ and $y$, i.e.,

$$
x=\left(z z^{\prime}\right)^{i} z=\left(u u^{\prime}\right)^{i} u \quad \text { and } \quad y=\left(z z^{\prime}\right)^{j} z=\left(u u^{\prime}\right)^{j} u
$$

Then the lengths of these words satisfy

$$
\left|z z^{\prime}\right| i+|z|=\left|u u^{\prime}\right| i+|u| \quad \text { and } \quad\left|z z^{\prime}\right| j+|z|=\left|u u^{\prime}\right| j+|u|,
$$

so that

$$
(i-j)\left|z z^{\prime}\right|=(i-j)\left|u u^{\prime}\right| .
$$

Because $i \neq j$, we have $\left|z z^{\prime}\right|=\left|u u^{\prime}\right|$ and, thus, $|z|=|u|$ by the above equations. Therefore, $z=u$ and $z^{\prime}=u^{\prime}$.

If an unbounded letter of a slender 0 L system is nondeterministic, then the different descendants derived in the same steps have prime 2 -factors. Indeed, the proof of Theorem 3.1 in [2] proves the next lemma.

Lemma 2. If a $0 L$ system $G=\langle\Sigma, \tau, \omega\rangle$ is slender, then for every non-deterministic unbounded letter $a \in \Sigma ; x, y \in \tau^{n}(a)$ for some $n>0$ with $x \neq y$ implies that $x$ and $y$ have prime 2-factors, that is, there are $z, z^{\prime} \in \Sigma^{*}$ such that $x=\left(z z^{\prime}\right)^{i} z$ and $y=\left(z z^{\prime}\right)^{j} z$ for some $i \geqslant 0$ and $j \geqslant 0$.

The descendants of an unbounded letter satisfy another important property: which says that the number of descendants of a specific length at given steps is at most one.

Property 3. If a $0 L$ system $G=\langle\Sigma, \tau, \omega\rangle$ is slender and $a \in \Sigma$ is an unbounded letter in $G$, then for every nonnegative integers $n$ and $l$

$$
\operatorname{card}\left(\left\{w \in \tau^{n}(a)| | w \mid=l\right\}, \leqslant 1\right.
$$

Proof. Since $a$ is unbounded, for every integer $k L(G)$ has a word $v=v_{0} a v_{1} a \ldots a v_{k}$. If there are different words $u_{1}$ and $u_{2}$ in $\tau^{n}(a)$ with $\left|u_{1}\right|=\left|u_{2}\right|$, then $\tau^{n}(v)$ has at least $\binom{k}{k / 2}$ different word of the same length

$$
v_{0}^{\prime} u_{i_{1}} v_{1}^{\prime} u_{i_{2}} \ldots u_{i_{k}} v_{k}^{\prime}
$$

where $k / 2$ of $u_{i_{j}}$ 's are equal to $u_{1}$ and the others $u_{2}$ and $v_{j}^{\prime} \in \tau^{n}\left(v_{j}\right)$ for $j=0,1, \ldots, k$.

Nondeterministic self-productive letters satisfy the next proposition, whose assertion is the same as Theorem 3.1 in [2].

Proposition 4. Let $G=\langle\Sigma, \tau, \omega\rangle$ be a slender $0 L$ system. If $a \in \Sigma$ is a nondeterministic self-productive letter in $G$, then for every $n \in \mathbb{N}_{+}$there exist $z, z^{\prime} \in \Sigma^{*}$ and a finite set of integers $I_{n}$ such that $\tau^{n}(a)=\left\{\left(z z^{\prime}\right)^{i} z \mid i \in I_{n}\right\}$.

A detailed observation of prime 2-factors will be needed in the proof of this proposition.

