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We consider a simple approach for the fast evaluation of the
Fourier transform of functions with singularities based on pro-
jecting such functions on a subspace of Multiresolution Analysis.
We obtain an explicit approximation of the Fourier Transform of
generalized functions and develop a fast algorithm based on its
evaluation. In particular, we construct an algorithm for the Un-
equally Spaced Fast Fourier Transform and test its performance
in one and two dimensions. The number of operations required
by algorithms of this paper is O(N -logN + N, - (—loge¢)) in one
dimension and O(N? - logN + N, - (— loge)?) in two dimensions,
where ¢ is the precision of computation, N is the number of com-
puted frequencies and N, is the number of nodes. We also address
the problem of using approximations of generalized functions for
solving partial differential equation with singular coefficients or

source terms. © 1995 Academic Press, Inc.

I. INTRODUCTION

In this paper we propose a simple approach for fast eval-
uation of the Fourier transform of functions with singular-
ities based on projecting such functions on a subspace of
Multiresolution Analysis (MRA). We obtain an explicit ap-
proximation of the Fourier Transform of generalized func-
tions and develop a fast algorithm based on its evaluation.
In particular, we construct an algorithm for the Unequally
Spaced Fast Fourier Transform and test its performance in
one and two dimensions. We also begin to address the prob-
lem of using such approximations for solving partial differ-
ential equation with singular coefficients or source terms.

The Fast Fourier Transform (FFT) algorithm [7] requires
sampling on an equally spaced grid which proves to be a
significant limitation in many applications. It is clear that
the direct evaluation of trigonometric sums

N,—1

fu= > e e, n=0,%1, (L.1)
=0
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where g; € C, ¢, € [-N,N] and x; € [0, 1], is costly and
requires O(N - N,) operations.  Algorithms for the fast
evaluation of (1.1) constitute Unequally Spaced Fast Fourier
Transform (USFFT) algorithms which are far reaching gen-
eralizations of the FFT and have numerous applications in
numerical analysis and signal processing. In [11] Press and
Rybicki suggest using Lagrange interpolation to replace the
function values at an arbitrary point by several function val-
ues on an equally spaced grid and provide an algorithm in
the form of a FORTRAN subroutine. Essentially the same
idea was proposed by Brandt in [5]. For computing (1.1)
one may also use the Taylor expansion to correct for de-
viations from an equally spaced grid [17]. Although such
approaches are significantly better than the direct evalua-
tion of (1.1), they do not lead to very efficient algorithms
especially in multidimensional generalizations. The speed
of this type of algorithm depends on the number of points of
an equally spaced grid which are used to replace the func-
tion value and on the oversampling factor. In the papers
mentioned above the dependence of accuracy and speed of
the algorithms on the choice of an interpolation scheme and
on the oversampling factor has not been investigated.

A more careful analysis and a much faster algorithm to
evaluate (1.1) has recently appeared in the paper by Dutt and
Rokhlin [9] where a specialized interpolation scheme using
Gaussian bells has been developed and implemented. Also,
in a recent paper Sorets [15] describes an algorithm for
fast and accurate computation of the Fourier transform of
functions with jump discontinuities. One of the motivations
for considering the problem of fast and accurate evaluation
of integrals of functions with jump discontinuities is VLSI
design. Namely, the goal is to compute the integrals

1ol
fln,n') = / / flx, y)e 2 ince=2min'y gy dy, (1.2)
o Jo

with a given accuracy € for —N < n < N and —N' =
N’, where f is a piecewise constant function or, more gener-
ally, a piecewise smooth function. If the number of discon-
tinuities of f is large, then the direct computation of (1.2) is
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costly. If Np is the number of subdomains of [0, 1] x [0, 1]
where the function f is smooth, then the number of opera-
tions in the direct algorithm may be estimated as N, N -N'.
Our approach addresses the problems of evaluating both
(1.1) and (1.2). By introducing the generalized function

NI
g0 = D gidlx — x)), (1.3)

1=0

evaluating (1.1) may be viewed as evaluating

20 = [ s < ar, (14)
for |£,] <= N,n = 0,x1,...,£N with a given accuracy e.
We also develop and test a fast algorithm to compute the
Fourier transform of the generalized function

N,

gle,y) = ) giblx — xp)8(y — ),
=1

(1.5)

where (x;,y) € [0,1} x [0,1] and {g,}f/:", is a set of N,
complex numbers. This algorithm is equivalent to the two-
dimensional USFFT for computing the trigonometric sum

N,
—2mingy ,—-2win'yy ( 1 6)
8i€ € s .

I=1

3 —
Enn =

for —-Nsn<sNand -N' =sn" s N'".

We address the problem of computing (1.2), (1.4) or the
Fourier transform of (1.5) by projecting the function on a
subspace of a Multiresolution Analysis,? effectively replac-
ing it by its bandlimited version. Using the projection, we
obtain an explicit approximation of the Fourier transform
and develop a simple practical algorithm based on an im-
plementation of this approximation. Our implementation
consists of three steps, two of which are similar to the cor-
responding steps in algorithms based on interpolation. The
first step of our algorithm which we view as a projection
replaces an interpolation scheme (Lagrange interpolation in
[11], Taylor expansion in {17], a specialized interpolation
scheme involving Gaussian bells in [9] and the steps in [15]
involving the use of the Gauss-Legendre quadratures and
Lagrange interpolation). The second step is the same as
in all algorithms of this type and involves the FFT of a
(vN) X (vN’) matrix, where v is an oversampling factor.
The third step is a modification (or correction) step which
involves multiplying values at each frequency by a precom-
puted factor. At this step we effectively generate a rep-
resentation involving the Battle-Lemarié scaling function
[10, 1].

2 The fact that such an approach may be used has also been recognized
by Coifman [13].
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We develop fast practical algorithms for problems (1.1)
and (1.2) which compare well with those in [9] and [15] (see
Section VIII). In [9] the authors develop two approaches for
computing (1.1) and (1.2): algorithms based on Fast Multi-
pole Method (FMM) and based on an interpolation scheme
involving Gaussian bells. The approach of this paper is
related to the second kind whereas a wavelet-based coun-
terpart of FMM is currently being developed [4].

In fact, we address a more general problem of computing
the Fourier transform of generalized functions with singu-
larities of the type x%/T(\ + 1), where T is the gamma
function and x% is defined as x* for x > 0 and zero for
x = (. For example, A = 0 yields the jump discontinuity,
whereas A = —1 corresponds to the é-function. We provide
tight estimates showing that for any ¢ we may choose the
space of splines of appropriate order and scale so that the
projection on that subspace contains sufficient information
to account for half of the frequencies (the oversampling
factor v = 2) with accuracy ¢. Such projections of gen-
eralized functions may be used for solving partial differ-
ential equations with singular coefficients or source terms.
Approximations of generalized functions (the so-called dis-
crete approximation to singular functions) appear for exam-
ple in the context of the Immersed Interface method (see
e.g. [8, 12]). We note that our estimates provide an addi-
tional argument in favor of using wavelets from the “spline
family” in problems of solving partial differential equations
and signal processing. Although the analysis of splines is
a well-established subject (see e.g. [14]), several families
of bases were constructed only recently. The “spline fam-
ily” of wavelets includes those constructed by Stromberg
[16], Battle and Lemarié [10, 1], as well as nonorthogonal
families (see [6] and [18]).

We start the paper with preliminary considerations in
Section II where we describe a general approach to the
problem. We then explain the choice of basis in Section
III and describe the one dimensional USFFT algorithm in
Section IV. In Section V we consider algorithms in the mul-
tidimensional setting. In Section VI we develop an inter-
polation scheme to evaluate the Fourier transform at un-
equally spaced points. Then, in Section VII, we discuss
using the approximation of functions with singularities for
solving partial differential equations. Numerical examples
and performance evaluation of the algorithms are presented
in Section VIIL. Finally, conclusions and generalizations are
discussed in Section IX where we also briefly discuss appli-
cations of these algorithms in numerical analysis and signal
processing.

