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Abstract

In a recent paper, Mathon (J. Combin. Theory (A) 97 (2002) 353) gives a new construction

of maximal arcs which generalizes the construction of Denniston. In relation to this

construction, Mathon asks the question of determining the largest degree of a non-Denniston

maximal arc arising from his new construction. In this paper, we give a nearly complete

answer to this problem. Specifically, we prove that when mX5 and ma9; the largest d of a

non-Denniston maximal arc of degree 2d in PGð2; 2mÞ generated by a fp; 1g-map is ð m
2

� �
þ 1Þ:

This confirms our conjecture in (Fiedler et al. (Adv. Geom. (2003) (Suppl.) S119)). For fp; qg-
maps, we prove that if mX7 and ma9; then the largest d of a non-Denniston maximal arc of

degree 2d in PGð2; 2mÞ generated by a fp; qg-map is either m
2

� �
þ 1 or m

2

� �
þ 2:

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let PGð2; qÞ denote the Desarguesian projective plane of order q; where q is a
prime power, and let kX1; nX2 be integers. A set K of k points in PGð2; qÞ is called a
ðk; nÞ-arc if no n þ 1 points of K are collinear. The integer n is called the degree of the
arc K: Let P be a point of a ðk; nÞ-arc K: Each of the q þ 1 lines through P contains
at most n � 1 points of K: Therefore

kp1þ ðq þ 1Þðn � 1Þ:
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The ðk; nÞ-arc K is said to be maximal if k attains this upper bound, that is, k ¼
qðn � 1Þ þ n: In this case, every line of PGð2; qÞ that contains a point of K has to
intersect it in exactly n points. Therefore, the degree n of a maximal arc K in PGð2; qÞ
must divide q:
In the case where q ¼ 2m; maximal arcs of degree 2 in PGð2; qÞ are usually called

hyperovals. A classical example of a hyperoval in PGð2; 2mÞ is a non-degenerate conic
(i.e., non-singular quadric in PGð2; 2mÞ) plus its nucleus. There is an extensive
literature devoted to ovals and hyperovals, see a recent survey in [P]. The study of
maximal arcs of degree greater than two was started by Barlotti [B] in 1956. At the
beginning, maximal arcs were studied as extremal objects in finite geometry and
coding theory. Later it was discovered that maximal arcs can give rise to many
interesting incidence structures such as partial geometries and resolvable Steiner 2-
designs [T1,W]. The constructions of Thas [T1,T2] also show connections of
maximal arcs with ovoids, quadrics and polar spaces. Of course, maximal arcs can
also give rise to two-weight codes and strongly regular graphs since they are two-
intersection sets in PGð2; qÞ: For these reasons maximal arcs occupy a very special
place in finite geometry, design theory and coding theory.

For q ¼ 2m; Denniston [D] constructed maximal arcs of degree 2d in PGð2; 2mÞ for
every d; 1pdpm: Thas [T1,T2] also gave two other constructions of maximal arcs in
PGð2; 2mÞ of certain degrees when m is even. For odd prime power q; Ball et al.
[BBM] proved that maximal arcs of degree n do not exist in PGð2; qÞ; when noq:
Recently, Mathon [M] presented a new construction of maximal arcs which
generalizes the construction of Denniston. In the following, we will briefly describe
the constructions of Denniston and Mathon of maximal arcs.

