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Signal transduction pathways converge upon sequence-specific DNA binding factors to reprogram
gene expression. Transcription factors, in turn, team up with chromatin modifying activities.
However, chromatin is not simply an endpoint for signaling pathways. Histone modifications relay
signals to other proteins to triggermore immediate responses than can be achieved through altered
gene transcription, which might be especially important to time-urgent processes such as the
execution of cell-cycle check points, chromosome segregation, or exit from mitosis. In addition,
histone-modifying enzymes often havemultiple nonhistone substrates, and coordination of activity
toward different targets might direct signals both to and from chromatin.
Introduction
Signal transduction classically involves coordinated cascades

of protein phosphorylation or dephosphorylation, which in turn

alter protein conformation, protein-protein interactions, subcel-

lular protein locations, or protein stability. In many cases, these

pathways begin at the cell surface and extend into the nucleus,

where they alter the interactions of transcription factors and

chromatin-modifying enzymes with the chromatin template. In

some cases, signaling promotes such interactions, whereas in

others, factors are ejected from chromatin in response to

incoming signals. Several such pathways have been defined

that control developmental fate decisions or response to physi-

ological or environmental changes (for examples, see Fisher and

Fisher, 2011; Long, 2012; Valenta et al., 2012). In these cases,

the ultimate endpoint of the signal is often considered to be

a modification of chromatin structure to modulate DNA accessi-

bility to control gene expression.

The architecture of chromatin can be altered by a variety

of mechanisms, including posttranslational modification of

histones, alterations in nucleosome locations, and exchange of

canonical histones for histone variants. Histone modifications

have at least three nonmutually exclusive effects on chromatin

packing (Butler et al., 2012; Suganuma and Workman, 2011).

First, modifications such as acetylation or phosphorylation can

alter DNA:histone and histone:histone interactions. Second,

histone acetylation, methylation, and ubiquitylation can create

binding sites for specific protein motifs, thereby directly

promoting or inhibiting interactions of regulatory factors with

chromatin (Smith and Shilatifard, 2010; Yun et al., 2011). Bromo-

domains, for example, promote interactions with acetyl-lysines

within histones. PHD domains, Tudor domains, and chromo

domains can selectively bind particular methylated lysines

(Kme). At least one Tudor domain (TDRD3) serves as a reader
for methylarginine (Rme) residues (Yang et al., 2010). In contrast,

other domains, such as the PhD finger in BHC80 (Lan et al.,

2007), are repelled by lysine methylation. Such regulation is

enhanced by combining domains to createmultivalent ‘‘readers’’

of histone modification patterns (Ruthenburg et al., 2007). The

combination of PhD and bromodomains in the TRIM24 protein,

for example, creates a motif that specifically recognizes histone

H3K23 acetylation in the absence of H3K4 methylation (Tsai

et al., 2010). Third, histone modifications also affect the chro-

matin landscape by influencing the occurrence of other modifi-

cations at nearby sites (Lee et al., 2010). Methylation of H3R2,

for example, inhibits methylation of H3K4, but not vice versa

(Hyllus et al., 2007; Iberg et al., 2008). Such modification ‘‘cross-

talk’’ can result either from direct effects of a pre-existing modi-

fication on the ability of a second histone-modifying enzyme to

recognize its substrate site or from indirect effects on substrate

recognition through the recruitment of ‘‘reader proteins’’ that

mask nearby modification sites. Binding of the chromodomain

in the HP1 protein to H3K9me blocks subsequent phosphoryla-

tion of S10 by Aurora kinases, for example (Fischle et al., 2003).

