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Recent work has advanced our knowledge of phasic dopamine

reward prediction error signals. The error signal is bidirectional,

reflects well the higher order prediction error described by

temporal difference learning models, is compatible with model-

free and model-based reinforcement learning, reports the

subjective rather than physical reward value during temporal

discounting and reflects subjective stimulus perception rather

than physical stimulus aspects. Dopamine activations are

primarily driven by reward, and to some extent risk, whereas

punishment and salience have only limited activating effects

when appropriate controls are respected. The signal is

homogeneous in terms of time course but heterogeneous in

many other aspects. It is essential for synaptic plasticity and a

range of behavioural learning situations.
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Introduction
The smoke signals of the American Indians and the peep-

peep from Sputnik demonstrate that information proces-

sing systems use signals. The brain is no exception. Its

action potentials are instrumental for extracting infor-

mation from the environment and directing behaviour.

The foremost function of the brain is to assure individual

survival and gene propagation for ultimate evolutionary

fitness. To this end individuals need to acquire specific

substances for their bodily functions. The substances

come in foods and liquids and require effort to obtain.

They are called rewards and support learning, approach

behaviour, decision making and positive emotions like

pleasure, desire and happiness. Numerous other objects,

events and situations have similar reward functions and

contribute to evolutionary fitness. To understand reward

processing, we need to study neuronal signals for these

objects. We can describe reward functions in formal

behavioural terms like Pavlovian and operant condition-

ing, habits and goal directed behaviour, economic
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decision making and see how alterations in brain func-

tions influence these processes. But to understand how

the brain as an information processing machine mediates

reward we need to take these terms apart and identify and

understand neuronal signals for their components. This

review provides an update on dopamine neurons that

provide a reward signal for updating economic decision

variables.

Nature of dopamine signal
Most midbrain dopamine neurons (75–80%) show rather

stereotyped, phasic activations with latencies of

<100 ms and durations of <200 ms following unpre-

dicted food or liquid rewards. This response codes a

quantitative prediction error, namely the difference

between received and predicted reward value. A reward

that is better than predicted elicits an activation

(positive prediction error response), a fully predicted

reward draws no response, and a reward that is worse

than predicted induces a depression (negative error

response). Most dopamine neurons (60–75%) respond

in similar ways to reward predicting stimuli, coding

positive and negative, higher order reward prediction

errors at the time of the stimulus relative to the pre-

diction at that moment [1,2,3�,4��].

Power of negative prediction error signal
The positive prediction error response can amount to

phasic tripling of impulse rate, whereas the negative

response has limited dynamic range owing to the low

baseline activity of dopamine neurons (3–5 impulses/s),

which might suggest limited negative coding [5,6]. How-

ever, synaptic transmission is unlikely to operate on an

absolute scale. Completely shutting off a signal is more

noticeable than tripling it. Abruptly extinguishing illu-

mination in a dim auditorium has more impact than

increasing it threefold. The observation that the pause

affects almost all dopamine neurons makes it a powerful

negative signal that would phasically stop stimulation of

both low affinity D1 and high affinity D2 receptors.

Variations of predictions together with proper measure-

ment of negative response intensity, as expressed by

duration of depression in extracellular recordings, reveal

bidirectional graded reward prediction error coding in

dopamine neurons [7]. Thus the negative dopamine error

signal is graded and likely to have a major impact on

postsynaptic neurons.

Temporal difference neuronal signal
The dopamine response to reward is compatible with the

notion of primary reinforcer prediction error according to

error driven learning rules [8]. These learning rules are
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Characteristics of phasic dopamine reward prediction error responses. (a) Neuronal coding of reward prediction error closely parallels theoretical

prediction error of temporal difference (TD) model ([4��], # National Academy of Sciences USA). (b) Temporal discounting of neuronal response to

stimulus predicting differently delayed rewards closely parallels behavioural discounting ([15], # Society for Neuroscience). (c) Neuronal response

depends on subjective stimulus perception ([24��], # National Academy of Sciences USA). (d) Stimulus generalisation explains majority of responses

to conditioned aversive stimuli. Change in sensory modality of reward predicting stimulus reduces response to unchanged aversive stimulus ([34], #

Nature). (e) Percentages of dopamine neurons activated by reward (blue, left), motivational salience uncontrolled for stimulus or context generalisation

(green) and true motivational salience (red, right). Data from [34]. (f) Graded coding of value prediction after initial generalisation coincides with stimulus

identification by animal in dot motion task. Percentage of coherently moving dots results in graded percentage of correct performance and reward

delivery ([3�], # Society for Neuroscience).
extended by temporal difference (TD) reinforcement

learning to higher order reinforcement [9]. Compatible

with these notions, dopamine neurons show phasic

responses to higher order prediction errors evoked by

conditioned, reward predicting stimuli [1]. In a recent

multistep task, monkey dopamine neurons coded the TD

error quantitatively by reflecting the difference between

the sum of multiple future rewards and their prediction

[4��]. In the particular task used, the reward probabilities

increase towards the end of the multistep sequence,

resulting in the highest discounted sum of future reward

in the centre from which the lower predictions arising

from earlier stimuli are subtracted (Figure 1a). The

dopamine responses match this temporal profile of TD

error closely, demonstrating the most complete relation-

ship of phasic dopamine responses to the TD model of

reinforcement so far reported.
Current Opinion in Neurobiology 2013, 23:229–238 
Model-free vs. model-based reinforcement
learning
Reinforcement learning establishes reward predictions

that are essential for informed decision making [8].