Let Qðx; yÞ ¼ ax2 þ hxy þ by2 be an irreducible quadratic form over F2m (that is,

Trðab
h2
Þ ¼ 1; where Tr is the trace from F2m to F2). Let A be an additive subgroup of

F2m and let ðx; y; zÞ be right-normalized homogeneous coordinates in PGð2; 2mÞ:
Then

K ¼ fðx; y; 1ÞAPGð2; 2mÞ j Qðx; yÞAAg ð1:1Þ

is a maximal arc of degree jAj: This is Denniston’s construction of maximal arcs [D].
We may decompose K as

K ¼ ,lAA Fl;

where for each lAA\f0g; Fl ¼ fðx; y; 1Þ j Qðx; yÞ ¼ lg is a non-degenerate conic, and
F0 ¼ fð0; 0; 1Þg contains one point only. Note that the point ð0; 0; 1Þ is the common
nucleus of the conics Fl; lAA\f0g: The arc K in (1.1), and those projectively
equivalent to K are called Denniston maximal arcs.
Now let C be the set of conics

Fa;b;l ¼ fðx; y; zÞAPGð2; 2mÞ j ax2 þ xy þ by2 þ lz2 ¼ 0g;

where lAF2m,fNg and a; bAF�2m such that ax2 þ x þ b is irreducible over F2m : Note
that F0 :¼ Fa;b;0 ¼ fð0; 0; 1Þg is the common nucleus of the non-degenerate conics in
C; and FN :¼ Fa;b;N is the line at infinity z ¼ 0: Given two non-degenerate conics
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Fa;b;l and Fa0;b0;l0 in C; Mathon [M] defined a composition
Fa;b;l"Fa0;b0;l0 ¼ Fa"a0;b"b0;l"l0 ; ð1:2Þ

where if lal0; then

a"a0 ¼ alþ a0l0

lþ l0
; b"b0 ¼ blþ b0l0

lþ l0
; l"l0 ¼ lþ l0;

and if l ¼ l0; then

Fa"a0;b"b0;l"l0 ¼ F0:

A subset of non-degenerate conics of C that is closed under the above composition is
called a closed set of conics, and such a set must contain 2d � 1 conics for some d;
1pdpm [M, Corollary 2.3]. Mathon [M] showed that closed sets of conics can be
used to construct maximal arcs.

Theorem 1.1 (Mathon [M, Theorem 2.4]). Let FCC be a closed set of 2d � 1 non-

degenerate conics with a common nucleus F0 in PGð2; 2mÞ; 1pdpm: Then the set of

points of all conics in F together with F0 form a maximal ð2mþd � 2m þ 2d ; 2dÞ-arc K in

PGð2; 2mÞ:

The construction in Theorem 1.1 clearly contains Denniston’s construction of
maximal arcs as a special case. Let A be an additive subgroup of F2m ; let a; b; hAF2m

be fixed such that Trðab
h2
Þ ¼ 1; and let F ¼ fFah�1;bh�1;lh�1AC j lAA\f0gg: Then F is

clearly closed under the composition in (1.2), and the maximal arc obtained via
Theorem 1.1 from F is exactly the Denniston arc in (1.1).
Let FCC be a closed set of ð2d � 1Þ non-degenerate conics, and let

A� ¼ fl j there exist a; bAF�2m such that Fa;b;lAFg:

Then A :¼ A�,f0g is an additive subgroup of F2m : Moreover, for each lAA� there
corresponds a unique conic Fa;b;l in F (otherwise, F0AF ; a contradiction), hence a
and b in the indices of Fa;b;l can be interpreted as functional values of some functions

p : A-F2m and q : A-F2m ; respectively. Since F is closed under the composition
defined in (1.2), we have

pðlþ l0Þðlþ l0Þ ¼ pðlÞlþ pðl0Þl0;

qðlþ l0Þðlþ l0Þ ¼ qðlÞlþ qðl0Þl0

for all l; l0AA: Thus, the maps %p : A-F2m and %q : A-F2m defined, respectively, by