II. PRELIMINARY CONSIDERATIONS

As an example let us consider the problem of computing

1
fim) = /0 flx)e 2mimx dx 2.1
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for —-M < m < M, where f is a complex-valued piecewise
smooth function or a generalized function. In what follows
we assume (without loss of generality) that f is zero in a
narrow strip near the boundary of [0, 1] and we extend f by
zero outside [0, 1]. Alternatively (see Appendix D for the
details) we may consider a periodic extension of f outside
[0, 1] without assuming that f is zero near the boundary.
With a slight abuse of notation we use the same symbol f
for such extensions.

We note that an equally spaced discretization of (2.1)
{which enables one to use the FFT) leads to a numerical er-
ror of order 1/N, where N is the number of samples. Such
behavior of the error due to jump discontinuities makes an
accurate evaluation of (2.1) using an equally spaced dis-
cretization very expensive and not practical, especially in
higher dimensions.

We now outline our approach. Let us consider an MRA
of LX(R),

- CV,CVCVyCV_ 1 CV,,C-, (2.2)
where V;, j < 0, is a subspace of the MRA which is spanned
by translations of a scaling function ¢,

b1, 0 = 27722 x — k), (2.3)
where k € Z. We start by projecting the function f on
V,;,j <0, ie, by computing the integrals

fe= /_ N Fyjx) dx. (2.4)

In order to estimate the Fourier transform of the function

f

f) = /_ : fe " dx, (2.5)
we substitute
fx) = [ i fle)er < de (2.6)
into (2.4) and obtain
fe=27"2 / Z F@I0d©)e de, 2.7)
where
o) = / Z $lx)e™ 275 i, (2.8)

and ~ denotes the complex conjugate. Replacing the integral
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over the real line by that over the interval -1 l] in (2.7),

2 ’
we have

]/2 ~ . A
fi=277? [ e N f27I(e + D)GLE + DdE. (2.9)

1/2 €2

Introducing the Fourier series

F(&) =) fre ¥, (2.10)

keZ

where F is periodic, F(£§) = F(¢ + 1), and using (2.9), we
arrive at

F(©) =27725" f (e + (g + ), @.11)

ez

or

HE + 1)

Fe) fRIE+D)=—. 2.12)
2. é(&)

2472 . —f(Z_Jf) =
¢(8) I

=*],*

We then have

AFE) . |(¢ + Dl
20 2| < Cil,a)—2—=, (2.13)
é(8) e (=412, e | (&)
for |£] < a, where
Cil,a) = sup | f277(¢ + )], (2.14)

[{|<a

and @ > ( is a parameter. As we will see below the param-

eter a is related to the oversampling factor v by a = 1/(2v).
Our main observation is that by an appropriate choice of

the scaling function ¢ and the parameter « > 0, the ratio

(¢ + 1)
© = 1€+l
Y

(2.15)
may be made arbitrarily small for / = +1,+2 ... and, there-
fore, the estimate (2.13) leads to an algorithm for computing
F(&) for |¢| < 27/a.

The choice of ¢, on one hand, should permit an efficient
computation of the integrals (2.4). In particular, the func-
tion ¢ should have as small support as possible. On the
other hand, in order to have a useful estimate in (2.13) we
need a tight localization of ¢ in the frequency domain since
we require the ratio 7; in (2.15) to be small. As an illustra-
tion of the contradictory nature of these requirements, let
us consider the scaling function for Meyer’s basis for which
(2.13) is trivial. Meyer’s scaling function is compactly sup-
ported in the Fourier domain and is given by
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1 for |¢] < 3
$O) = | cos (ZwBlel - 1) fori<|el <2 216)
0 elsewhere,

where w is a smooth function, w(s) = 0 for s < 0, w(s) = 1
for s = 1, and w(s) + w(l —s) = 1. For the scaling function
in (2.16) the r.h.s. of (2.13) is identically zero for [ = 2 and
we have 2//2F(¢) = f(277¢) for |¢] < % However, using
the scaling function in (2.16) does not lead to an efficient
algorithm because this function does not permit effective
computation of integrals in (2.4).

It also turns out that using wavelets with compact support
does not yield an efficient algorithm since the decay of the
Fourier transform of compactly supported wavelets is not
sufficiently fast. We demonstrate in the next Section how
to satisfy the requirements of localization in both domains
by choosing ¢ to be an mth order B-spline.

Let us now show that for symmetric scaling functions

computing F(£)/$(£) in (2.13) may be thought of as es-
sentially an orthogonalization procedure. If the scaling
function ¢ is symmetric and, hence, $(&) = H(€), then for
[£] < a the function ¢(£) may be replaced by the periodic
function +/a(¢), where

a(®) = >_ |de + DI (2.17)

leZ

The function a(£) is usually used for orthogonalization of
the basis on Vj since the functions {p(x — I)};cz form an
orthonormal basis on V,, where

ey = P
ole) = 20

We have from (2.17) and (2.15) that

(2.18)

>, r%(s)) : (2.19)

I=x1,%2..

a(¢) = |p(6)1? (1 +

and thus, for |£] < a,

Ja® _ |

= = 2.20
3©) (2:20

71(8),

1
21

(2%

=*],*

under the same conditions which are sufficient for the va-
lidity of (2.13). It follows from (2.11) that

F(¢)
va(g)

where ¢ is given in (2.18). This implies that by comput-

= 2723 fTI(E + D) + D), 221

leZ

G. BEYLKIN

ing the ratio F(£)//a(€) we effectively orthogonalize the
expansion given by (2.10).

The steps leading up to the approximation of the func-
tion f(27/¢) may be interpreted as follows. Computing the
integrals in (2.4), i.e., the projection of the function f on
V,;,j < 0, may be viewed as a convolution of f with a
“blurring” kernel. It plays the same role as the interpola-
tion step in algorithms mentioned in Section 1. Evaluating
the Fourier series (2.10) brings the computation into the
Fourier domain. Finally, calculating the ratio F(¢)/+/a(€)
may be viewed as a partial deconvolution of the “blurring”
introduced at the first step. This deconvolution is performed
in the Fourier domain and may be accomplished by the or-
thogonalization procedure.

In the next section we state and prove our main result.

III. CHOICE OF THE BASIS

In our construction we choose the MRA associated with
spaces of polynomial splines. This allows us to use proper-
ties of the Battle-Lermarié scaling function while comput-
ing integrals only with the B-splines. Such an approach is
critical for the efficiency of the algorithm.

We start by computing the integrals in (2.4) with the cen-
tral B-splines,

fe= /_ mf(x)ﬂ;c’;)(x)dx, (3.1)

where B{(x) = 27/2"(2"x — k) and " is the mth
order central B-spline. For convenience we only consider
splines of odd order. In what follows we use the Fourier
transform of A",

(32)

. m+1
sin 7€
€ ’

B(m)(f) — (

the periodic function a',

I=m

Z ﬂ(2m+ l)(l)leilg’ (3_3)

I=-m

=00
a"”’(ﬁ) — Z |B(M)(§ + mz —

|=—00

and the Fourier transform of the Battle-Lemarié scaling
function,

)= A7)

Ja™e)

The values 8%™* (/) may be computed using the recur-
sion in (3.21) below (see, e.g., [6]) and, therefore, the func-
tion "™ may be easily evaluated.

Let us summarize our results as

~ (m)

(3.4)
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THEOREM IIL1. Let Ex be the error in approximating
the Fourier transform f of the generalized function f by a

periodic function 2//2F(€)/+/a"(¢),

Ex = sup 2’/2& - f@27¢) / sup | f(27/€)I.
e W‘a("ﬂ(f) lel=ea

j<0, (3.5

where a'™ is given by (3.3) and F is the Fourier series,

F(€) =) fre ™, (3.6)
kez
with coefficients f; given in (3.1).
If
If@el<ca+1gy, o<m, cX)
then we have
S T PR
= 2¢(a) — 1 4 Cf(O,a)
o m+1 )
X Ci, )(———) , (3.8
,2.:2 AT
where

Cill.a) = sup | FQ27/(€ + D). (3.9)

|} =a

For any € > 0 we may choose m, the order of the central
B-spline, and the parameter a > 0 so that for ¢} < «

(3.10)

EFyx =e

The proof of the theorem may be found in Appendix A.