Lemma 5. Let $z, z^{\prime} \in \Sigma^{*}$ be prime 2-factors of some words $x$ and $y$ with $x=\left(z z^{\prime}\right)^{i_{1} z}$ and $y=\left(z z^{\prime}\right)^{i_{2}} z$ and $i_{1}<i_{2}$. If

$$
x u y=y u x
$$

for some $u \in \Sigma^{*}$, then $u=\left(z^{\prime} z\right)^{j} z^{\prime}$ for some $j \in \mathbb{N}$.
Proof. By the assumptions we have

$$
\begin{equation*}
u\left(z z^{\prime}\right)^{i_{2}-i_{1}}=\left(z^{\prime} z\right)^{i_{2}-i_{1}} u \tag{1}
\end{equation*}
$$

Because $u$ begins with $z^{\prime} z, u$ has the factorization $u=\left(z^{\prime} z\right)^{j} r$ where $j \geqslant 0,|r|<\left|z^{\prime} z\right|$, and $r$ is a prefix of $z^{\prime} z$ if $|u| \leqslant\left|\left(z^{\prime} z\right)^{i_{2}-i_{1}}\right|$. If $|u|>\left|\left(z^{\prime} z\right)^{i_{2}-i_{1}}\right|$, $u$ has the factorization $u=\left(z^{\prime} z\right)^{i_{2}-i_{1}} u^{\prime}$ such that $u^{\prime}\left(z z^{\prime}\right)^{i_{2}-i_{1}}=\left(z^{\prime} z\right)^{i_{2}-i_{1}} u^{\prime}$. Repeating this process, we have $u=\left(z^{\prime} z\right)^{n\left(i_{2}-i_{1}\right)} u^{\prime}=u^{\prime}\left(z z^{\prime}\right)^{n\left(i_{2}-i_{1}\right)}$ with $\left|u^{\prime}\right| \leqslant\left|\left(z^{\prime} z\right)^{i_{2}-i_{1}}\right|$. Now $u$ has the factorization $u=\left(z^{\prime} z\right)^{j} r$ for some prefix $r$ of $z^{\prime} z$. Then Eq. (1) implies

$$
\begin{equation*}
r\left(z z^{\prime}\right)^{i_{2}-i_{1}}=\left(z^{\prime} z\right)^{i_{2}-i_{1}} r . \tag{2}
\end{equation*}
$$

The initial segment of length $\left|r z z^{\prime}\right|$ of (2) shows that $r z z^{\prime}=z^{\prime} z r$ so that

$$
(r z)\left(z^{\prime} z\right)=\left(z^{\prime} z\right)(r z)
$$

Now by Lemma 1.2 in [2] we have $z^{\prime} z=s^{l}, z=v s^{p}, z^{\prime}=s^{l-p-1} v^{\prime}$, and $r=s^{m-p-1} v^{\prime}$ for some $v^{\prime} v=s$. Since $z$ and $z^{\prime}$ are prime 2 -factors of $x$ and $y$, the following equations hold:

$$
x=\left(z z^{\prime}\right)^{i_{1}} z=z\left(z^{\prime} z\right)^{i_{1}}=v s^{p+i_{1} l}=\left(v v^{\prime}\right)^{p+i_{1} l} v .
$$

The definition of prime 2 -factors implies that $p=0$ and $l=1$, i.e., $z=v, z^{\prime}=v^{\prime}$, and $r=\left(z^{\prime} z\right)^{m-1} z^{\prime}$. Since $|r|<\left|z^{\prime} z\right|$, we have $r=z^{\prime}$.

Proof of Proposition 4. By Lemma 2, for every $n \in \mathbb{N}_{+}$and $x_{1}, x_{2}, \in \tau^{n}(a), x_{1}$ and $x_{2}$ have prime 2-factors $z, z^{\prime} \in \Sigma^{*}$ with $x_{1}=\left(z z^{\prime}\right)^{i_{1}} z$ and $x_{2}=\left(z z^{\prime}\right)^{i_{2}} z$ for some $i_{1}<i_{2}$. Let $x_{3}$ be a word in $\tau^{n}(a)$. We may assume that $\left|x_{2}\right|<\left|x_{3}\right|$, for otherwise let the shorter two words have prime 2-factors $z$ and $z^{\prime}$.