The Power of Crosstalk
Histone modification crosstalk can also occur in trans between

sites on two different histones. The most studied example of

such crosstalk is the requirement of H2B monoubiquitylation

for methylation of H3K4 (Shilatifard, 2006). In yeast, the Bre1

E3 ligase ubiquitylates H2BK123 and works together with the

Paf1 complex to recruit the Set1 H3K4 methyltransferase

complex, often referred to as COMPASS, to gene promoters

(Lee et al., 2010). Bre1-mediated H2B ubiquitylation also

stimulates H3K79 methylation by the Dot1 methyltransferase

(Nakanishi et al., 2009; Ng et al., 2002). Each of these histone

modifications is widely associated with actively transcribed
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Figure 1. Regulation of RelA/NF-kB by a Phosphomethyl Switch and

in Response to DNA Damage
(A) Methylation of RelA at lysine 310 (K310) by SETD6 creates a binding site for
GLP, which in turn methylates H3K9 at NF-kB target genes to inhibit tran-
scription. Phosphorylation of RelA at serine 311 (S311) by PKCz blocks binding
of GLP to RelA (Levy et al., 2011) and, along with other RelA modifications not
shown, promotes its interaction with CBP, leading to histone acetylation and
activation of NF-kB target genes (Duran et al., 2003).
(B) Phosphorylation of NEMO by ATM in response to a DSB promotes its
export from the nucleus. In the cytoplasm, NEMO activates the IKK complex,
leading to IkB phosphorylation and degradation and NF-kB (RelA-p50)
translocation to the nucleus, where it can activate transcription as shown in (A).
Note that some ATM may translocate with NEMO to the cytoplasm and
participate in IKK activation.
genes and can regulate multiple steps during transcription

(Laribee et al., 2007; Mohan et al., 2010; Wyce et al., 2007).

These crosstalk events are conserved, at least in part, in

mammalian systems (Kim et al., 2009; Zhou et al., 2011).

Though H2B ubiquitylation is observed in the bodies of all

actively transcribed genes, knockdown of the mammalian

homolog of Bre1, ring finger protein 20 (RNF20), affects the

expression of only a small subset of genes (Shema et al.,

2008). Interestingly, RNF20 depletion not only led to the repres-

sion of some genes, but also caused the upregulation of others.

Genes negatively regulated by RNF20 and H2B ubiquitylation

include several proto-oncogenes, such as c-MYC and c-FOS,

as well as other positive regulators of cell proliferation. On the

other hand, depletion of RNF20 and reduction in H2B ubiquityla-

tion reduced the expression of the p53 tumor suppressor gene

and impaired the activation of p53 in response to DNA damage.

Consistent with these selective changes in gene expression,

RNF20 depletion elicited a number of phenotypes associated

with oncogenic transformation. The suggestion that RNF20

may function as a tumor suppressor is further supported by

the finding of decreased levels of RNF20 and H3K79methylation

in testicular seminomas (Chernikova et al., 2012) and the obser-

vation that the RNF20 promoter is hypermethylated in some

breast cancers (Shema et al., 2008).

Amore concrete link between these histonemodifications and

human cancer comes from leukemias bearing translocations of

the mixed lineage leukemia (MLL) gene. MLL is a H3K4 methyl-

transferase related to the yeast Set1 protein found in the

COMPASS complex. A number of different gene partners are

found to be translocated to the MLL locus, and this invariably

creates anMLL fusion protein that lacks H3K4methyltransferase

activity. Interestingly, many of the translocation partners are part

of a ‘‘superelongation complex’’ that stimulates progress of the

polymerase through gene bodies (Mohan et al., 2010; Smith

et al., 2011). Data suggest that at least some of these oncogenic

MLL fusion proteins alter the expression of select target genes,

such as HOXA, by increasing H3K79 methylation (Okada et al.,

2005). Knockdown of Dot1 reduced H3K79 methylation at these

targets and inhibited oncogenic transformation by MLL fusion

proteins. These examples demonstrate how deregulation of

crosstalk among different histone modifications can contribute

to diseases such as cancer.