In order to see that Theorem III.1 provides a close es-
timate for the error of the approximation, let us consider
the rh.s. of (3.8). One of the reasons for choosing the
MRA associated with spaces of polynomial splines is the
behavior in the Fourier domain of the Battle-Lemari€ scal-
ing function 3 given in (3.4). We show in Appendix B
that the function @™(¢) is strictly monotone for £ € (0, 1)
and £ € (—1,0) and we obtain

sup |1 - @™&)| =1~ ¢" ).

€] <a

(3.11)

To estimate 1 —@"(a), we may use the expansion of $'"(¢)
around ¢ = 0 and find’

3 For comparison, we have from (3.2)

3 (1 + mr?

5 &+ oeh.

Blml(g) =1
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Pm(E) = 1 + OE¥™*2). (3.12)
Let us estimate the radius of convergence of (3.12) by ex-
amining the denominator in (3.4). As it is shown in [6], the
2m 100ts Ay, Az, ..., Aam Of the polynomial

I=m
E(z) = Qm+ 1)1z" > g0y (3.13)

I=—m
are all negative and simple, 0 > A; > Ay > -+ > Agp,
and form reciprocal pairs, MjAzm = -+ = Ay_jAm = L.

Therefore, the complex zeros of a"(€) in (3.3) are of the
form
log(—\)

b= & i8N
k_2— ]

k=1,...,
2r ’ "

(3.14)
and, thus, the radius of convergence of the expansion in

(3.12) is greater than % Consequently, we may use (3.12)
to estimate

1 - ¢"(a) ~ Ca®*?, (3.15)

where C is a constant. Setting a = i (which corresponds

to the oversampling factor of 2), we compute 1 — QJ('")(%) as
a function of m and display the results in Table 1.

We now turn to the sum in the estimate (3.8) and consider
the first term, [ = =1, fora = %. Wehave(%)"’“(Cf'(l,aH
Ci(—1,2))/Cf{0,a) and note that it provides a close ap-
proximation to the error observed in the numerical experi-
ments (see Section VIII).

To illustrate why 2//°F(£)/+/a"(€) is a good approxima-
tion of f(274¢) for |¢€| < a, we obtain from (2.21)

F(§)

2472
/a('")(&)

- f(zfjg)@m)(&)

+ 2

(=+1,+2,.

FQHE+ D)™ E+ 1), (3.16)

TABLE 1
Values 1 — @™ (3) as a Function of the Order
of the Battle-Lemarié Scaling Function

Order m 1 - @)
3 0.77580E-04

5 0.94292E-06

7 0.11619E-07

9 0.14340E-09

11 0.17701E-11

13 0.21878E-13

15 0.81743E-15
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where ¢ is the Fourier transform of the Battle—Lemarié
scaling function [10, 1]). We plot @™ (€), 3"(¢ + 1) and
@'™(¢~1) for m = 23 in Fig. 1. We note that for a = ; and
|¢] < a the values of $"™(¢) are equal to one (with double
precision accuracy), whereas ¢™(¢ + 1) and 3" (¢ — 1) are
equal to zero with the same precision.

Using Theorem III.1 and setting a = %, we have (with
accuracy e)

| .
fke*ZMkl/L’

— (3.17)
LY2\Ja"™ /L) fZ

fy =

for —L/4+ 1 <! < L/4, where L = 27/, Since we have
extended f by zero outside [0, 1] and assumed that f is
zero in a narrow strip near the boundary of [0, 1], we may
always arrange fi = O for k < 0 and ¥ = L. Thus, we
replace the series in (3.17) by a finite sum and obtain

. 1 Ll _
f(l) = ke¥27r|k//L’
L'/z\/a("’)(l/L) k=0

—-L/d<l<L/4, (3.18)
which may be evaluated using the FFT.

As a result we have a simple algorithm based on the
approximation in Theorem IIl.I. The algorithm consists
of three steps:

1. computing integrals in (3.1)

2. computing the sum in (3.18) via FFT

3. multiplying by the factor 1/\/a(’")(l/L) in (3.18).
ExampLE III.1. The error of computing via (3.18) is

illustrated in Fig. 2 for the characteristic function of an
interval (f(x) = x([0.3,0.55])), where j = —9,L = 512 and

G. BEYLKIN

m = 23. We observe that fgr —128 =< [ < 128 the absolute
error of computed values f(/) is below 1074,

It is clear that we may use Theorem III.1 in a region
€] =< a, where a < %. Choosing a smaller & permits us to
select a lower order B-spline to achieve a given precision
and, thus, decreases the number of operations necessary to
project f on V;. On the other hand, choosing a smaller a
increases the number of operations at the second step due
to the larger oversampling factor. The choice of a = i
results in the oversampling factor of 2 which we use in all
of our experiments in Section VIIL

Let us now consider the projection step of the algorithm,
namely computing integrals in (3.1). Given a MRA, we
always have the corresponding two-scale difference equa-
tion and may use it to evaluate integrals in (3.1). For some
functions the resulting algorithm is efficient and reduces the
problem to that of solving a small linear system (see e.g.
[2]). Specifically, for the central B-splines of odd order the
two-scale difference equation

{m+1)/2 1
=3
k=—(m+1)/2

m+ 1 ()

(k +(m+ I)/Z)ﬂ (2x — k), (3.19)
may be used to compute integrals (2.4). However, an algo-
rithm based on the two-scale difference equation tends to be
inefficient for general functions f. One of the reasons for
choosing the MRA associated with spaces of polynomial
splines is the availability of two additional (well-known)
methods for evaluating integrals with the B-splines, namely,
an approach based on the explicit representation of splines
as piecewise polynomials and an approach based on a re-
cursion over the order of the B-splines.

1.00 A

0.75 4

060 4 .....

|

i

] ¥ v T T T T
<200 -1.76 -150 -1.25 -1.00 -0.76 -OTSO 0.2

o v v v v . +—
0 025 050 075 100 125 150 175 2.00

FIG. 1 The Fourier transform of Battle-Lemarié scaling function of order m = 23. Shown are functions @"(¢), 3""(¢ + 1) and $"(¢ — 1).
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FIG. 2 The absolute error of f{/) computed via (3.18) in Example IIL1.

As piecewise polynomials, the central B-splines may be

I

where x7 is defined as x™ for x > 0 and zero for x < 0.
Using (3.20) for computing (2.4) reduces the problem to
that of evaluating integrals of f with polynomials.

For several important functions (e.g., the characteristic
function of a rectangle) the integrals with the B-splines
may be computed analytically and expressed in terms of
the values of B-splines (of higher order). The values of the
B-splines may be obtained using recursion over the spline
order,

m+|

x+m+1)/2-D%
ﬂ(m)( ) = (—l)l

m!

, (3.20)

ﬁ(m—l)(x + %)

4 m+1)/2 -
m

B(x) = m+1)/2+x
m

TN 1), (3.21)

where m = 1,2, ... and 89(x) is the characteristic function
of the interval [—%, %]. In our implementations we used a
piecewise polynomial representation as well as (3.21).

IV. THE UNEQUALLY SPACED FFT

Theorem III.1 yields a fast algorithm for the evaluation
of trigonometric sums

No—I

N i
Bn = E gle._mx,n’

1=0

4.1)

where x; € [0,1] and {gl}?/:,,o— 'isasetof N » complex num-
bers. Indeed, we may replace (4.1) by the integral

Flo) = / Fl)e? € dx, @2)
where
No—l
flx) = Z 216(x — xy), 4.3)
=0

is a sum of é-functions and 2, = f(n).
Using Theorem III.1 we compute the coefficients of the
Fourier series in (3.1),

Np—1
fe=2723" g™ Ix — k), 4.4)
=0
and then evaluate
F(E) =) fre 2, 4.5)
keZ
to obtain
. F N , o .
sup 21/2—& - f277¢)| < e sup |f(277€)
e \a"™(€) fel<ar
j>0, (4.6)

for |£| < a. Thus, the algorithm for evaluating the trigono-
metric sum in (4.1) is a special case of the algorithm de-
scribed in Section III. For example, if we choose the over-
sampling factor v = 2 then we have

1 N-1

N'2\a")(n/N) kZ::o

fke_ZWik"/N, (47)

8n= f(n)
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for ~N/4 + 1 < n < N/4 and the accuracy is controlled
by the choice of the order m of the B-splines.