Model-free reinforcement learning occurs through the

experienced contiguity between stimuli or actions and

reinforcers. However, individuals also learn about states,

situations, contexts, rules, sequences, and conditional

probabilities, which may be summarily called models

of the world. Knowledge derived from models can be

useful for improving reward predictions. The processes

can include frequentist and Bayesian inferences, logical

reasoning, or any method that improves the identification

of relevant states. Model-based reinforcement learning

involves two separate processes, the acquisition and

updating of the overall model, and the influence of the

model on current predictions [10,11]. Although it is
www.sciencedirect.com



Updating dopamine reward signals Schultz 231
currently unknown whether dopamine prediction error

responses might be involved in the acquisition or updat-

ing of the models, they may incorporate the predictive

information from models. As the experienced reward is

physical and thus independent of the model, the model’s

influence on the prediction error would derive from the

influence on the reward prediction.

In learning situations governed only by experienced

rewards, consecutive unrewarded trials lead to progress-

ively decreasing reward prediction. Correspondingly,

positive prediction errors to an unpredicted reward

increase, because the repeated absence of reward

makes the reward less expected and the delivery of

reward becomes more surprising. However, in particular

tasks, sequences of unrewarded trials may lead to

increasing reward probability (increasing hazard rate)

and thus increasing reward prediction. Now the reward

becomes progressively less surprising and hence

induces a prediction error that decreases over succes-

sive trials. Learning in such a task benefits from knowl-

edge about the underlying model of the world. Indeed,

dopamine error responses follow precisely this scheme,

decreasing with increasing numbers of trials since the

last reward [12], suggesting that they process model-

based predictions.

Dopamine responses are influenced by previously

acquired information about reward probability distri-

butions [13]. The error responses adapt within 2 s to

the currently valid expected values and standard devi-

ations despite ten fold differences in reward magnitude,

without requiring resampling of the distributions. The

adaptations probably reflect scaling of the prediction

which is subtracted from the currently experienced

reward value to obtain the prediction error.

Repeated reversals of stimulus-reward or position-

reward associations lead to acquisition of a rule that

helps individuals reverse their reactions within one trial

(reversal set). Correspondingly, dopamine responses

to reward predicting stimuli reverse after one trial

without having experienced the contiguity between

the newly valid stimulus position and the reward

[14��]. These data suggest that dopamine neurons are

influenced by predictions derived from hidden states

and Bayesian inference for estimating the reversed

reward probabilities.

In each of these examples, the observed dopamine

prediction error responses are not fully explained by

the actual experience with reward but incorporate

information from models of the world. Thus the dopa-

mine prediction error responses occur in both model-

free and model-based reinforcement learning situ-

ations, without evidence so far for a role in initial model

acquisition.
www.sciencedirect.com 
Subjective value coding in temporal
discounting
Individuals make choices that maximise their rewards.

Although rewards have objective, physical and chemical

properties, their value is defined by the needs of the

individual decision maker and thus intrinsically subjec-

tive. One way to distinguish subjective from objective

reward value is temporal discounting, the decrease in

subjective reward value with increasing delays despite

constant physical size. Psychometric analysis of choices in

monkeys with variable early vs. constant 4, 8 and 16 s

delayed rewards reveals graded hyperbolic decays in

subjective value by 25, 50 and 75%, respectively, com-

pared to reward at 2 s [15]. Exponential decay fit signifi-

cantly less well.

Dopamine responses to reward predicting stimuli

decrease monotonically across reward delays of 2–16 s

in monkeys, despite the same physical amount of reward

being delivered after each delay [15,16] (Figure 1b).

Responses to reception of the constant reward itself show

the opposite relationship, namely increasing magnitudes

after increasing delays, again being fit generally better by

hyperbolic than exponential functions. The increasing

response profile may be owing to temporal prediction

errors derived from subjective temporal uncertainty that

scales with delay or magnitude prediction errors between

the full size received reward and the discounted predicted

value. Reward magnitude sensitive dopamine neurons in

rats show higher sustained activations for several seconds

following odours predicting sucrose after a short, fixed

delay of 0.5 s compared to long, variable delays of 1–7 s

[17].

Reward neurons in most other primary and associated

reward structures of the brain show some degrees of

temporal discounting, including orbitofrontal cortex

[18], prefrontal cortex [19,20], dorsal and ventral striatum

[21,22], premotor cortex [19] and parietal cortex [23].

Thus reward neurons code subjective rather than objec-

tive reward value in temporal discounting and thus may

provide direct inputs for neuronal mechanisms under-

lying value based decision processes.

Subjective stimulus coding
If dopamine neurons code reward value subjectively in

temporal discounting, would they show other aspects of

subjective coding compatible with the notion of an intrin-

sically subjective survival function of rewards? For

instance, would their reward prediction coding reflect

the physical presence or the subjective experience of

predictive stimuli? Signal detection theory offers well

proven tests. Monkeys correctly or incorrectly report

the presence of stimuli (hit and false alarm, respectively),

and correctly or incorrectly report stimulus absence (cor-

rect rejection and miss alarm, respectively) [24��]. Dopa-

mine neurons are activated by an initial task stimulus only
Current Opinion in Neurobiology 2013, 23:229–238
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when the animal reports its detection, whereas they are

not activated by the same physical stimulus when the

animal reports its absence, nor when the stimulus is

physically absent irrespective of the animal’s report

(Figure 1c). The data suggest that both subjective per-

ception and physical presence of a stimulus are necessary

to evoke dopamine responses, whereas physical presence

alone is insufficient.