Not Just for Histones
Just as in histones, modifications in nonhistone proteins are

subject to regulatory crosstalk and serve as platforms for binding

of ‘‘reader’’ proteins. For example, a yeast kinetochore protein,

Dam1, is methylated at K233 by the Set1 methyltransferase, an

ortholog of mammalian MLL proteins (Zhang et al., 2005). The

functions of Dam1, like those of other kinetochore proteins, are

highly regulated by Aurora-kinase-mediated phosphorylation

(Lampson and Cheeseman, 2011). At least some of these phos-

phorylation events are inhibited by prior methylation of Dam1,

creating a phosphomethyl switch that impacts chromosome

segregation (Zhang et al., 2005).

Another more complicated example of a phosphomethyl regu-

latory cassette occurs in the RelA subunit of NF-kB (Levy et al.,

2011). RelA is monomethylated by SETD6 at K310, and this
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modification inhibits RelA functions in transcriptional activation

through recruitment of another methyltransferase, G9a-like

protein (GLP). GLP binds to K310me1 in RelA and induces a

repressive histone modification, H3K9me, in RelA target genes.

Phosphorylation of the adjacent S311 in RelA, however, blocks

GLP association with RelA and instead promotes the recruitment

of CREB-binding protein (CBP) to activate transcription of NF-kB

targets (Duran et al., 2003) (Figure 1A).

These two examples in yeast and in mammalian cells

likely foreshadow the discovery of many additional regulatory

‘‘switches’’ created by modification crosstalk. The p53 tumor

suppressor is a prime candidate for such regulation, as it harbors

several diverse modifications. Moreover, many kinase con-

sensus sites contain arginine or lysine residues, providing a

high potential for phosphomethyl, phosphoacetyl, or phosphou-

biquitin switches (Rust and Thompson, 2011).

The induction of H3K9me by recruitment of GLP via a methyl-

ation event in RelA illustrates how a signaling pathway, in this

case mediated by NF-kB, can transduce a signal to chromatin.

However, signaling can also occur in the other direction; that

is, a histone modification can affect the modification state of

a nonhistone protein.Methylation of Dam1, for example, requires

ubiquitylation of histone H2B (Latham et al., 2011). Most likely,

H2Bub recruits the Set1 complex to centromeric nucleosomes,

positioning it for methylation of Dam1 at the kinetochore. Thus,

transregulation of posttranslational modifications can occur

both between histones (such as H2Bub and H3K4me) and

between histones and nonhistones (such as H2Bub and Dam1-

K233me), providing a platform for bidirectional signaling from

chromatin.



Signaling to and from Chromatin in Response to DNA
Damage
Signaling to and from chromatin impacts other important cellular

processes as well. DNA repair involves coordination among the

repair machinery, chromatin modifications, and cell-cycle

checkpoint signaling. At the apex of the DNA damage response

are three kinases related to the PI3 kinase family, ataxia telangi-

ectasia mutated (ATM), ATM and Rad3-related protein (ATR),

and DNA-PK (Jackson and Bartek, 2009; Lovejoy and Cortez,

2009). DNA-PK is activated when its regulatory subunit Ku70/

80 binds to the end of a DNA double-strand break (DSB). ATR

activation involves recognition of single-stranded DNA coated

with replication protein A (RPA) by the ATR-interacting protein,

ATRIP, as well as direct interaction with topoisomerase IIb-bind-

ing protein (TopBP1) (Burrows and Elledge, 2008). Like DNA-PK,

ATM is also activated in response to DSBs, but rather than

recognition of broken DNA ends, ATM appears to be activated

in response to large-scale changes in chromatin structure

caused by a DSB (Bakkenist and Kastan, 2003). How alterations

in chromatin structure are signaled to ATM is at present unclear.

One of the earliest events in the DNA damage response is the

phosphorylation of a variant of histone H2A, H2AX, by ATM,

DNA-PK, and/or ATR (Rogakou et al., 1998). Phosphorylated

H2AX (gH2AX) provides a mediator of DNA damage signaling

directed by these kinases, and this modification is found in flank-

ing chromatin regions as far as one megabase from a DNA DSB.