The cost of computing (4.4) is proportional to mN ,, where
m is chosen to be proportional to — log ¢, the desired num-
ber of accurate digits. The cost of computing (4.7) via the
FFT requires O(vN log N) operations, where v = 1/(2a)
is the oversampling factor. The modification step requires
O(N) operations. For a given accuracy, v is proportional to
1/m and the total cost may be estimated as

1
C.mN,, +C2;N10gN + C3N,

where C;,i = 1,2,3 are constants which depend on the
implementation. The USFFT algorithm has been imple-
mented and we present the results in Section VIII. The
two-dimensional version of the algorithm is described in
the next section.

V. ALGORITHMS FOR FUNCTIONS
OF SEVERAL VARIABLES

Let us outline an extension of Theorem IIL.1 of Section I1I
for functions of several variables. We describe this exten-
sion by stating the result for functions of two independent
variables which is illustrative of the general case.

As an approximation to the function f(2°/¢,27/p), j < 0,
[£] <« and |n| < o, where

1 1
flem = /0 fo Flx, ye e dxdy, (5.1)

we consider the function

2/F(¢, )

/a(’")(f)a(”")(n)’

where the periodic function a is given in (3.3). The func-
tion F(£,7n) is described by its trigonometric series

F(&n) = (5.2)

F(€,n)= Z fkk,e-Zwikfe—erik'r], (53)
kK EZ
with the coefficients
fuw= [ [ sens W wdsay. 654

where 8" is the mth order central B-spline. We note that
we may use B-splines of different orders m and m'.

Let E, be the error in approximating f(27/¢,27/n)
(j < 0) by the periodic function % (¢, n),
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Ex= sup |FEn)-fig27nl/

Kl=aln| <o’

|f(277¢,27p)l. (5.5)

sup
l=a,lnl=a’

By using the same arguments as in the proof of Theorem
IIL.1 in Appendix A, it is easy to derive an estimate for E
similar to that in Theorem IIL.1. Here the parameters «
and o play the same role as in the case of one independent
variable. By evaluating the function % we obtain an algo-
rithm for computing (5.1) for functions of two independent
variables.

As an example, let us provide formulas for computing the
Fourier transform of generalized functions of two variables
using the oversampling factor v = 2(a = o' = %) in both
variables. We have

fln,ny = L
N\ﬁz""’(n/N )a"(n' /N)

N-1N-1
X E § fkkte—kan/Ne—ka n /N, (56)
k=0 k'=0

for -N/4+1 < n,n < N/4,N = 27/, where the coeffi-
cients fy are given in (5.4). The accuracy ¢ is controlled
by an appropriate choice of the order of the B-spline.

The algorithm for evaluating (5.6) is completely analo-
gous to that described in Section IIL. The first step of the
algorithm consists of computing the integrals of the func-
tion f with the central B-splines in (5.4). The second step
involves the FFT of a (vN) X (¢vN) matrix, where v =
1/(2a) = 2. The third step of the algorithm consists of
multiplying values at each frequency by the pre-computed

factor \/a('")(n/N)a('"’(n’/ N) to obtain the result. At this
step we effectively generate a representation involving the
Battle-Lemarié scaling function.

The two-dimensional version of the USFFT for comput-
ing

Np
gle—Zﬂinx; e—21rin"w ,

(5.7

Bow = —N <snn <N,

I=1

where {g,};vz”, is a set of N, complex numbers, is obtained
by computing (5.1) for the generalized function

NI'
oLy =" gislx — x)8(y — y). (5.8)
=1
We obtain from (5.4)
Nﬂ
fue =3 @B B ), (5.9)
I=1

and then use the FFT to evaluate (5.6).
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The cost of generating the matrix fie in (5.9) is
proportional to m’N, where m is the order of the cen-
tral B-spline (which is usually chosen to be proportional
to —loge). The second step, the FFT of the matrix fi,
requires O(v>N? log N) operations, where v is the oversam-
pling factor. The third step requires O(N?) operations and
its cost is negligible if compared to the first two steps. For a
given accuracy, the oversampling factor v is inversely pro-
portional to m and the total cost may be estimated as

1
Cim*N, + CQWN2 log N + C3N?,

where C,,i = 1,2, 3 are constants which depend on the im-
plementation. The choice of the parameter m may be used
to optimize the performance of the algorithm. In our com-
putations we used the oversampling factor v = 2. We pro-
vide the run times for all steps of the algorithm in Section
VIIL

VI. EVALUATING THE FOURIER TRANSFORM AT
UNEQUALLY SPACED POINTS

According to Theorem IIl.1, the function f(2"f§) for

|€] < a, j < 0, is well approximated by 2//2F(£)/+/a"™(¢),
where F is given in (3.6),

F©) = Y fue ™. (6.1)

keZ

In order to evaluate f(27/¢) at an arbitrary set of points
&) < a,l = 1,2,...,L, it is sufficient to construct a fast
algorithm for computing F(£) at these points. This may
be accomplished by interpolation and we now describe a
scheme which uses central B-splines.

Let us consider

N-1

F(E) — kae—’lnik{,

k=0

6.2)

and describe an algorithm to evaluate (6.2) at an arbitrary
set of points |¢| < %,l =1,2,...,N,. We rewrite (6.2) as

N-1
F(¢) = PRLLL Z wke—zm'kg,

(6.3)
k=-N
where
fk+N/2 for —N/2 sk < N/2 -1
Wy = (64)
0 otherwise
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and look for an approximation of F(£) as

N-1
F(&) = e ™V Y Fip™(Ne - 1), (6.5)
I=-N

where 8™ is the mth order central B-spline and F; are the
coefficients to be determined. The estimate for such ap-
proximation follows from Theorem III.1 since the function
in (6.3) (apart from oscillatory factor) is replaced by its
projection on a subspace of B-splines. As elsewhere in the
paper, we use the oversampling factor v = 1/(2a) = 2 in
(6.4) and note that for a given accuracy using a larger over-
sampling factor allows one to use lower order B-splines.

In order to find the coefficients F; in (6.5) we have the
set of linear equations

N-1 . N-1
D wie TN = X TR —D,  (6.6)
k=-N I=—N
where n = —=N,...,N — 1. Considering
~ N_] .
Fk — Fle2mlk/(2N), (67)
I=—N
and
. ~(m=1)/2 .
bk — Z ﬁ(m)(l)e2mlk/(2N), (68)
I=—(m=1)/2
fork = —N,...,N — 1, we have
- Wy
F, = —. 6.9
« B, (6.9)

Thus, we obtain an algorithm consisting of the following
steps:

1. Modification of the coefficients wy by the factor by in
(6.9). This step requires O(N) operations.

2. Application of the FFT to compute the coefficients
F, in (6.5) from coefficients F; in (6.9). This step requires
O(N log N) operations.

3. Evaluation of (6.5) at points |¢| < % to obtain F(&;)
{=1,2,...,L. This step requires O(N) operations.

These steps are similar to those of the algorithm in Sec-
tion III but are taken in the reverse order. Therefore, the
computational complexity of the interpolation algorithm is
exactly the same as that of algorithms in Section III and
Section IV. The accuracy of the scheme is illustrated in
Table 2.