The relationship to subjective perception is also seen

with dopamine error responses to subsequent cues and

reward. Correct and incorrect reports of stimulus presence

lead to reward in 76% of trials, whereas correct and

incorrect reports of stimulus absence lead to 64% reward

[24��]. As dopamine neurons code reward probability as

value [25], we calculate the TD prediction errors at a

subsequent, noninformative cue as [constant prediction

by noninformative cue minus value 76] when the animal

reports stimulus presence, and [constant prediction by

noninformative cue minus value 64] when reporting

stimulus absence. Thus the prediction error is lower when

the animal reports detection compared to reporting

absence of the same physical cue. Indeed, the dopamine

error responses to the cue follow exactly this pattern. At

reward reception, the prediction errors and the resulting

dopamine responses show exactly the same difference.

Together with the responses to the near threshold

stimulus itself and the subjective value coding in

temporal discounting, dopamine responses reflect the

animal’s subjective perception and valuation of the

stimuli beyond purely physical reward properties. As

decisions are ultimately made according to subjective

reward values, the dopamine responses may provide

rather direct and parsimonious, and therefore evolution-

ary beneficial and selected, inputs to neuronal decision

processes.

Aversive responses
Electric shocks, painful pinches and airpuffs, as well as

conditioned stimuli predicting these events, induce pha-

sic depressions in dopamine impulse activity in anaes-

thetised monkeys and rodents [26–32,33�] and in awake

monkeys, cats and rats [34–37,38�]. The dopaminergic

nature of these neurons is verified by optogenetics [39��].
The depression correlates with the length of dopamine

dendrites in pars reticulata of substantia nigra [40],

suggesting a synaptic drive by GABAergic midbrain

neurons which are excited by aversive stimuli and whose

stimulation leads to depression in dopamine activity

[33�,39��,41�].

A few dopamine neurons (5–15%) are activated by

primary aversive stimuli [26,28,34], which is now con-

firmed [31,33�,36,37,38�,39��]. The overall impact of aver-

sive stimuli on the population of dopamine neurons is

difficult to assess in studies not reporting frequencies of
Current Opinion in Neurobiology 2013, 23:229–238 
responses relative to numbers of tested neurons or testing

relatively few neurons (�30) [32,42]. Midbrain neurons

that respond to aversive events but are insensitive to the

defining depressant effects of systemic apomorphine [43]

are probably not dopaminergic [44,45]. Aversively acti-

vated neurons are also activated by rewards and other

environmental stimuli that are not directly rewarding, and

thus form a separate, limited group of highly sensitive,

nonspecifically responding neurons. However, dopamine

neurons that are activated by punishers do not seem to

show bidirectional punisher prediction error responses

[36,37]. The aversively activated dopamine neurons

may constitute a distinct ventral tegmental group in rats

[33�], although silent dopamine neurons [46] might pick

up the juxtacellular staining without being activated.

Aversive stimuli increase striatal dopamine concen-

trations measured by in vivo dialysis over seconds

[29,47]. The increase may reflect tonically elevated

impulse activity, increased proportions of spontaneously

active dopamine neurons [46] and impulse rebound after

initial depressions [27,38�,45]. Faster voltammetry

reveals striatal dopamine decreases following quinine

[48] and increases in patches of striatum and nucleus

accumbens core during tail pinch and accumbens shell

after termination of tail pinch [49]. The increases prob-

ably reflect the limited initial and more frequent rebound

dopamine activations by punishers. As termination of an

aversive stimulus induces a rewarding rebound according

to the opponent process theory of motivation [50], some

of the dopamine increases may derive from rebound and

reflect reward.

False aversive activations

Substantial fractions of dopamine neurons (35–65%) are

activated by conditioned aversive stimuli presented in

random or blockwise alternation with reward predicting

stimuli [34,36,37], which exceeds the frequency of acti-

vations to unpredicted primary aversive stimuli (<15%).

These results are paradoxical from a reinforcement

perspective because they violate a basic tenet of animal

learning theory that postulates stronger motivational and

attentional effects of primary, unconditioned rewards or

punishers compared to stimuli conditioned to them.

Although conditioned aversive stimuli may induce differ-

ent forms of aversion to which dopamine neurons might

be selectively sensitive, such selectivity would be surpris-

ing given their common responsiveness to all kinds of

rewards. Thus other mechanisms than punishment may

play a role. Closer inspections of conditioned aversive

activations reveal two response components.

The initial, brief activation is identical for all conditioned

reward predicting, unrewarded, differently valued and

aversive stimuli, with <100 ms latency and 50–150 ms

duration [2,34,51–53]. It is shorter than the full responses

to reward predicting stimuli and often curtailed by
www.sciencedirect.com
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subsequent depression. It leads to dopamine release in

rats [54]. The responses show correlations with air puff

probability across the population, which may arise from

a subset of well activated neurons [37]. A proper control

procedure maintains the visual aversive stimulus

unchanged but changes the modality of the randomly

interleaved reward predicting stimulus, for instance

from visual to auditory. This manipulation reduces

conditioned aversive responses from 65% to <15% of

neurons [34] (Figure 1d, e), which approaches the

proportion of neurons activated by primary aversive

events. Thus physical similarity to rewarding stimuli

may produce false aversive responses, possibly through

response generalisation to rewarding stimuli. Also,

reducing overall reward probability from 75% to 25%

between experiments decreases the incidence of false

activations by unrewarded stimuli from 63% to 1%

[52,53], suggesting an effect of context conditioning

(pseudoconditioning). Apparently the initial response

occurs before the neuron has properly identified the

stimulus.

The second response component constitutes a genuine

value response [2] which differentiates well between

reward and other events. It codes a graded TD reward

value error, consisting of depression following aversive or

unrewarded stimuli [36,51–53], and graded activations

with different values [17]. The updated prediction in

this response is reflected in the error response at reward

time [15,52], see Figure 5 in [2].

The two response components are better separated in a

dot motion task that requires time for stimulus identifi-

cation [3�] (Figure 1f). The initial dopamine activation

before stimulus identification fails to vary with value.