This phosphorylation event creates a binding motif for the medi-

ator of DNA damage checkpoint (MDC1) protein, which in turn

recruits other proteins, such as Nijmegen breakage syndrome

1 (NBS1) and RNF8, to sites of DSBs through additional phos-

pho-specific interactions (Chapman and Jackson, 2008; Kolas

et al., 2007; Stucki and Jackson, 2006). NBS1 is part of the

MRN complex that also contains Mre11 and Rad50 and is

involved in DNA end processing for both the homologous recom-

bination and nonhomologous end-joining pathways of DSB

repair (Zha et al., 2009). In addition, NBS1 functions as a cofactor

for ATM by stimulating its kinase activity and recruiting ATM to

sites of DSBs where many of it substrates are located (Lovejoy

and Cortez, 2009; Zha et al., 2009). ATM also phosphorylates

effector proteins that only transiently localize to DSBs. One of

these proteins is the checkpoint 2 (Chk2) kinase, which can be

activated by ATM-mediated phosphorylation at sites of damage

but then spreads throughout the nucleus to phosphorylate and

regulate additional proteins as part of the DNA damage response

(Bekker-Jensen et al., 2006). ATM also phosphorylates tran-

scription factors, such as p53 and E2F1, to regulate the expres-

sion of numerous genes involved in the cellular response to

DSBs (Banin et al., 1998; Biswas and Johnson, 2012; Canman

et al., 1998; Lin et al., 2001). These events again illustrate that

signals to chromatin, in this case resulting in H2AX phosphoryla-

tion, can be relayed to other proteins both on and off of the chro-

matin-DNA template.

Bidirectional signaling is illustrated even further by another

branch of the ATM-mediated DNA damage response that

involves activation of NF-kB. NF-kB is normally sequestered in

an inactive state in the cytoplasm through its association with

IkB. Following ATM activation by a DNA DSB, ATM phosphory-

lates NF-kB essential modulator (NEMO) in the nucleus (Wu
et al., 2006), which promotes additional modifications to

NEMO and export from the nucleus to the cytoplasm. Once in

the cytoplasm, NEMOparticipates in the activation of the canon-

ical inhibitor of NF-kB (IkB) kinase (IKK) complex that targets IkB

for degradation, leading to NF-kB activation. NF-kB then trans-

locates to the nucleus, where it regulates the expression of

genes that are important for cell survival following DNA damage.

In this case, a change in chromatin structure caused by a DSB

initiates a signal that travels to the cytoplasm and back to the

nucleus to activate transcription of NF-kB target genes by modi-

fying chromatin structure (Figure 1).

Multiple Roles for H2B Ubiquitylation
In addition to phosphorylation of H2A/H2AX, a number of other

histone modifications are induced at sites of DSBs in yeast

and mammalian cells. One such modification is H2Bub, the

same mark involved in regulating transcription as described

above. As with transcription, the Bre1 ubiquitin ligase (RNF20-

RNF40 in mammalian cells) is responsible for H2Bub at sites of

DNA damage (Game and Chernikova, 2009; Moyal et al., 2011;

Nakamura et al., 2011). Moreover, H2Bub is required for and

promotes H3K4 and H3K79 methylation at sites of damage,

similar to its role at actively transcribed genes. These histone

modifications are important for altering chromatin structure to

allow access to repair factors involved in DNA end resection

and processing (Moyal et al., 2011; Nakamura et al., 2011).

Moreover, H2Bub and H3K79me are not only required for DNA

repair but are also important for activating the Rad53 kinase

and for imposing subsequent cell-cycle checkpoints (Giannat-

tasio et al., 2005). Blocking H2B ubiquitylation or H3K79 methyl-

ation in response to DSBs inhibits Rad53 activation and impairs

the G1 and intra S phase checkpoints.