Since $a$ is self-productive, there is a word $v_{0} a v_{1} a v_{2} a v_{3} \in \tau^{l}(a)$ for some $l \in \mathbb{N}_{+}$in which $v_{0}, v_{1}$, and $v_{2}$ have no occurrences of $a$ and $v_{3}$ may have some occurrences of $a$. Let $v_{i}^{\prime} \in \tau^{n}\left(v_{i}\right) i=0,1,2,3$ be fixed words. Since

$$
w_{1}=v_{0}^{\prime} x_{1} v_{1}^{\prime} x_{2} v_{2}^{\prime} x_{2} v_{3}^{\prime}, \quad w_{2}=v_{0}^{\prime} x_{2} v_{1}^{\prime} x_{1} v_{2}^{\prime} x_{2} v_{3}^{\prime}, \quad w_{3}=v_{0}^{\prime} x_{2} v_{1}^{\prime} x_{2} v_{2}^{\prime} x_{1} v_{3}^{\prime} \in \tau^{l+n}(a)
$$

and $\left|w_{1}\right|=\left|w_{2}\right|=\left|w_{3}\right|$, we have $w_{1}=w_{2}=w_{3}$ by Property 3. Then by Lemma $5 v_{1}^{\prime}=$ $\left(z^{\prime} z\right)^{j_{1}} z^{\prime}$ and $v_{2}^{\prime}=\left(z^{\prime} z\right)^{j_{2}} z^{\prime}$. Under the same circumstances $\tau^{l+n}(a)$ contains

$$
w_{4}=v_{0}^{\prime} x_{1} v_{1}^{\prime} x_{3} v_{2}^{\prime} x_{2} v_{3}^{\prime} \quad \text { and } \quad w_{5}=v_{0}^{\prime} x_{2} v_{1}^{\prime} x_{3} v_{2}^{\prime} x_{1} v_{3}^{\prime}
$$

with $\left|w_{4}\right|=\left|w_{5}\right|$. Then by Property $3 w_{4}=w_{5}$ and by Lemma 5

$$
v_{1}^{\prime} x_{3} v_{2}^{\prime}=\left(z^{\prime} z\right)^{j_{z}} z^{\prime}=\left(z^{\prime} z\right)^{j_{1}} z^{\prime}\left(z z^{\prime}\right)^{j_{3}} z\left(z^{\prime} z\right)^{j_{2}} z^{\prime}
$$

where $j=j_{1}+j_{2}+j_{3}+1$. Hence every word in $\tau^{n}(a)$ has the form $\left(z z^{\prime}\right)^{i} z$.
If a persistent unbounded letter is not self-productive, then the letter makes at most two descendants in every step.

Lemma 6. Let $G=\langle\Sigma, \tau, \omega\rangle$ be a slender $0 L$ system. If a nondeterministic persistent unbounded letter $a$ in $G$ is not self-productive, then for every $n \in \mathbb{N} \operatorname{card}\left(\tau^{n}(a)\right) \leqslant 2$.

Proof. Since $a$ is persistent and not self-productive, there is a sequence of letters $a=a_{0}, a_{1}, \ldots, a_{n}=a$ such that $s_{i} a_{i} t_{i} \in \tau\left(a_{i-1}\right)$ for some $s_{i} t_{i} \in \Sigma^{*}$ and $a \notin \operatorname{alph}\left(\tau^{*}\left(s_{i} t_{i}\right)\right)$ for every $i=1,2, \ldots, n$.