However, it decreases when its occurrence becomes more

predicted as time goes by (increasing hazard rate), thus

coding a temporal prediction error. The second com-

ponent is well separated and occurs 150–200 ms later

when the animal identifies the motion direction that

determines reward probability and thus value. It reflects

the TD error between the reward value of the specific

stimulus and the value predicted by the preceding fix-

ation spot.

Taken together, the more frequent activations to con-

ditioned aversive stimuli compared to primary punishers

is probably explained by the nature of the two response

components. The initial, stereotyped activation constitu-

tes a pre-identification, higher order temporal TD error

response, or possibly response generalisation to rewarding

stimuli or contexts. After proper identification of the

stimulus, the second component codes a TD error accu-

rately. A fast but inaccurate initial neuronal response may

provide survival advantages. It could lead to early

initiation of behavioural reactions in the course of which

the exact nature of the stimulus becomes identified by the
www.sciencedirect.com 
second component. The mechanism would allow the

agent to arrive first at the object and thus provide a slight

advantage over slower competitors, which would ulti-

mately pan out as higher evolutionary fitness. If the initial

response is false and the object unrewarded, behavioural

reactions can be cancelled while the second response

component identifies the object 200 ms later, which

would be a small price to pay.

Whereas interest in dopamine reward responses has over-

shadowed the long known aversive responses, some cur-

rent work addresses punishment in identifiable groups of

dopamine neurons without assessing their incidence

relative to reward responsive neurons [32,42]. Although

some dopamine neurons are definitely activated by aver-

sive events, their proportion remains as small as 30 years

ago [26,27].

Salience
Salience refers to the capacity of stimuli to elicit

arousal, alert and attention which enhance neuronal

processing and behavioural reactions. There are, in

principle, three forms of salience. Physical salience

derives from physically strong stimuli. Novelty or sur-

prise salience originates in novel or surprising events.

Motivational  salience is produced commonly by

rewards and punishers. (Incentive salience refers to

motivation for rewards, in contrast to learning, and thus

applies to rewards. It elicits the emotion of desire,

called ‘wanting’, rather than valence independent

attention [55].)

Would salience explain the higher incidence of responses

to conditioned aversive stimuli (35–65%) compared to

unpredicted air puffs (<15%) [34,37]? The physical

salience of small conditioned visual stimuli is marginal

[34,36,37] and higher with air puffs and electric shocks.

Thus physical salience would be higher for the uncondi-

tioned than conditioned aversive stimuli. Novelty sal-

ience should not be a factor with well trained conditioned

stimuli, and surprise salience would be equally high with

unpredicted conditioned  stimuli and unpredicted air

puffs. Motivational salience would be higher with unpre-

dicted air puffs than with conditioned stimuli predicting

air puffs. All evidence from learning experiments

suggests that the highest motivational impact arises from

the primary air puff. Even fully conditioned  stimuli

would not have higher motivational impact, which is

further reduced by the delay to air puff (temporal dis-

counting). Thus unpredicted air puff carries the highest

total salience of all events, and salience would not explain

the higher incidence of activations to conditioned stimuli

compared to air puffs. Motivational salience would be

restricted to <15% of dopamine activations,  and the

remaining responses should be owing to pre-identifi-

cation responses described above, or possibly pseudo-

conditioning [56,57].
Current Opinion in Neurobiology 2013, 23:229–238
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Further arguments limit motivational salience as a major

factor determining dopamine responses. First, the

change from visual to auditory rewarded stimuli reduces

aversive dopamine activations to stimuli without redu-

cing the salience of the unchanged aversive stimulus

[34]. Second, conditioned inhibitors for reward are moti-

vationally very salient but fail to activate most dopamine

neurons when pre-identification responses are excluded

[53]. Third, negative reward prediction errors are moti-

vationally very salient but depress rather than activate

dopamine neurons, including those activated by air puffs

[36,37].

Whereas 70–80% of dopamine neurons code reward pre-

diction errors, only 10–15% are activated by both reward-

ing and aversive events and thus motivational salience.

Therefore motivational salience induces 5–8 times less

dopamine activations than reward, rather than similar

proportions as suggested [58]. The depressant responses

to the negative value of aversive stimuli are compatible

with the predominantly positive value coding nature of

dopamine neurons.

Homogenous vs. heterogeneous properties
Together with the previously described risk responses in

30% of dopamine neurons [25], dopamine neurons show

several response types with unequal proportions. One

large population codes reward value, and smaller popu-

lations code reward risk, motivational salience and

possibly other event properties. The primarily reward

related nature of phasic dopamine signals has been con-

firmed in the majority of optogenetically identified dopa-

mine neurons [39��] and supported by the restriction of

prediction error coding to reward [36,37]. Nonexclusive

coding of one particular event type lies within the natural

variations of biological systems whose flexibility benefits

from minor deviations.

The reward responses are homogeneous in terms of

latency, duration, positive monotonicity of value coding

and error coding [2] and somewhat heterogeneous owing

to risk and salience coding. They occur in a neuronal

system with heterogeneous inputs, transmitter colocalisa-

tion, axonal projections, and receptor and reuptake trans-

porter expression, which may lead to regionally

inhomogeneous dopamine release [49,59]. The net result

of optogenetic activation of midbrain dopamine neurons

is rewarding, as shown by place preference conditioning

and operant nose poking behaviour [60��,61��,62�],
although regional stimulations in terminal areas might

reveal fine grained heterogeneities. Despite these vari-

ations, the high percentage of dopamine neurons coding

reward, and their temporal response homogeneity in all

sorts of behavioural tasks, is amazing. No other brain

structure has such high proportion of reward processing

neurons with such low variety of task relationships, in-

cluding striatum, orbitofrontal cortex and amygdala.
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Although complicated tasks may let dopamine responses

appear complex, appropriate analysis in terms of TD error

coding demonstrates their relatively simplistic and stereo-

typed character [4].