%pðlÞ ¼ pðlÞl and %qðlÞ ¼ qðlÞl are linear on A: Since A is an F2-subspace of F2m ; we
can extend %p and %q linearly to F2m ; and we denote the extended maps still by %p and %q:
Now that %p and %q are both linear on F2m ; there exist linearized polynomialsPm�1

i¼0 cix
2i

and
Pm�1

i¼0 dix
2i

in F2m ½x� such that for all aAF2m ; %pðaÞ ¼
Pm�1

i¼0 cia
2i

and

%qðaÞ ¼
Pm�1

i¼0 dia
2i

: Furthermore, by ‘‘division algorithm’’ (cf. [FLX, Proposition

3.1]), there exist linearized polynomials LðxÞ ¼
Pd�1

i¼0 aix
2i

andMðxÞ ¼
Pd�1

i¼0 bix
2i

in

F2m ½x� such that %pðlÞ ¼ LðlÞ and %qðlÞ ¼ MðlÞ for all lAA: This shows that each
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closed set FCC of ð2d � 1Þ conics can be written in the form

FLðlÞ
l ;

MðlÞ
l ;l

j lAA\f0g
� �

;

where A is some additive subgroup of F2m of size 2d ; and LðxÞ;MðxÞAF2m ½x� are
given above.

Theorem 1.2 (Mathon [M, Theorem 2.5]). Let pðxÞ ¼
Pd�1

i¼0 aix
2i�1AF2m ½x� and

qðxÞ ¼
Pd�1

i¼0 bix
2i�1AF2m ½x� be polynomials with coefficients in F2m : For an additive

subgroup A of order 2d of F2m let F ¼ fFpðlÞ;qðlÞ;l j lAA\f0gg be a set of conics with a

common nucleus F0: If TrðpðlÞqðlÞÞ ¼ 1 for every lAA\f0g; then F is a closed subset

of C and the set of points on all conics in F together with F0 forms a maximal

ð2mþd � 2m þ 2d ; 2dÞ-arc K in PGð2; 2mÞ: If both pðxÞ; qðxÞ have degree p2; then K is

a Denniston maximal arc.

We will call maximal arcs generated by polynomials as in the above theorem
maximal arcs generated by fp; qg-maps. Mathon posed several problems related to
the construction in Theorem 1.2 at the end of his paper [M]. The third problem he

posed is: What is the largest d of a non-Denniston maximal arc of degree 2d in
PGð2; 2mÞ generated by a fp; qg-map via Theorem 1.2? We give a nearly complete
answer to this problem in this paper (see details below). The techniques we use are
algebraic. Polynomials over finite fields play an important role throughout our
investigation. Combinatorial and linear algebraic tools are used to study these
polynomials in this paper. We hope that these techniques will find more applications
in finite geometry and combinatorial designs.
Our main results are summarized as follows. In Section 2, we prove that if mX5

and ma9; then the largest degree of a non-Denniston maximal arc in PGð2; 2mÞ
generated by a fp; 1g-map is less than or equal to 2

m
2b cþ1: On the other hand, known

constructions in [FLX,HM,M] show that there are always fp; 1g-maps that generate
non-Denniston maximal arcs in PGð2; 2mÞ of degree 2

m
2b cþ1 when mX5: Therefore,

for fp; 1g-maps, we have a complete answer to Mathon’s question mentioned above.
That is, when mX5 and ma9; the largest d of a non-Denniston maximal arc of

degree 2d in PGð2; 2mÞ generated by a fp; 1g-map via Theorem 1.2 is m
2

� �
þ 1: This

confirms our conjecture in [FLX]. In Section 3 we try to extend this result to fp; qg-
maps. We prove that if mX7 and ma9; then the largest degree of a non-Denniston

maximal arc in PGð2; 2mÞ generated by a fp; qg-map is less than or equal to 2
m
2b cþ2:

However, at present we are not able to find a construction of fp; qg-maps to produce
(via Theorem 1.2) a non-Denniston maximal arc in PGð2; 2mÞ of degree 2

m
2b cþ2:

Therefore our upper bound together with previously known constructions in
[FLX,HM,M], yields that for mX7 and ma9; the largest d of a non-Denniston

maximal arc of degree 2d in PGð2; 2mÞ generated by a fp; qg-map is either m
2

� �
þ 1 or

m
2

� �
þ 2:
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2. The largest degree of non-Denniston maximal arcs generated by fp; 1g-maps

We first prove the following theorem, which establishes the upper bound
mentioned in Section 1 on the largest degree of non-Denniston maximal arcs
generated by a fp; 1g-map.