We first claim that for every $i=1,2, \ldots, n \tau\left(a_{i-1}\right)$ does not contain a word $s_{i}^{\prime} b t_{i}^{\prime}$ where $b$ is a persistent letter and $b \neq a_{i}$. Let us assume the converse, that is, $u, v \in \tau^{i}(a)$ where $u$ has an occurrence of $a_{i}$ and $v$ has an occurrence of $b$. Then $u=u_{1} a_{i} u_{2}$ and we have

$$
z_{1}=u_{1}^{\prime} w_{1}^{\prime} u_{1} a_{i} u_{2} w_{2}^{\prime} u_{2}^{\prime}, \quad z_{2}=u_{1}^{\prime} w_{1}^{\prime} v w_{2}^{\prime} u_{2}^{\prime} \in \tau^{n+i}(a),
$$

where $w_{1} a w_{2} \in \tau^{n-i}\left(a_{i}\right)$, and $w_{j}^{\prime} \in \tau^{i}\left(w_{j}\right)$ and $u_{j}^{\prime} \in \tau^{n}\left(u_{j}\right) j=1,2$. Since persistent letters have derivations in which they do not disappear, we can assume $\left|u_{1} u_{2}\right|_{P} \leqslant\left|u_{1}^{\prime} u_{2}^{\prime}\right|_{P}$ where $P$ is the set of persistent letters. Lemma 2 says that $z_{1}=(x y)^{i_{1}} x$ and $z_{2}=(x y)^{i_{2}} x$ for some $x, y \in \Sigma^{*}$ and $i_{1}, i_{2} \in \mathbb{N}$. Because $a_{i}$ occurs once in $z_{1}, z_{1}=x y x$ or $z_{1}=x$ but the latter case makes $z_{2}$ have more than one occurrences of $a_{i}$. So we have $z_{1}=x y x$ and $z_{2}=x$. Hence

$$
u_{1}^{\prime} w_{1}^{\prime} u_{1} a_{i} u_{2} w_{2}^{\prime} u_{2}^{\prime}=u_{1}^{\prime} w_{1}^{\prime} v w_{2}^{\prime} u_{2}^{\prime} y u_{1}^{\prime} w_{1}^{\prime} v w_{2}^{\prime} u_{2}^{\prime}
$$

Then $y$ is a subword of $u_{1} a_{i} u_{2}$ and the inequality

$$
\left|u_{1} u_{2}\right|_{P} \geqslant\left|v w_{2}^{\prime} u_{2}^{\prime} u_{1}^{\prime} w_{1}^{\prime} v\right|_{P}
$$

holds. But this inequality contradicts with the following

$$
\left|u_{1} u_{2}\right|_{P} \leqslant\left|u_{1}^{\prime} u_{2}^{\prime}\right|_{P}<\left|v w_{2}^{\prime} u_{2}^{\prime} u_{1}^{\prime} w_{1}^{\prime} v\right|_{P}
$$

Therefore, we have shown that $a_{i}$ is the only persistent letter derived by $a$ in $i$ steps.
Next let $\left\{u, v_{1}, v_{2}\right\} \subseteq \tau^{n}(a)$ for some $n$. Then $v_{1}$ and $v_{2}$ do not contain any persistent letters nor any ancestors of persistent letters, in other words, they are words over mortal letters. Since $a$ is unbounded, for arbitrarily large $k \in \mathbb{N}$ there is a word $w=w_{1} w_{2} \cdots w_{k} \in L(G)$ where $w_{i}=w_{i 0} a w_{i 1} a w_{i 2} a$ for $i=1,2, \ldots, k-1$. Then $\tau^{n}\left(w_{i}\right)$ has the words of the same length,

$$
w_{i 0}^{\prime} v_{1} w_{i 1}^{\prime} u w_{i 2}^{\prime} v_{2} \quad \text { and } \quad w_{i 0}^{\prime} v_{2} w_{i 1}^{\prime} u w_{i 2}^{\prime} v_{1}
$$

where $w_{i j}^{\prime} \in \tau^{n}\left(w_{i j}\right) j=0,1,2$. Because $L(G)$ is slender, $v_{1} w_{i 1}^{\prime} u w_{i 2}^{\prime} v_{2}=v_{2} w_{i 1}^{\prime} u w_{i 2}^{\prime} v_{1}$ holds for all but fixed number of $i$ 's. By Lemmas 2 and $5, v_{1}=(x y)^{i_{1}} x, v_{2}=(x y)^{i_{2}} x$ and $u$ is a subword of $(x y)^{j}$ for sufficiently large $j$. This means that $u$ is a word over mortal letters and that $a$ is also mortal. This is a contradiction. Thus $\operatorname{card} \tau^{n}(a) \leqslant 2$ for every $n$.