The generalization of this interpolation scheme to higher
dimensions is straightforward and we outline it below for
two independent variables. We seek a fast algorithm to
evaluate
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TABLE 2
Accuracy of the Interpolation Scheme as the Function
of the Order of B-Splines

Order m L..-norm L,-norm

3 0.95312E-01 0.16955E-01

5 0.88320E-02 0.16509E-02

7 0.80374E-03 0.16821E-03

9 0.78343E-04 0.17344E-04
11 0.79291E-05 0.18033E-05
13 0.80319E-06 0.18899E-06
15 0.81645E-07 0.19960E-07
17 0.83404E-08 0.21235E-08
19 0.85673E-09 0.22743E-09
21 0.88510E-10 0.24503E-10
23 0.91993E-11 0.26551E-11
25 0.96501E-12 0.29075E-12
27 0.19185E-12 0.35252E-13

Note. The estimate was obtained using pseudo-random coefficients f; in
(6.2). In this test N = 128 and L = 127,

F&,m) = Z frwe 2Tk Amikn (6.10)
kE=0
at an arbitrary set of points (£, ), where |&|, || < % l=

1,2,...,N,. We approximate F(£,n) as

F(&, T]) — e—ﬂ'iNEe—m'Nr]

N-1
X Y Fypfm(Ne— D™ Ny —1), (6.11)

LI'=-N

where 8™ is the mth order central B-spline. The coeffi-
cients Fyp are determined using

N-1

Fkk' — Z F”,eZm'Ik/(ZN)eZWil'k'/12N), (612)
LI=—N
where
A Wik ,
kk' = T A, ~-N=<skk<N-1. (613)
bib;
In (6.13) factors by are given in (6.8) and
Wi = {fk+N/2,k’+N/2 for —-N/2 <k,k <N/2-1
k' .
0 otherwise.
(6.14)

The steps of the interpolation algorithm in the case of two
independent variables are in the reverse order as compared
to the steps of the algorithm in Section V and, therefore, the
interpolation algorithm has the same computational com-
plexity as USFFT algorithm in Section V.
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VII. APPROXIMATIONS OF SINGULAR FUNCTIONS
AND THE IMMERSED INTERFACE METHOD

In this section we consider properties of projections of
functions with singularities on spaces of polynomial splines.
We demonstrate that such projections may be used to ob-
tain the so-called discrete approximation of functions with
singularities, in particular, the é-function. Discrete approx-
imations of singular functions appears as a tool in the Im-
mersed Interface (Boundary) method (see [8, 12] and ref-
erences therein). The idea of this method is to discretize a
partial differential equation on a uniform rectangular grid
and then distribute the singularities of the coefficients or
of the source term to the neighboring grid points so that
the overall accuracy of the scheme is maintained. Such a
procedure permits the development of efficient and accu-
rate algorithms for problems with complicated or moving
boundaries [8, 12]. The central question in this approach is
how to approximate functions with singularities.

Let f be a generalized function and let us consider its
projection on the subspace V, j < 0,

P =Y ey (), (7.1)
kez
where f are given in (3.1),
fe= /_ f (X)ﬂi';”(x)dx, (7.2)

and where 75{}')(x) = 279/29m(2-ix — k). The function y'
is the dual of the central B-spline 8" (see e.g., [6]), and is
defined so that

/ ) B (x — k)y'™(x — Ddx = &y, (7.3)
and
. B(e)
"NE) = 7.4
Y& = © (7.4)

where 3 and a™ are given in (3.2) and (3.3).
We also consider an alternative expression for the projec-

tion (7.1) using the Battle-Lemarié scaling function ¢,
pol®) = 3 Flepl; (), (7.5)
keZ
m) = ji/2 (m
where <ka x)y=27/ (27/x — k) and
= / f(x)tp%)(x) dx. (7.6)
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Let us verify that the projections are indeed the same,
Pox) = p(x), by computing their Fourier transform. Using
(7.1) we have

plo) = /_ Z plx)e™ " dx = 2724 M(QIF (2¢)

_ 2PEM@IOF(E)

g a7

where F is defined in (2.10). Alternatively, using (7.5) we
obtain

polE) = f ol d

- 21/2 (m)(z/E)ZfO —2mk21£ (7.8)
kez
or
Pol&) = 247 2@""’(24‘5)M—, (7.9)
a™(2/¢)
so that p,(&) = p(¢).
LeMMmA VII.1. For any ¢ > O we may choose the order
m of the central B-spline and o > 0 so that for |£| < 27/a
sup |p(©) — f©) < e sup |F Q. (7.10)
|§1=27a [€l=2"a
Proof. Using (7.9) we have
A ‘ . F@I A
156 — F©) < |#m ) (2”-(—9_ - f({))
/a(m)(zjé)
+@"™'e) - DI, (711

OF, SINCE SUP || <y-1y $™(27€) = ™a) < 1 (see Appendix

B)!
) . j )
sp 19O~ FOl < sup |22—EZE__ g
]2 <2 ia a™(2/¢)
+(1-¢"(@) sup [f©). (7.12)
[¢t<27a

Applying Theorem of Section III, we obtain the result.

Generalized functions are defined as functionals by their
action on a space of smooth tests functions. Let us show
that in this sense projections p and p,(p, = p) provide a
good approximation of generalized functions.

LemMMA VIL2. For all test functions from V; the gen-
eralized function f and its projection p, are identical as
Sfunctionals.
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Proof. We obtain using (7.5) and (7.6)

/_ PolOw(x)dx =Y _ £ /_ | o ()wlx) dx

keZ
=/ fw;(x)dx (7.13)
where
wix) = Y oix) / oo (0wl dx (7.14)

keZ

is the projection of the test function w on the subspace
V;, j < 0. Thus, we have

[ i flewlx) dx ~ /_ :

= [ F)wlx) — wix)dx. (7.15)

PolxIwl(x) dx

If the test function w € V;, then w = w; and we obtain
Lemma VII.2.

VIIL.1. Approximation of the b-Function
Let f(x) = 8(x — x¢) in (7.6), then we have from (7.5)

Pox) = > 0t} (oo (x). (7.16)

keZ

LEMMA VIL3. Let w be a test function, w € C™. Then

wixo) — [ | polx)w(x)dx = O(h™*), (7.17)

where h = 2/, j < 0.

Proof. Since the Battle-Lemarié scaling function ¢ has
2m + 1 vanishing moments, expanding w into the Taylor
series yields

/ <p§;;?’(x)w(x)dx = 2/2w(20k) + O(W*™+24Y/2) (7.18)
where h = 2/, j < 0. Thus, we have
wlxg) — / Polw(x) dx

= wixo) = O 22wy} (xo) + O3+ 172). (7.19)

keZ

We then expand w into Taylor series at the point xo,
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TABLE 3
Timing and Accuracy for Example VIII.1 (One Rectangle)

G. BEYLKIN

TABLE §
Timing for Example VIII.3 (40,000 rectangles)

N T, T T, T Error E., Tsir

64 0.04 0.50 0.01 0.55 49e-15 0.20
128 0.15 2.55 0.05 275 1.6e-15 1.89
256 0.60 11.45 0.20 12.24 1.2e-15 3.91
512 2.15 52.22 0.82 55.18 1.4e-15 16.86

w(2/k) = w(x0)+Z—w(’)(x0)(k 27xg),  (1.20)

substitute w(2/k) into (7.19) and use Lemma XII.1 of Ap-
pendix C to obtain (7.17).

Remark. Since p(x) = p,(x), we have

wixg) = / plw(x)dx + O(h" "), (7.21)
where
P = 3 BT ro)yy T (0. (7.22)
kez

The dual of the B-spline " and, therefore, the projec-
tion p do not have compact support. Since in the Immersed
Interface Method only points in the neighborhood of the
singularity are modified, it may appear that there is no con-
nection between projections described in this section and
approximations considered in [8, 12]. Yet, the connection
with the Immersed Interface Method may be established if
we use (7.22).