Bre1-mediated H2B ubiquitylation and subsequent methyla-

tion of H3K4 by Set1 and H3K79 by Dot1 are also involved in

regulating mitotic exit in yeast. The Cdc14 phosphatase controls

mitotic exit by dephosphorylating mitotic cyclins and their

substrates during anaphase (D’Amours and Amon, 2004). Prior

to anaphase, Cdc14 is sequestered on nucleolar chromatin

through interaction with its inhibitor, the Cf1/Net1 protein. Two

pathways, Cdc fourteen early anaphase release (FEAR) and

mitotic exit network (MEN), control the release of Cdc14 from

ribosomal DNA (rDNA) in the nucleolus. Upon inactivation of

the MEN pathway, H2B ubiquitylation and methylation of H3K4

and H3K79 are necessary for FEAR-pathway-mediated release

of Cdc14 from the nucleolus (Hwang and Madhani, 2009). It

appears that alteration of rDNA chromatin structure induced by

these modifications is important for this process.

Thus, depending on its chromosomal location, H2Bub can

regulate gene transcription, DNA repair and checkpoint sig-

naling, mitotic exit, and chromosome segregation (Figure 2).

The ability of this modification to affect methylation of both

histone (H3K4 and H3K79) and nonhistone proteins in trans high-

lights its potential to serve as a nexus of signals coming into and

emanating from chromatin.

Unanswered Questions
The roles of H2B ubiquitylation and H3K4 and H3K79 meth-

ylation in regulating nontranscriptional processes are well
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Figure 2. H2Bub Passes Signals to Different Receivers
In yeast, Bre1-mediated ubiquitylation of H2B promotes H3K4 and Dam1
methylation by Set1 and H3K79 methylation by Dot1. Depending on its loca-
tion, H2Bub can participate in the regulation of transcription, chromosome
segregation, cell-cycle checkpoints, and mitotic exit.
established in yeast. An unanswered question is whether these

histone modifications regulate similar cellular processes in hu-

mans. If so, then defects in chromatin signaling, independent

of transcription, could contribute to diseases associated with

alterations in histone-modifying enzymes. At present, studies

aimed at understanding the oncogenic properties of MLL fusion

proteins have focused on their abilities to regulate transcription.

Likewise, the putative tumor suppressor function of RNF20 is

assumed to be due to selective regulation of certain genes

(Shema et al., 2008). However, it is possible that defects in the

DNA damage response or chromosomal segregation might

contribute to the oncogenic properties of MLL fusion proteins

or participate in the transformed phenotype associated with

depletion of RNF20. Indeed, RNF20 was recently shown to

localize to sites of DNA DSBs to promote repair and maintain

genome stability, a function that is apparently independent of

transcriptional regulation.

The importance of chromatin organization and reorganization

for the regulation of gene expression and other DNA-templated

processes cannot be argued. Defining how such changes are

triggered by incoming signals is clearly important for under-

standing how cells respond to changes in their environment,

developmental cues, or insults to genomic integrity. However,

emerging studies indicate that chromatin is not simply an

obstacle to gene transcription or DNA repair. Rather, it is an

active participant in these processes that can provide real-time

signals to facilitate, amplify, or terminate cellular responses.

Given the regulatory potential of modification crosstalk within

histones and between histone and nonhistone proteins, coupled

with ongoing definitions of vast networks of protein methylation,

acetylation, and ubiquitylation events, our current view of

signaling pathways as ‘‘one-way streets’’ that dead end at chro-

matin is likely soon to be converted into a view of chromatin

as an information hub that directs multilayered and multidirec-

tional regulatory networks. Defining these networks will not

only provide a greater understanding of biological processes,

but will also provide entirely new game plans for combating
688 Cell 152, February 14, 2013 ª2013 Elsevier Inc.
complex human diseases that result from inappropriate signal

transduction.
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