Finally, we consider nonpersistent letters. A nonpersistent unbounded letter is a descendant of a persistent unbounded letter. So the next lemma exhausts all cases.

Lemma 7. Let $G=\langle\Sigma, \tau, \omega\rangle$ be a slender $0 L$ system and let a be a persistent unbounded letter in $G$. If $b$ is $a$ descendant of $a$, then $b$ derives $a$ or $b$ is deterministic.

Proof. Let $s b t \in \tau^{n}(a)$ for some $n>0$ and $s, t \in \Sigma^{*}$. If $b$ is nondeterministic, i.e., $\{u, v\} \in \tau^{k}(b)$ for some $k>0$, then we have $|u| \neq|v|$ and we can assume $|u|<|v|$. The set $\tau^{n+k}(a)$ has a subset $\left\{s^{\prime} u t^{\prime}, s^{\prime} v t^{\prime}\right\}$ where $s^{\prime} \in \tau^{k}(s)$ and $t^{\prime} \in \tau^{k}(t)$. Since $b$ is unbounded, there exist some words $x, y \in \Sigma^{*}$ and some integers $0 \leqslant i_{1}<i_{2}$ such that $u=(x y)^{i_{1}} x$ and $v=(x y)^{i_{2}} x$. Since $a$ is persistent, there is a word $z \in \tau^{n+k}(a)$ such that $z$ derives $a$. Because $G$ is slender and $a$ is unbounded in $G$, the same argument of the proof of Lemma 6 shows that a subword $a w_{1} a w_{2} a$ of a word in $L(G)$ implies the equality

$$
(x y)^{i_{1}} x t^{\prime} w_{1}^{\prime} z w_{2}^{\prime} s^{\prime}(x y)^{i_{2}} x=(x y)^{i_{2}} x t^{\prime} w_{1}^{\prime} z w_{2}^{\prime} s^{\prime}(x y)^{i_{1}} x \in \tau^{n+k}\left(a w_{1} a w_{2} a\right)
$$

in which $w_{j}^{\prime} \in \tau^{n+k}\left(w_{j}\right) j=1,2$. Then $z$ is a subword of $(x y)^{j}$ for sufficiently large $j$. This implies that $x y$ derives $a$ and $b$ also derives $a$.

Proposition 4 and Lemmas 6 and 7 completes the proof of Theorem 3.1 in [2]. In this note the theorem has a different number.

Theorem 8. If a $0 L$ system $G=\langle\Sigma, \tau, \omega\rangle$ is slender, then $G$ satisfies the following condition:
(8.1) For every unbounded letter $a$ in $\Sigma$ and for every $n \in \mathbb{N}_{+}$there exist $z z^{\prime} \in \Sigma^{+}$ and a finite set $I \subset \mathbb{N}$ such that $\tau^{n}(a)=\left\{\left(z z^{\prime}\right)^{i} z \mid i \in I\right\}$.

Proof. An unbounded letter is persistent or a descendant of a persistent letter. If $a$ is self-productive, Proposition 4 shows the condition. If $a$ is persistent and not selfproductive, then Lemmas 2 and 6 verify condition (8.1). If $a$ is a descendant of a persistent letter and $a$ is not persistent, then $a$ is deterministic by Lemma 7. Finally every deterministic letter obviously satisfies condition (8.1).