As an example let us consider the problem

W = —-Célx—xp), u@ =u(l)=0 (7.23)
with the solution u(x) = Cx(1 — x¢) for x < x¢ and u(x) =
Cxo(1 — x) for x = xo. The problem (7.23) is one of the
example considered in [12]. We choose the order of splines
m = 1 so that 8V is the so-called “hat” function and look
for the solution of (7.23) of the form

T.. T,. in hours
N T, T T, (sec) (est.)
64 8.94 0.50 0.01 945 3h
128 973 2.55 0.05 12.33 11 h
256 11.79 11.45 0.21 23.45 44 h
512 16.02 52.22 0.82 69.06 176 h
ux) =y e Be) (). (7.24)

kEL

Let us replace the é-function in (7.23) by its approximation
p(x) in (7.22). We have

-3 oy (7.25)

keZ

> w . Zﬁ(k',)(x)

keZ

Multiplying both sides of (7.25) by ,Bilj)(x), integrating over
x and using (7.3), we obtain

hz(“" 2+ us1) = —CB5 (o), (7.26)

which is the same approximation as in [12]. Since u(k) =
u; in (7.24), we may consider (7.26) as a finite-difference
scheme. The r.h.s. of (7.26) is the discrete §-function used
in [8].

Higher order extensions are obtained if we simply use
higher order B-splines in (7.24), i.e.,

ux) = > wBi; ().

keZ

(7.27

Substituting (7.27) into the partial differential equation and
using dual of the central B-splines to project the singular
functions, we obtain a finite system of equations, as in our
example. After the coefficients u, are determined, the so-
lution may be evaluated via (7.27) by taking advantage of
the compact support of B-splines.

To summarize, our approach to approximating singular

TABLE 4
Timing and Accuracy for Example VIIL2 (1225 Rectangles)

N Tp Tar T, T Error E.. FFT Tir

64 0.40 0.50 0.01 0.91 5.4e-15 0.09 296
128 0.62 2.55 0.05 321 1.4e-15 0.44 1,095
256 1.26 11.45 0.20 12.91 1.0e-15 2.55 4,756
512 3.60 52.22 0.81 56.63 8.3e-16 11.45 20,605
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TABLE 6
Timing for Example VIIL4 (160,000 Rectangles)
T.. T4, in hours
N T, Tiar T, (sec) (est.)
64 3320 0.50 0.01 33.71 11 h
128 34.13 2.55 0.05 36.73 44 h
256 36.93 11.45 0.21 48.59 176 h
512 44 .39 52.22 0.82 9343 704 h

functions by constructing their projections on a subspace
of MRA appears to be applicable to the Immersed Inter-
face Method where it provides higher order extensions.
Although our considerations in this section address func-
tions of one variable, the extension to multiple dimensions
is straightforward. Further work in this direction is required
and results will be reported elsewhere.

VIII. NUMERICAL EXPERIMENTS

The algorithms developed in Sections IV, V, and VI have
been implemented and numerical experiments have been
carried out for several examples. In the examples below
we run programs written in FORTRAN 77 on a SPARC-10
workstation using the Pro-Fortran v3.0 compiler with —03
optimization option under the Solaris 2.3 operating system.

In the first series of examples we evaluate the integral
(1.2) for —N + 1 < n,n’ < N, where the function f is
a piecewise constant function constructed as a linear com-
bination of characteristic functions of rectangles randomly
positioned within the unit square. In all examples the over-
sampling factor v = 2. We denote by T, the run time
for the projection step of the algorithm where we compute
the integrals in (3.1). Tgpr denotes the run time for the
FFT step, and T, for the modification step of the algorithm
(multiplying by the factor (La")(I/L))~'/? in (3.18)). The
error E . is the maximal absolute error among all computed
frequencies obtained by comparing the output of the algo-
rithm with the output of the direct evaluation. T, denotes
the total run time, T = T + Trrr + Th.

The direct algorithm for rectangular subdomains consists
of evaluating f(n,n") = 3_; f;(n,n’) as a sum of contribu-
tions from each rectangle [a;, b;] X [c;,d;], where
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TABLE 8
Timing for the One-Dimensional Double Precision USFFT
Algorithm with the Time of Initialization Estimated Separately

N, Alg. init. Alg. eval. T FFT
2048 0.05 0.08 0.13 0.03
4096 0.10 0.17 0.27 0.05
8192 0.19 0.34 0.53 0.11
16384 0.38 0.76 1.16 0.26
32768 0.75 1.82 2.57 0.62
R e—._m'nh, _ e—27rinu,
(n,n') = :
fi —2min

e*lniﬂ'd, _ e*Zﬂl‘ll'(“
X — . (8.1
—27in

for j=1,....Npand =N + | < n,n" < N. T,, denotes
the run time required for the direct computation.

As a point of reference in some tables we display the run
time of the ordinary FFT for same number of evaluated
frequences.

ExaMpLE VIII.1. We compute the Fourier transform of
the function f which is a complex constant and has a rectan-
gle of area approximately 0.64 as its support. We compare
the run time of our algorithm with that of the direct algo-
rithm for N = 2".n = 6,7,8,9 and report the results in
Table 3. We observe that the direct algorithm for a single
rectangle is faster only by a factor of approximately 3.

ExampLE VIIL.2. In this example we consider f to be a
linear combination of characteristic functions of a pseudo-
random combination of 1225 rectangles of total area of ap-
proximately 0.64 and perimeter of approximately 112. The
number of rectangles in this example is chosen to provide
a comparison with Example 2 of [15]. Each rectangle was
projected separately. The results are shown in Table 4. We
compare the run time and accuracy with that of the direct
algorithm. We note that in this example our algorithm is
dominated by the FFT step.

ExaMPLE VIIL.3. In this example f is a linear combina-
tion of characteristic functions of a pseudo-random combi-

TABLE 7
Timing and Accuracy for the One-Dimensional Double Precision USFFT Algorithm

N, 7, Ty T, T Error E.. Error E, FFT
2048 0.05 0.05 0.01 0.12 7.0e-14 1.2¢-13 0.03
4096 0.10 0.11 0.02 0.24 I.1e-13 2.4e-13 0.05
8192 0.19 0.26 0.04 0.49 1.5e-13 5.0e-13 0.11

16384 0.38 0.62 0.09 1.09 2.7e-13 1.0e-12 0.26
32768 0.77 1.44 0.19 240 4.2e-13 2.0e-12 0.62
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TABLE 9
Timing and Accuracy for the One-Dimensional Single Precision USFFT Algorithm

N, T, Ty 7., T E. Es FFT E EY
2048 0.010 0.023 0.006 0.039 3.1e-5 4.4e-5 0.011 4.3e-5 8.2¢-5
4096 0.020 0.049 0.012 0.081 3.6¢-5 8.7e-5 0.023 7.4e-5 1.6¢-4
8192 0.040 0.102 0.024 0.166 5.4e-5 1.8¢-4 0.049 1.2e-4 3.5e-4

16384 0.082 0.274 0.048 0.404 9.8¢-5 3.5e-4 0.102 1.7e-4 6.9e-4
32768 0.162 0.640 0.096 0.898 1.2¢-4 7.0e-4 0.274 4.7¢-4 1.3e-3

nation of 40,000 rectangles of total area of approximately
0.64 and perimeter of approximately 640. The results are
shown in Table 5.

ExampLE VIIL.4. In this example f is a linear combina-
tion of characteristic functions of a pseudo-random combi-
nation of 160,000 rectangles of total area of approximately
0.64 and perimeter of approximately 1280. The results are
shown in Table 6. As individual rectangles become smaller,
we observe that the first step of the algorithm does not sig-
nificantly depend on the number of frequencies.

The next series of examples illustrates the performance
of the USFFT algorithms in dimensions one and two. In
these examples the number of frequencies calculated within
the accuracy ¢ is fixed N = N, where N, is the number of
points. The order of the B-splines was chosen so that the
accuracy e corresponds to the double and single precision.