Effects of dopamine signal
The bidirectional dopamine prediction error response at

the time of the reward implements fully the error term of

the Rescorla-Wagner learning rule [2]. The dopamine

responses to higher order, reward predicting stimuli com-

ply with the notions of efficient TD teaching signals [63].

These dopamine signals may be involved in the two main,

objectively measurable reward functions. An error signal

would be ideal for mediating value learning and updating

for decision making. Considering the brain as a prediction

machine, an error signal would also be appropriate for

inducing approach behaviour and affecting decision pro-

cesses.

Postsynaptic neuronal plasticity

A viable neuronal reinforcement mechanism involves

three-factor Hebbian plasticity with dopamine and glu-

tamate synapses located at the same dendritic spines of

striatal or frontal cortical neurons, the so-called synaptic

triad [2,64–66]. Indeed, electrical midbrain stimulation

induces dopamine D1 receptor dependent long term

potentiation in striatal neurons [66]. Further evidence

suggests a crucial role of dopamine in both long-term

potentiation (LTP) and depression (LTD) in striatum

[67–70], frontal cortex [71,72], hippocampus [73] and

amygdala [74]. Iontophoretically applied dopamine puffs

induce plasticity in aplysia [75].

Protocols for spike time dependent plasticity (STDP)

demonstrate LTP when presynaptic stimulation pre-

cedes postsynaptic stimulation by a few tens of milli-

seconds, whereas LTD occurs with reverse sequence.

Intact dopamine D1 receptors are required for both

forms of cortically evoked plasticity in striatal neurons

involving NMDA receptors [76��]. When dissociating

dopamine receptor localisation on striatonigral  neurons

(D1; ‘direct pathway’) and striatopallidal neurons (D2;

‘indirect pathway’), D1 receptors are involved in LTP

in direct pathway neurons and D2 receptors are crucial

for LTD in indirect pathway neurons [77��] (Figure 2a,

b). Confirming the specificity, LTP in indirect pathway

neurons does not depend on dopamine [70], which may

explain dopamine independent LTP in striatal neurons

not distinguished according to direct vs. indirect path-

ways [78]. In indirect pathway neurons, LTP is turned

into LTD by additional dopamine D2 receptor stimu-

lation [77��]. In hippocampus, stimulation of dopamine

D1 receptors enhances STDP LTP and turns LTD

into LTP [79]. Neuronal modelling demonstrates the

power of a dopamine reward signal occurring a few

seconds after a conditioned stimulus typical for STDP

learning [80�].
www.sciencedirect.com



Updating dopamine reward signals Schultz 235
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Dopamine dependency of neuronal plasticity and behavioural learning. (a) Positive timing in spike time dependent plasticity protocol (STDP) results in

long term potentiation (LTP) at synapses from cortical inputs to striato-nigral neurons (direct pathway) (black) and is blocked by dopamine D1 receptor

antagonist SCH23390 (red) ([77��], # Science). (b) Negative timing in STDP protocol results in long term depression (LTD) at cortical synapses onto

striato-pallidal neurons (indirect pathway) (black) and is blocked by dopamine D2 receptor antagonist sulpiride (red) ([77��], # Science). (c) T-maze

learning deficit in mice with NMDA receptor knock-out in midbrain dopamine neurons impairing dopamine burst firing ([84�], # National Academy of

Sciences USA). (d) Separate performance deficit in mice tested in (c).
Presynaptic neuronal plasticity

Dopamine neurons show induction of NMDA receptor

dependent LTP when a short postsynaptic burst occurs

after at least 500 ms of presynaptic stimulation [81�]. A

delay of 1 s increases LTP, whereas delays of 0 or 200 ms

fail to elicit LTP, and negative delays induce LTD. The

delay of 0.5–1 s may reflect the time required to achieve

sufficient intracellular IP3 levels, which could constitute a

molecular stimulus or eligibility trace [9] tagging synapses

for modification by the postsynaptic burst. The protocol

follows the requirement for behavioural conditioning in

which the unconditioned stimulus (US) follows the con-

ditioned stimulus (CS) by an optimal interval. The post-

synaptic burst parallels the dopamine US response, and

the NMDA receptor dependent LTP parallels the

acquired dopamine CS response. Similar to behavioural

and neuronal response extinction, omission of the post-

synaptic burst reverses LTP back to baseline [81�].
Synaptic plasticity is not uniform in dopamine neurons

but varies according to projection territories [42].

Immediate effects

Dopamine exerts immediate postsynaptic effects during

behavioural performance and approach behaviour. At
www.sciencedirect.com 
striatal neurons of the direct pathway, dopamine has

excitatory effects via the D1 receptor by eliciting or

prolonging glutamate inputs and transitions to the up

state (depolarisation) of the membrane potential, whereas

in indirect pathway neurons D2 receptor activation has

inhibitory effects by reducing glutamate release and

prolonging membrane down states (hyperpolarisation)

[82]. These immediate effects are synergistic with the

plasticity function of dopamine in striatal LTP and LTD

in direct and indirect pathway neurons [77��].