Now we modify the discussion after Theorem 3.1 in [2]. The following arguments work instead of Lemmas 3.5, 3.6, and 4.5 in [2], whose proofs depend on the insufficient proof of Theorem 3.1 in [2]. Lemma 3.5 is used in the proof of Lemma 3.6 only and we prove in this note a lemma corresponding to Lemma 3.6 without Lemma 3.5. So we omit Lemma 3.5 in [2]. We give, in the next section, new versions of Lemmas 3.6 and 4.5 as well as pathological exceptions of the main theorem (Theorem 4.3) of [2] and a new condition to avoid them.

## 3. Changes in lemmas and the main theorem

First we restate Lemma 4.5 in [2]. Because of a slight modification of Theorem 4.3 in [2], which is mentioned later, the assertion 2 of the next lemma is changed from the corresponding assertion of Lemma 4.5 in [2] (assertion (i)). The next lemma says nothing about the subword which does not derive $a$; for example, if $a$ is derived by $v_{1}$, nothing is stated about $v_{0}$, while assertion (i) of Lemma 4.5 in [2] stated $v_{0} \in M^{*}$. But a pathological exception shows that $v_{0} \in M^{*}$ is not always valid.

Lemma 9. Let $L(G)$ be slender and a be a persistent non-deterministic unbounded letter occurring in $L(G)$. If $a$ is non self-productive, then:

1. $\tau^{i}(a)=u_{i} a_{i} u_{i}^{\prime}$ or $\tau^{i}(a)=\left\{u_{i} a_{i} u_{i}^{\prime}, 1\right\}$ for every $i$ where $a_{i}$ is an ancestor of $a$ and $u_{i}$ and $u_{i}^{\prime}$ are words over deterministic mortal letters.
2. There is a stem letter $b$ such that $v_{0} b v_{1} \in \tau^{k}(b)$ where $a$ is the only persistent letter derived by $v_{1}$ or $a$ is the only persistent letter derived by $v_{0}$ and the period of $a$ is a divisor of $k$.

Proof. 1. By Lemma 6, $\tau^{i}(a)=\left\{x_{i} x_{i}^{\prime} x_{i}, x_{i}\right\}$ for every $i>0$ if it is not a singleton. Let $\tau^{l}(a)=\left\{x_{l} x_{l_{1}} a x_{l_{2}} x_{l}, x_{l}\right\}$ where $l$ is the period of $a$. Then

$$
\tau^{l+i}(a)=\left\{\tau^{i}\left(x_{l} x_{l_{1}}\right) x_{i} x_{i}^{\prime} x_{i} \tau^{i}\left(x_{l_{2}} x_{l}\right), \tau^{i}\left(x_{l} x_{l_{1}}\right) x_{i} \tau^{i}\left(x_{l_{2}} x_{l}\right), \tau^{i}\left(x_{l}\right)\right\} .
$$

But since $\tau^{l+i}(a)$ has at most two elements and $x_{i} x_{i}^{\prime} x_{i} \neq x_{i}$, we have

$$
\tau^{i}\left(x_{l} x_{l_{1}}\right) x_{i} \tau^{i}\left(x_{l_{2}} x_{l}\right)=\tau^{i}\left(x_{l}\right)
$$

that is $x_{i}=1$ and $\tau^{i}\left(x_{l_{1}} x_{l_{2}}\right)=1$ for all $i \in \mathbb{N}_{+}$. Note that $\tau^{l}(a)$ cannot be a singleton because $a$ is nondeterministic.
2. Since $a$ is unbounded and not self-productive, there is a stem letter $b$ which produces $a$, that is, $v_{0} b v_{1} \in \tau^{k}(b)$ and $v_{0}$ or $v_{1}$ generates $a$. We can assume, without loss of generality, that $v_{0}$ generates $a$. We assume that $v_{0}$ generates a persistent letter $c$ which is different from $a$. Let $p$ be the common multiple of periods of $a$ and $c$. We note that $\tau^{p}(a)=\{u, 1\}$ and $a$ is the only occurrence of persistent letter in $u$. Since $a$ and $c$ are persistent, there is a subword $w=a w_{1} c w_{2} a$ of a word in $L(G)$ such that $\tau^{p}(w)$ has the words