Theorem 2.1. Let A be an additive subgroup of size 2d in F2m ; and let pðxÞ ¼Pd�1
i¼0 aix

2i�1AF2m ½x�: Assume that mX5 but ma9; and m4d4m
2
þ 1: If TrðpðlÞÞ ¼ 1

for all lAA\f0g; then a2 ¼ a3 ¼ ? ¼ ad�1 ¼ 0: That is, pðxÞ is linear and the

maximal arc obtained from the fp; 1g-map via Theorem 1.2 is a Denniston maximal

arc.

In order to prove this theorem we need some preparation. For convenience, let
r ¼ m � d: We will represent the F2-subspace A of F2m as the intersection of r

hyperplanes, say

A ¼ fxAF2m j TrðmixÞ ¼ 0; 1piprg;

where miAF�2m are linearly independent over F2: Thus, the defining equation for A isYr

i¼1
ð1þ TrðmixÞÞ ¼ 1:

The key to the proof of Theorem 2.1 is to study the polynomial
Qr

i¼1 ð1þ TrðmixÞÞ;
where TrðmixÞ ¼

Pm�1
j¼0 m

2j

i x2
j

is a polynomial in F2m ½x�: We define SðxÞ to be the
polynomial of degree less than or equal to 2m � 1 such that

SðxÞ �
Yr

i¼1
ð1þ TrðmixÞÞ ðmod x2

m � xÞ:

For sX1 and m � 1Xi14i24?4isX0; we use cði1; i2;y; isÞ to denote the
coefficient of x2

i1þ2i2þ?þ2is
in SðxÞ: It is clear that cði1; i2;y; isÞ is zero if s4r:

Moreover, as SðxÞ2 � SðxÞ ðmod x2
m � xÞ; we see that when spr;

cði1; i2;y; isÞ2 ¼
cði1 þ 1; i2 þ 1;y; is þ 1Þ if i1om � 1;
cði2 þ 1;y; is þ 1; 0Þ if i1 ¼ m � 1:

�
ð2:1Þ

If s ¼ r; then

cði1; i2;y; irÞ ¼ detðvi1 ; vi2 ;y; virÞ; ð2:2Þ

where vi ¼ ðm2i

1 ; m
2i

2 ;y; m2
i

r Þ
T: We remark that since m2

m

j ¼ mj; we have vm ¼ v0; and

we will read the indices of vi modulo m:
Since the mi are linearly independent over F2; cðr � 1; r � 2;y; 1; 0Þ ¼

detðv0; v1;y; vr�1Þ is non-zero. For a proof of this fact, see [G, p. 5] or [LN,
Lemma 3.5]. Indeed, detðv0; v1;y; vr�1Þ is usually called aMoore determinant, which
can be viewed as a q-analogue of the familiar Vandermonde determinants. It
follows from (2.1) that detðvi; viþ1;y; viþr�1Þ ¼ cði þ r � 1;y; i þ 1; iÞa0 for all i:
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Therefore, any r consecutive vectors vi; viþ1;y; viþr�1 from v0; v1;y; vm�1 are
linearly independent over F2m :
The following lemma reveals more surprising relations among the coefficients of

SðxÞ: We will use this lemma in the proof of Theorem 2.1.