ExaMpLE VIILS. We evaluate the performance and the
accuracy of the double and single precision one-dimensional
USFFT. The accuracy of the algorithm is compared with
that of the direct evaluation and the errors are computed as

Ex=  omax_ 1fn)=fatn)l/ max - |faclw,
and
E, =

Yo @ -Fuwl/ 3 (fadml

-N/2+1<n<N/2 ~N/2+1<n<N/2
where f (n) is output of the algorithm and fd-.r is the resuit
of the direct computation. In Tables 7-10 N, denotes the
number of points randomly distributed in [0, 1]. The steps
of the algorithm are timed separately and the results are
shown in Table 7. For the double precision algorithm the
order of the B-splines is m = 27 and for the single precision
algorithm m = 17. In order to provide a point of reference
we also display run times of the FFT for the same number
of frequences. A typical error curve is shown in Fig. 3.

If it is necessary to apply the USFFT algorithm several
times but the location of points does not change, then the

algorithm may be split into the initialization and the eval-
uation steps as in [9]. Successive evaluations require only
a single initialization. We display timing results for the
initialization and the evaluation steps separately in Table
8. In Table 9 we report the accuracy and the run time for
the single precision USFFT. The steps of the algorithm are
timed separately and the accuracy is compared with that of
the double precision computation. For comparison we pro-
vide the run time of the FFT algorithm and the accuracy of
the direct single precision evaluation. In Table 10 we dis-
play the run time for the initialization and evaluation steps
separately.

ExaMrLE VIII.6. We evaluate the performance and the
accuracy of the double and single precision two-dimensional
USFFT. The accuracy of the algorithm is compared with
that of the direct evaluation in Tables 11 and 12. The points
are chosen at pseudo-random locations within the square
[0,1] x [0, 1]. The errors are computed as

Ex = max An,n’ _ £ n,nr
* —N/2+x1<snn' <N/2 If( ) fdll‘( )l/
max | faie(n, )|,
~N/2+1=nn"<N/2
and
Ea=( 2 | f(n,n") = faurln,n')?/

—N/2+1=snn'<N/2
| Faurn,n)|H)2,

2

—N/2+1snn'<N/2

TABLE 10
Timing for the One-Dimensional Single Precision USFFT
Algorithm with the Time of Initialization Estimated Separately

N, Alg. init. Alg. eval. T FFT
2048 0.009 0.030 0.039 0.011
4096 0.019 0.062 0.081 0.023
8192 0.038 0.142 0.180 0.049

16384 0.076 0.304 0.380 0.102
32768 0.144 0.743 0.887 0.274
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FIG. 3. Behavior of E error of computing the USFFT in the one-dimensional case. Here the oversampling factor is v = 2.

where f(n,n’) is output of the algorithm and fdir is the
result of the direct computation. We display run times of
the double precision algorithm in Table 13 and of the single
precision algorithm in Table 14.

IX. GENERALIZATIONS AND CONCLUSIONS

Our algorithm may be viewed as a procedure for band-
limiting a function by projecting it on spaces of piecewise
polynomial splines. As we have demonstrated, such a pro-
jection contains enough information to evaluate frequencies
within a certain range. The range of frequencies depends
on the required accuracy and the order of the spline. Al-
though for this paper we have implemented the algorithm
only for functions which are linear combinations of char-
acteristic functions of rectangular domains or §-functions,
the extension of the algorithm to include a greater variety
of functions with singularities is straightforward.

The extension of the algorithm to functions with more
than two independent variables is also straightforward. The
number of operations required for the projection step of the
algorithm in the case of d independent variables is propor-

TABLE 11

Accuracy Test for the Double Precision
Two-Dimensional USFFT

tional to m¢N p» where m is the order of the spline and N,
is the number of elements being projected.

In the following series of remarks we discuss several vari-
ants of the algorithm and its applications.

1. Multiresolution computation of the Fourier Transform.
Using the projection on subspaces of MRA as a procedure
for bandlimiting functions opens an opportunity to compute
integrals in (1.2) or (2.1) for frequency intervals not only
around zero but also for frequency bands separated from
zero, e.g., N < n < 3N. Let us briefly outline such algo-
rithm. The first step is a projection of the function on an
appropriate subspace W; defined as a complement of V; in
V,_i. Since the scale j < 0 must be chosen so that the
projection of functions in W; are localized within the fre-
quency band of interest, this may imply a very large vector
of coefficients (approximately ~ 27/ coefficients) for high
frequencies. The important observation here is that such a
vector is sparse. The coefficients of the projection are then
shifted in the frequency domain towards the zero frequency
by multiplying the coefficients in the original domain by an
appropriate exponential factor. The next step consists of
resampling the coefficients to a coarser “grid” which may
be accomplished by fast interpolation as described in [9] or

TABLE 12

Accuracy Test for the Single Precision Two-Dimensional USFFT

Niq Error E,. Error E, Nireg Error E. Error E,
27 x 2 50x 10" 1.7 x 107" 27 x 27 1.1 x 10°F 6.2 x 10°°
2% x 2% 7.7 x 107" 27 x 107" 2% x 2% 20 x 107 1.2 x10°°
27 x 2 L1 x 10" 50x 107" 2° x 2° 39 x 107 25 x10°°
210 x 21 2.1 x 107" 9.7 x 107" 21 x 2 79 % 10°° 49 x 10°
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via an algorithm currently being developed [4]. Finally, the
FFT step followed by a modification step are applied.

2. Applications to solving PDEs. In this paper the pro-
jection step was mostly used as a part of the algorithm to
compute the Fourier transform. However, once such pro-
jection is generated, there are several applications where
the projection may be useful by itself. For example, let us
consider a variant of the algorithm which is based on the
expansion of the function into the wavelet basis, i.e. pro-
jection on subspaces W; rather than V;. In this case the
Fourier transform may be computed within each subspace
(subband) separately. In fact, once such a decomposition is
obtained, a variety of operators represented in the wavelet
basis may be applied efficiently. The accuracy of such a
computation is assured by Theorem III.1 of this paper.

For example, let us briefly consider Poisson’s equation,

Au=f 9.1
on a unit square with zero boundary conditions. Let us
assume that function f is discontinuous and satisfies the
same assumptions as in (1.2). Also, let us for simplicity
assume that f is zero in a strip near the boundary. Since our
algorithm generates f(m,n) for —-N/4 < m,n < N/4 with
accuracy e, it is easy to compute the solution u for which
itlm, n) is accurate to within the same tolerance. In fact
(since we divide by m? + n’) the band of frequencies where
i(m, n) is e-accurate is wider than that for the function f.
The observation that we would like to make is that in order
to solve (9.1), we may proceed by representing the Green's
function in the wavelet system of coordinates in the non-
standard form [3] and apply the operator directly to the
wavelet representation of f. This will result in an adaptive
algorithm with the number of operations proportional to the
complexity of the wavelet representation of f.

3. Extension of functions. Let us consider an application
of our approach to the extension of a function f from a
complicated domain to a larger rectangular domain where
we require that the extended function is zero in a strip near
the boundary of the rectangle and coincides with f inside

TABLE 13
Timing for the Double Precision Two-Dimensional
USFFT Algorithm
N, T, T T, T FFT
N, =2" 3.62 0.44 0.01 4.07 0.09
N, =2" 13.11 2.55 0.05 15.71 0.44
N, =2" 53.37 11.45 0.21 65.03 2.55
N, = 2% 218.84 52.22 0.83 271.89 11.45

Note. Splines of order m = 27 were used to achieve accuracy =~ 10 " for
N'n'q = N/.-

G. BEYLKIN

TABLE 14
Timing for the Single Precision Two-Dimensional
USFFT Algorithm
N, T, Torr T, T FFT
N, =2% 0.60 0.18 0.005 0.79 0.05
N, =2" 241 1.14 0.025 3.58 0.18
N, =2" 9.99 5.11 0.096 15.20 114
N, =2% 38.10 2222 0.400 60.72 5.11

Note. Splines of order m = }7 were used to achieve accuracy ~ 107° for
Nm:q = Np'

the original domain. Let us outline the algorithm for such
extension. First we extend the function f into a §-strip
around the original boundary, where the distance é may be
arbitrarily small. Since 6 dictates the choice of the scale
j < 0 for further projection into the MRA, we would like
& to be as large as our extension method into a é-strip per-
mits. One such extension method is a local expansion of
the function. Given é we choose the scale j < 0 so that
the linear dimension of the support of B-splines is less than
6. In this case the edge of the locally extended support of
the function does not affect the original support of f as we
compute the projection of f on a subspace of the MRA,
The projection of the é-extension of the function f on V;
is the extension that we are seeking.