$$
u w_{1}^{\prime} v w_{2}^{\prime} \text { and } w_{1}^{\prime} v w_{2}^{\prime} u
$$

of the same length where $w_{i}^{\prime} \in \tau^{p}\left(w_{i}\right) i=1,2$ and $v \in \tau^{p}(c)$. Since $L(G)$ is slender, they are identical. Then by Lemma 1.2 in [2], $u$ and $w_{1}^{\prime} v w_{2}^{\prime}$ are powers of a common word. This implies that any persistent letter occurring in $v$ is $a$ and contradicts the fact that $\tau^{p}(c)$ contains a word which has an occurrence of $c$. Thus $a$ is the only persistent letter derived by $v_{0}$.

Let $a_{0}=a, a_{1}, a_{2}, \ldots, a_{l}=a$ be the sequence of words such that $a_{i-1}$ derives $a_{i} i=1,2$, $\ldots, l$. If $l$ is not a divisor of $k$, there is a subword $a w_{1} a_{i} w_{2} a$ of a word in $L(G)$ with $0<i<l$. Then the same argument as above leads to a contradiction. Hence $l$ is a divisor of $k$.

The next lemma is the new version of Lemma 3.6 in [2]. The conclusion 1 of the next lemma is added to Lemma 3.6 in [2] because nonself-productive case must be considered separately from self-productive case.

Lemma 10. Let $a, b \in \Sigma$ be nondeterministic unbounded persistent letters which satisfy the condition that, for every nonnegative integer $N$, there exists a word $w \in L(G)$ such that $|w|_{a}>N$ and $|w|_{b}>N$. Then:

1. $a$ and $b$ are not self-productive and $a=b$.
2. $a$ and $b$ are self-productive and

$$
u_{n} u_{n}^{\prime}=t_{n} v_{n} v_{n}^{\prime} t_{n}^{-1}
$$

for every $n \in \mathbb{N}_{+}$where $\tau^{n}(a)=\left\{\left(u_{n} u_{n}^{\prime}\right)^{i} u_{n} \mid i \in I_{n}\right\}$ and $\tau^{n}(b)=\left\{\left(v_{n} v_{n}^{\prime}\right)^{j} v_{n} \mid j \in J_{n}\right\}$ are the factorizations given by Theorem 8 and $t_{n}$ is a suffix of $v_{n} v_{n}^{\prime}$.

Proof. If $a$ and $b$ are not self-productive, then the previous lemma says that $a=b$. For otherwise, the fact that there is a stem letter $c$ such that $v_{0} c v_{1} \in \tau^{k}(c)$ and $v_{0}$ generates $a$ and $v_{1}$ generates $b$, or vice versa, implies that $L(G)$ is not slender.

Next, consider the case that $a$ is self-productive and $b$ is not self-productive. Let $l$ be the period of $b$ and $\tau^{l}(b)=\{v, 1\}$. By Theorem 8 we have $\tau^{l}(a)=\left\{\left(u_{l} u_{l}^{\prime}\right)^{i} u_{l} \mid i \in I_{l}\right\}$. Let $\left(u_{l} u_{l}^{\prime}\right)^{i_{1}} u_{l}$ and $\left(u_{l} u_{l}^{\prime}\right)^{i_{1}+c} u_{l}$ be two words in $\tau^{l}(a), d$ be the least common multiple of $c\left|u_{l} u_{l}^{\prime}\right|$ and $|v|$, and $k$ be $\min \left(|w|_{a},|w|_{b}\right)$. Then any word in $\tau^{l}(w)$ which has $i d /|v|$ occurrences of $v$ and $(k-i) d / c\left|u_{l} u_{l}^{\prime}\right|$ occurrences of $\left(u_{l} u_{l}^{\prime}\right)^{i_{1}+c} u_{l}$ with the other occurrences of $a$ is replaced for $\left(u_{l} u_{l}^{\prime}\right)^{i_{1}} u_{l}$ has the same length. This contradicts the slenderness of $L(G)$.