Behavioural learning

Hundreds of lesioning and psychopharmacological stu-

dies using various tasks demonstrate learning deficits with

impaired dopamine transmission. At the level of dopa-

mine neurons, knock outs of burst generating NMDA

receptors in mice, with resulting decreases in responses to

reward predicting stimuli, lead to a range of learning

deficits, including conditioned place preference, maze

learning and operant conditioning, that are dissociated

from performance deficits [83,84�,85] (Figure 2c, d). In

confirmation, knock out of GABA-A receptors inhibiting

dopamine neurons enhances electrically evoked dopa-

mine release and T-maze and lever press learning [86]. At
Current Opinion in Neurobiology 2013, 23:229–238
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the postsynaptic level, intra-accumbens or systemic

administration of dopamine D1 receptor blockers impairs

simple stimulus-reward learning [87] that engages dopa-

mine neurons, well distinguished from performance

[88��]. Learning is also impaired by knock out of NMDA

receptors on mouse striatal neurons expressing dopamine

D1 receptors [89], closely following the scheme of three-

factor Hebbian learning [2,64–66]. Similarly, learning but

not performance deficits occur in a visual stimulus-reward

association task by administration of a dopamine D1

receptor antagonist into monkey prefrontal cortex [90�].

By contrast, learning is less impaired by systemic D1

receptor blockade in select tasks with separate stimulus

and goal locations that fail to engage dopamine neurons

[88��] or when phasic dopamine release remains func-

tional despite NMDA receptor knock-out [91]. Also,

neurotoxic dopamine lesions leave reward devaluation

learning by taste aversion intact [55]; this learning form

may not engage phasic dopamine responses.

Taken together, learning depends on intact dopamine

function in simple reward contiguity situations with expli-

cit, easily identifiable rewards and conditioned stimuli that

engage phasic dopamine responses. Learning may not

depend on dopamine neurons if their phasic responses

remain unengaged during learning. Despite this obvious

conclusion, learning of tasks normally engaging dopamine

responses might even proceed despite lesions when

neuronal plasticity allows other learning systems to com-

pensate within the tested time frame. Knock out of specific

learning systems may lead to modified ontogenesis with

even more opportunity for shifts to other systems. Given

the crucial importance of reward for survival, multiple,

flexible learning systems are biologically plausible and

would enhance evolutionary fitness.
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the VTA drive conditioned place aversion. Neuron 2012,
73:1173-1183.

Optogenetic stimulation of midbrain GABA neurons induces depressions
of dopamine neurons, as electrical footshock does, and leads to rapid
aversion of a chamber in which the animal receives the stimulation.

34. Mirenowicz J, Schultz W: Preferential activation of midbrain
dopamine neurons by appetitive rather than aversive stimuli.
Nature 1996, 379:449-451.

35. Guarraci FA, Kapp BS: An electrophysiological characterization
of ventral tegmental area dopaminergic neurons during
differential pavlovian fear conditioning in the awake rabbit.
Behav Brain Res 1999, 99:169-179.

36. Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H: Midbrain
dopaminergic neurons and striatal cholinergic interneurons
encode the difference between reward and aversive events at
different epochs of probabilistic classical conditioning trials. J
Neurosci 2008, 28:11673-11684.

37. Matsumoto M, Hikosaka O: Two types of dopamine neuron
distinctively convey positive and negative motivational
signals. Nature 2009, 459:837-841.

38.
�

Mileykovskiy B, Morales M: Duration of inhibition of ventral
tegmental area dopamine neurons encodes a level of
conditioned fear. J Neurosci 2011, 31:7471-7476.

A heroic effort to investigate the aversive responses of histologically
identified dopamine neurons in awake rats, reporting predominantly
inhibitory responses.

39.
��

Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N: Neuron-type-
specific signals for reward and punishment in the ventral
tegmental area. Nature 2012, 482:85-88.

The first study to assess reward and punishment responses in optogen-
etically identified dopamine neurons of behaving mice. The data confirm
the earlier reported dopaminergic nature of prediction error responses.

40. Henny P, Brown MT, Northrop A, Faunes M, Ungless MA,
Magill PJ, Bolam JP: Structural correlates of heterogeneous in
vivo activity of midbrain dopaminergic neurons. Nat Neurosci
2012, 15:613-619.
www.sciencedirect.com 
41.
�

van Zessen R, Phillips JL, Budygin EA, Stuber GD: Activation of
VTA GABA neurons disrupts reward consumption. Neuron
2012, 73:1184-1194.

Optogenetic stimulation of midbrain GABA neurons induces depressions
of dopamine neurons and reduced behavioural reward consumption.

42. Lammel S, Ion DI, Roeper J, Malenka RC: Projection-specific
modulation of dopamine neuron synapses by aversive and
rewarding stimuli. Neuron 2011, 70:855-862.

43. Wang DV, Tsien JZ: Convergent processing of both positive
and negative motivational signals by the VTA dopamine
neuronal populations. PLoS ONE 2011, 6:e17047.

44. Bunney BS, Aghajanian GK, Roth RH: Comparison of effects of
L-dopa, amphetamine and apomorphine on firing rate of rat
dopaminergic neurons. Nat New Biol 1973, 245:123-125.

45. Freeman AS, Bunney BS: Activity of A9 and A10 dopaminergic
neurons in unrestrained rats: further characterization and
effects of cholecystokinin. Brain Res 1987, 405:46-55.

46. Valenti O, Lodge DJ, Grace AA: Aversive stimuli alter ventral
tegmental area dopamine neuron activity via a common action
in the ventral hippocampus. J Neurosci 2011, 31:4280-4289.

47. Young AMJ: Increased extracellular dopamine in nucleus
accumbens in response to unconditioned and conditioned
aversive stimuli: studies using 1 min microdialysis in rats. J
Neurosci Meth 2004, 138:57-63.

48. Roitman MF, Wheeler RA, Wightman RM, Carelli RM: Real-time
chemical responses in the nucleus accumbens differentiate
rewarding and aversive stimuli. Nat Neurosci 2008,
11:1376-1377.