4. Problems of nondestructive evaluation. The USFFT
algorithm may be used as an effective tool in problems of
non-destructive evaluation. The problems of X-ray tomog-
raphy, ultrasound imaging, seismics, and synthetic aperture
radar among others, reduce to the evaluation of trigonomet-
ric sums as in (5.7). In these problems the discretization in
the Fourier domain is dictated by the experimental con-
figuration and usually is not equally spaced. Clearly, the
FFT algorithm is not directly applicable and a variety of
methods have been developed to circumvent the problem.
We note that by developing quadrature formulas to evalu-
ate the inverse Fourier transform on unequally spaced grids,
we obtain new algorithms for problems of nondestructive
evaluation. We will consider problems of nondestructive
evaluation in a separate paper.

X. APPENDIX A

Proof of Theorem 111.1. We have

2 FE) A 2 F() 72 _F(&)
220 (2718 272 — 22
g amg) B
i F(E) A
2 — f(27 ‘ 10.
B(m)(&) 1279 (10.1)
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where

iz _F& i FO | _
a™(€) B

y ' }a(”’)(f)

qirn_F&
a(m)( £)

1 - ")
P €)

F(£)
a('")(ﬁ)

= |924/2

- S%——
ﬂ('")(f)

since

B¢

P'm(e) =
a('")(ﬁ)

and p"(¢) < 1. Also, we have

/2~ %1

- fe o] + |fol.

Combining (10.1), (10.2) and (10.4), we arrive at

s FE) 2 L=¢") .
21— — 27| €« ———|f (27
g 70| = gm0
@(m)({) in F(&) n
Y e = — f(2779)].
250 117 pmig 12T
Introducing
Cill,a) = I?[up IfQE+D), 1=0=%1,%2...
we have
. F(&) .
2= — f(27UE)| = C, \
ﬁ(m)(f) f277¢) e, f( a)ri(é)
where

m+1
(&
7i(€) = (§+l) .

Using Lemma XI.1 of Appendix B,

¢(M)(a) — |5i|nf |¢(M)(§)L

then we obtain from (10.5)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)
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2472 & -
a(m)( £)

A . - & (M) A~ .
ﬂf%4<l PN | 1o-ig)

== 2¢(m)(a) -1

1
" 20" (@) — 1 I:zlz,:z_,,cf(l’ a)T(€). (10.10)

Using explicit expression for 7; (10.8), we have

o m+1
sup 7/(§) = (—) , (10.11)
€| <a [ -~ o
and estimate
. FO) a
Es = sup [2//2—=— — f(27/¢) /
€| <a \a™(€)
sup |f277€) (10.12)
[¢l<a
to obtain
Ex < |- &N a) +
20 (@) — 1 C#0,a)

I=>1,22...

m+1
x S cf(l,a)(m—“_;) ] (10.13)

In order to verify that the sum in (10.13) is finite, we use
condition (3.7) of Theorem IIL.1. Since by choosing m suf-
ficiently large the sum in (10.13) may be made arbitrarily
small, we obtain the estimate (3.10).

XI. APPENDIX B

LEMMA XI.1. The Battle—-Lemarié scaling function
P'"N¢) is strictly monotone for € € (0,1) and £ € (~1,0)
and

sup |1~ 3™(e)] = 1 - $™(a), (11.1)

|€]<a

for a < 1.
Proof. Let us compute the derivative of (d/d€)@"™(¢)
for £ € (—1,1). We have from (3.4)

sin 1€

7§

m+1
log "(¢) = log ( ) - %loga(’")(f). (11.2)

It is sufficient to consider £ € (0, 1) since ¢ (¢) is sym-
metric around £ = 0. We obtain from (3.3)
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: 2m+2
log a‘””({) — log (M)
™

+logz

(11.3)

[‘7x 1)7'11+7’
and, thus, arrive at
log $"/(€) = ~ log 7(6). (11.4)
where
1

O A e O
We have

Ay PO d

d€<P ) = - >y (5) d{ 7(£), (11.6)

and, therefore, the sign of (d/d¢)@"(¢) is opposite to that
of (d/d¢)T(€) since ™, > 0 for £ € (0, 1).
From (11.5) we obtain

! 1
2m+2212 (&) = . :Z: s (11.7)
or
1 4 _ X (£ + D3 4 (g — [)mH3
“amrzae O =2 @opp - (118
Since

2m+3 2£k:m+l (2m + 3)
P 2k

% [2k£2(m—k)+2 (1 19)

(€ + 02" + (€ =1

the numerator in (11.8) is positive for £ € (0, 1). The de-
nominator of each term of the series in (11.8) is negative
for £ € (0,1) and, thus, we conclude that the derivative
(d/d€)p")(¢€) is negative for £ € (0, 1).

XII. APPENDIX C

LEMMA XIL1. The Battle-Lemarié scaling function o™
satisfies the identity

D —k™x—k)y=06; O<l<m  (12.1)

keZ

G. BEYLKIN

Proof. We have
/ Z(x _ k)’tp("')(x _ k)e—Zm'xE dx
x kel
—2mi ] d m
= (Ze g k{)( ' )Idél‘/’( )(6)

kez
Using Poisson’s summation formula ) ., 6(6 — k) =
Yoicz € 2™, we obtain Lemma XII.1 from (12.2) and (3.4).

(12.2)

XIII. APPENDIX D

Let us repeat the considerations of Section II using the
periodic extension f(x + 1) = f(x) of the function f defined
on [0, 1]. Let N = 2" and consider coefficients

fi =N /_ ‘x“ fx)S(Nx — k)dx, (13.1)

for 0 = k < N — 1. Changing the domain of integration in
(13.1) to [0, 1], we obtain

L
fi=+VN /0 F00D¢WNx — k - Nl)dx, (13.2)

€L

Using Poisson’s summation formula, we have

> ¢Nx —k—NI) = Ze’f"“ NIUNG(I/N), (13.3)

IeZ IEZ

and, therefore,

) N I§ 2mikl/N 13.4
fi = \r;w/ ) (e (13.4)
where
1
2 _ —2milx
f —/0 flx)e dx. (13.5)

In order to find an approximation to f (D), we rewrite (13.4)
by splitting the sum into segments of length N,

Ji =

< 5l-

(Z SU/N +m)f(l + Nm)) "IN (13.6)
=0 \m€eZ
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Using discrete Fourier transform, we obtain

~

Nl _
<7 2 Sue Y < 3/
k=0

+ S HUN+mfE+Nm) (137)

m==+1,+2..
and seek approximation
1 N-1

~ —2rikl/N _ "(1)
ﬂwwnnggﬂe !
>

m=*1,+2 .

|$U/N + m)|

BU/N)| |f(t + Nm)|. (13.8)
From this point on we may proceed by repeating the con-
siderations in Section II and Section III. By choosing ¢ to
be the mth order B-spline, we obtain an analog of Theorem
III.1 of Section III. Although the estimates are the same,
the difference between using the 1-periodic extension of
the function f and the extension of f to zero shows in the
definition of the coefficients f; via (13.1) or (2.4). In (13.1)
we do not have to introduce an additional assumption (for
the discrete algorithm) that the function f is zero in a nar-
row strip near the boundary. For this reason we prefer to
use (13.1) in our implementations.

Using orthogonalization procedure, let us rewrite (13.7)
for the central B-splines of order m. We have

1 N-1

VNya"™(i/N) g

+ ) PMU/N +RfU+NK), (139

k=x1,+2..

fke—Zm'kl/N — A(m)(l/N)f(l)

where 3 is the Fourier transform of the Battle-Lemarié
scaling function. Formula (13.9) should be compared with
(3.16). Using (13.9) we arrive at the same conclusions as
those stated in Theorem III.1. The only difference is in
computing coefficients f; via (13.1) where f is extended
periodically.
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