If $a$ and $b$ are self-productive, then the same argument as above shows the equation

$$
\left(u_{n} u_{n}^{\prime}\right)^{i} u_{n} x=x\left(v_{n} v_{n}^{\prime}\right)^{j} v_{n}
$$

where $\tau^{n}(b)=\left\{\left(v_{n} v_{n}^{\prime}\right)^{j} v_{n} \mid j \in J_{n}\right\}$. We note that there are arbitrarily large $i$ and $j$ which fulfill the above equation. Then by Lemma 1.1 in [2],

$$
\left(u_{n} u_{n}^{\prime}\right)^{i} u_{n}=y z \quad \text { and } \quad v_{n}\left(v_{n}^{\prime} v_{n}\right)^{j}=z y .
$$

Now the lemma follows from Lemma 1.6 in [2].
Finally, we change the condition (4) of the assertion (i) of Theorem 4.1 in [2] in order to avoid pathological cases examplifed below.

Example 11. Let $G=\langle\{a, b, c\}, \tau, b\rangle$ where $\tau(a)=\{a, 1\}, \tau(b)=\{a b c\}$, and $\tau(c)=c^{2}$ be a $0 L$ system. Then

$$
\tau^{i}(b)=a^{[i]} b c^{2^{i}-1}
$$

where $a^{[i]}$ stands for the set $a^{[i]}=\left\{1, a, a^{2}, \ldots, a^{i}\right\}$. Since every word in $L(G)$ has different length, $L(G)$ is thin. But $\left(\tau^{i}(b)\right)_{i \geqslant 0}$ is not an ultimately extended free generated sequence.

Such pathological cases are excluded by the following slight change.
Condition (4) of the assertion (i) of Theorem 4.3 in [2]. $w$ has a factorization $w=w_{1}$ $w_{2} \cdots w_{l}$ such that, (a) the $0 L$ system $G_{i}=\left\langle\Sigma, \tau, w_{i}\right\rangle$ generates a slender language of type (1), (2), or (3); or (b) there is a stem letter $w_{j}=a_{j}$ such that $a_{j}$ has a production $u a_{j} v \in \tau^{n}\left(a_{j}\right)$ where $u$ has, say, an unbounded nondeterministic letter and $v$ has deterministic letters only. In this case if $\tau$ is modified to $\tau^{\prime}$ where $u a_{j} \in \tau^{\prime n}\left(a_{j}\right)$, then $\left\langle\Sigma, \tau^{\prime}, a_{j}\right\rangle$ generates a slender language of type (2) and if $\tau$ is modified to $\tau^{\prime \prime}$ where $a_{j} v \in \tau^{\prime \prime n}\left(a_{j}\right)$, then $\left\langle\Sigma, \tau^{\prime \prime}, a_{j}\right\rangle$ generates a slender language of type (1).

The proof to Theorem 4.3 in [2] is now clear in all cases. If a stem letter which generates a nondeterministic unbounded letter $a$ generates no other persistent letter, we just follow the proof given in [2]. The case in which a stem letter generates deterministic persistent letters falls into the condition (4) above.

A futher characterization of such cases, as well as the general problem about the decidability of slenderness for $0 L$ languages, remains open.

## References

[1] R. McNaughton, ACM Computing Rev. 38 (5) (1997) 265.
[2] T.Y. Nishida, A. Salomaa, Slender 0L languages, Theoret. Comput. Sci. 158 (1996) 161-176.


[^0]:    * Corresponding author.

    E-mail address: nishida@pu-toyama.ac.jp (T.Y. Nishida)