49. Budygin EA, Park J, Bass CE, Grinevich VP, Bonin KD,
Wightman RM: Aversive stimulus differentially triggers
subsecond dopamine release in reward regions. Neuroscience
2012, 201:331-337.

50. SolomonRL, Corbit JD: An opponent-process theory of
motivation. Psychol Rev 1974, 81:119-145.

51. Schultz W, Romo R: Dopamine neurons of the monkey
midbrain: contingencies of responses to stimuli eliciting
immediate behavioral reactions. J Neurophysiol 1990,
63:607-624.

52. Waelti P, Dickinson A, Schultz W: Dopamine responses comply
with basic assumptions of formal learning theory. Nature 2001,
412:43-48.

53. Tobler PN, Dickinson A, Schultz W: Coding of predicted reward
omission by dopamine neurons in a conditioned inhibition
paradigm. J Neurosci 2003, 23:10402-10410.

54. Day JJ, Roitman MF, Wightman RM, Carelli RM: Associative
learning mediates dynamic shifts in dopamine signaling in the
nucleus accumbens. Nat Neurosci 2007, 10:1020-1028.

55. Berridge KC, Robinson TE: What is the role of dopamine in
reward: hedonic impact, reward learning, or incentive
salience? Brain Res Rev 1998, 28:309-369.

56. Schultz W: Dopamine signals for reward value and risk: basic
and recent data. Behav Brain Funct 2010, 6:24.

57. Sheafor PJ: Pseudoconditioned jaw movements of the rabbit
reflect associations conditioned to contextual background
cues. J Exp Psychol: Anim Behav Proc 1975, 104:245-260.

58. Bromberg-Martin ES, Matsumoto M, Hikosaka O: Dopamine in
motivational control: rewarding, aversive, and alerting. Neuron
2010, 68:815-834.

59. Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF:
Primary food reward and reward-predictive stimuli evoke
different patterns of phasic dopamine signaling throughout
the striatum. Eur J Neurosci 2011, 34:1997-2006.

60.
��

Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de
Lecea L, Deisseroth K: Phasic firing in dopaminergic neurons is
sufficient for behavioral conditioning. Science 2009,
324:1080-1084.

The first study to use optogenetic stimulation of dopamine neurons to
induce behavioural responses.
Current Opinion in Neurobiology 2013, 23:229–238



238 Macrocircuits
61.
��

Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA,
Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD,
Tye KM, Janak PH, Deisseroth K: Recombinase-driver rat lines:
tools, techniques, and optogenetic application to dopamine-
mediated reinforcement. Neuron 2011, 72:721-733.

The study shows operant behavioural self-stimulation (nose pokes) by
optogenetic activation of dopamine neurons and resolves the long dis-
puted issue of the dopaminergic nature of electrical self-stimulation. The
paper describes many methodological aspects of optogenetics and
shows learning, extinction and reacquisition curves of nose pokes,
and correlation of nose pokes with amount of stimulation. Amazing work.

62.
�

Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD:
Optogenetic mimicry of the transient activation of dopamine
neurons by natural reward is sufficient for operant
reinforcement. PLoS ONE 2012, 7:e33612.

The data confirm learning and extinction of nose poke behaviour shown
by [61��] and in addition show correlations between channelrhodopsin
expression and induced behavioural responses. Together with [61��], the
study makes the link to electrical self-stimulation discovered 60 years ago
by Olds and Milner.

63. Montague PR, Dayan P, Sejnowski TJ: A framework for
mesencephalic dopamine systems based on predictive
Hebbian learning. J Neurosci 1996, 16:1936-1947.

64. Freund TF, Powell JF, Smith AD: Tyrosine hydroxylase-
immunoreactive boutons in synaptic contact with identified
striatonigral neurons, with particular reference to dendritic
spines. Neuroscience 1984, 13:1189-1215.

65. Goldman-Rakic PS, Leranth C, Williams MS, Mons N, Geffard M:
Dopamine synaptic complex with pyramidal neurons in primate
cerebral cortex. Proc Natl Acad Sci USA 1989, 86:9015-9019.

66. Reynolds JNJ, Hyland BI, Wickens JR: A cellular mechanism of
reward-related learning. Nature 2001, 413:67-70.

67. Calabresi P, Gubellini P, Centonze D, PicconiB, Bernardi G,Chergui K,
Svenningsson P, Fienberg AA, Greengard P: Dopamine and cAMP-
regulatedphosphoprotein32 kDacontrolsbothstriatal long-term
depression and long-term potentiation, opposing forms of
synaptic plasticity. J Neurosci 2000, 20:8443-8451.

68. Kerr JN, Wickens JR: Dopamine D-1/D-5 receptor activation is
required for long-term potentiation in the rat neostriatum in
vitro. J Neurophysiol 2001, 85:117-124.

69. Tang KC, Low MJ, Grandy DK, Lovinger DM: Dopamine-
dependent synaptic plasticity in striatum during in vivo
development. Proc Natl Acad Sci USA 2001, 98:1255-1260.

70. Kreitzer AC, Malenka RC: Endocannabinoid-mediated rescue of
striatal LTD and motor deficits in Parkinson’s disease models.
Nature 2007, 445:643-647.

71. Otani S, Blond O, Desce JM, Crepel F: Dopamine facilitates
long-term depression of glutamatergic transmission in rat
prefrontal cortex. Neuroscience 1998, 85:669-676.

72. Gurden H, Takita M, Jay TM: Essential role of D1 but not D2
receptors in the NMDA receptor-dependent long-term
potentiation at hippocampal-prefrontal cortex synapses in
vivo. J Neurosci 2000, 20RC106:1-5.

73. Otmakhova NA, Lisman JE: D1/D5 dopamine receptor activation
increases the magnitude of early long-term potentiation at CA1
hippocampal synapses. J Neurosci 1996, 16:7478-7486.

74. Rosenkranz JA, Grace AA: Dopamine-mediated modulation of
odour-evoked amygdala potentials during pavlovian
conditioning. Nature 2002, 417:282-287.

75. Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH:
Operant learning in aplysia: neuronal correlates and
mechanisms. Science 2002, 296:1706-1709.

76.
��

Pawlak V, Kerr JND: Dopamine receptor activation is required
for corticostriatal spike-timing-dependent plasticity. J
Neurosci 2008, 28:2435-2446.

Rigorous application of an STDP protocol reveals the necessary role of
dopamine receptors in LTP and LTD.

77.
��

Shen W, Flajolet M, Greengard P, Surmeier DJ: Dichotomous
dopaminergic control of striatal synaptic plasticity. Science
2008, 321:848-851.
Current Opinion in Neurobiology 2013, 23:229–238 
Classification of D1 receptor carrying ‘direct pathway’ striatal neurons
and D2 receptor carrying ‘indirect pathway’ neurons allows dissociation
of dopamine influences on LTP and LTD. Huge number of tests.

78. Pennartz CMA, Ameerun RF, Groenewegen HJ, Lopes da Silva FH:
Synaptic plasticity in an in vitro slice preparation of the rat
nucleus accumbens. Europ J Neurosci 1993, 5:107-117.

79. Zhang J-C, Lau P-M, Bi G-Q: Gain in sensitivity and loss in
temporal contrast of STDP by dopaminergic modulation at
hippocampal synapses. Proc Natl Acad Sci USA 2009,
106:1328-1333.

80.
�

Izhikevich EM: Solving the distal reward problem through
linkage of STDP and dopamine signaling. Cerebral Cortex 2007,
17:2443-2452.

Modelling the dopamine influence on STDP.

81.
�

Harnett MT, Bernier BE, Ahn K-C, Morikawa H: Burst-timing-
dependent plasticity of NMDA receptor-mediated
transmission in midbrain dopamine neurons. Neuron 2009,
62:826-838.

Plasticity in dopamine neurons follows the same temporal requirement as
behavioural Pavlovian conditioning.

82. Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E:
D1 receptor activation enhances evoked discharge in
neostriatal medium spiny neurons by modulating an L-type
Ca2+ conductance. J Neurosci 1997, 17:3334-3342.

83. Zweifel LS, Argilli E, Bonci A, Palmiter R: Role of NMDA receptors
in dopamine neurons for plasticity and addictive behaviors.
Neuron 2008, 59:486-496.

84.
�

Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP,
Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Philipps PEM,
Palmiter R: Disruption of NMDAR-dependent burst firing by
dopamine neurons provides selective assessment of phasic
dopamine-dependent behavior. Proc Natl Acad Sci USA 2009,
106:7281-7288.

Knock out of NMDA receptors on dopamine neurons reduces burst firing
along with behavioural learning in a wide variety of tasks.

85. Wang LP, Li F, Wang D, Xie K, Wang D, Shen X, Tsien JZ: NMDA
receptors in dopaminergic neurons are crucial for habit
learning. Neuron 2011, 72:1055-1066.

86. Parker JG, Wanat MJ, Soden ME, Ahmad K, Zweifel LS,
Bamford NS, Palmiter RD: Attenuating GABAA receptor
signaling in dopamine neurons selectively enhances reward
learning and alters risk preference in mice. J Neurosci 2011,
31:17103-17112.

87. Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ:
Differential involvement of NMDA, AMPA/kainate, and
dopamine receptors in the nucleus accumbens core in the
acquisition and performance of Pavlovian approach behavior.
J Neurosci 2001, 21:9471-9477.

88.
��

Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I,
Akers CA, Clinton SM, Phillips PE, Akil H: A selective role for
dopamine in stimulus-reward learning. Nature 2011, 469:53-57.

Systemically applied dopamine D1 receptor blocker impairs selectively
stimulus-reward contiguity (‘sign-tracking’) learning while leaving more
complex learning (‘goal-tracking’) intact. The differential deficit correlates
with differential dopamine responses during sign-tracking but not goal-
tracking (without receptor blockade). The learning deficit is well separated
from performance deficits.

89. Parker JG, Beutler LR, Palmiter RD: The contribution of NMDA
receptor signaling in the corticobasal ganglia reward
network to appetitive Pavlovian learning. J Neurosci 2011,
31:11362-11369.

90.
�

Puig MV, Miller EK: The role of prefrontal dopamine D1
receptors in the neural mechanisms of associative learning.
Neuron 2012, 74:874-886.

Local injections of dopamine D1 receptor antagonist into prefrontal cortex
of monkeys impair stimulus-reward learning, while leaving performance
intact, and confirms crucial involvement of D1 receptors in learning.

91. Parker JG, Zweifel LS, Clark JJ, Evans SB, Phillips PEM,
Palmiter RD: Absence of NMDA receptors in dopamine neurons
attenuates dopamine release but not conditioned approach
during Pavlovian conditioning. Proc Nat Acad Sci USA 2010,
107:13491-13496.
www.sciencedirect.com


	Updating dopamine reward signals
	Introduction
	Nature of dopamine signal
	Power of negative prediction error signal
	Temporal difference neuronal signal
	Model-free vs. model-based reinforcement learning
	Subjective value coding in temporal discounting
	Subjective stimulus coding
	Aversive responses
	False aversive activations

	Salience
	Homogenous vs. heterogeneous properties
	Effects of dopamine signal
	Postsynaptic neuronal plasticity
	Presynaptic neuronal plasticity
	Immediate effects
	Behavioural learning

	References and recommended reading
	Acknowledgements