Lemma 2.2. cðr; r � 1;y; 2; 0Þ ¼ cðr � 1; r � 2;y; 1; 0Þcðr � 1; r � 2;y; 2; 1Þ:

Proof. First note that cðr � 1; r � 2;y; 1; 0Þ ¼ detðv0; v1;y; vr�1Þa0: In order to
prove the lemma, we show that

cðr � 1; r � 2;y; 2; 1Þ ¼ cðr; r � 1;y; 2; 0Þ
cðr � 1; r � 2;y; 1; 0Þ:

Now notice that cðr; r � 1;y; 2; 0Þ ¼ detðv0; v2; v3;y; vrÞ; so we are trying to prove
that cðr � 1; r � 2;y; 2; 1Þ is a quotient of two determinants. This motivates us to
consider the following linear system:

m1 m21 ? m2
r�1
1

m2 m22 m2
r�1
2

^ & ^

mr m2r ? m2
r�1

r

0
BBBB@

1
CCCCA

b0

b1

^

br�1

0
BBB@

1
CCCA ¼

m2
r

1

m2
r

2

^

m2
r

r

0
BBB@

1
CCCA: ð2:3Þ

The determinant of the coefficient matrix of this system is cðr � 1; r � 2;y; 1; 0Þa0:
Thus the system has a unique solution. In particular, by Cramer’s rule,

b1 ¼

m1 m2
r

1 m2
2

1 ? m2
r�1
1

m2 m2
r

2 m2
2

2 m2
r�1
2

^ & ^

mr m2
r

r m2
2

r ? m2
r�1

r

����������

����������
m1 m21 m2

2

1 ? m2
r�1
1

m2 m22 m2
2

2 m2
r�1
2

^ & ^

mr m2r m2
2

r ? m2
r�1

r

����������

����������

¼ cðr; r � 1;y; 2; 0Þ
cðr � 1;y; 1; 0Þ :

Next we calculate bjs explicitly in a different way. In particular, we will show that

b1 ¼ cðr � 1; r � 2;y; 2; 1Þ: To this end, we consider the formal power series

ftðxÞ ¼
XN
j¼0

m2
j

t x2
j

 !Yr

i¼1
1þ

XN
j¼0

m2
j

i x2
j

 !
AF2m ½½x��
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for 1ptpr: We haveXN
j¼0

m2
j

t x2
j

 !Yr

i¼1
1þ

XN
j¼0

m2
j

i x2
j

 !
¼

XN
j¼0

m2
j

t x2
j

 !
1þ

XN
j¼0

m2
j

t x2
j

 !

�
Yr

i¼1
iat

1þ
XN
j¼0

m2
j

i x2
j

 !

¼ mtx
Yr

i¼1
iat

1þ
XN
j¼0

m2
j

i x2
j

 !
:

For any integer spr and i14i24?4isX0; we denote the coefficient of x2
i1þ2i2þ?þ2is

in
Qr

i¼1ð1þ
P

N

j¼0 m
2j

i x2
j Þ by c0ði1; i2;y; isÞ: Note that c0ði1; i2;y; isÞ is not necessarily

the same as cði1; i2;y; isÞ defined earlier. The former is the coefficient in a formal
power series

Qr
i¼1ð1þ

P
N

j¼0 m
2j

i x2
j ÞAF2m ½½x�� while the latter is the coefficient in

SðxÞAF2m ½x�=ðx2m � xÞ:
Clearly, the coefficient of x2

r�1 in
Qr

i¼1;iatð1þ
P

N

j¼0 m
2j

i x2
j Þ is 0. This shows that

the coefficient of x2
r

in ftðxÞ is 0. On the other hand, from the definition of ftðxÞ; we
see that this coefficient is m2

r

t þ
Pr�1

j¼0 m
2j

t c0ðr � 1;y; j Þ: Thus, we obtain

m2
r

t ¼
Xr�1
j¼0

m2
j

t c0ðr � 1;y; j þ 1; j Þ ð2:4Þ

for all 1ptpr: Combining (2.3) and (2.4) we have bj ¼ c0ðr � 1;y; j þ 1; j Þ: In
particular, b1 ¼ c0ðr � 1;y; 2; 1Þ: To finish the proof, we have to show that c0ðr �
1;y; 2; 1Þ ¼ cðr � 1;y; 2; 1Þ: Clearly, it suffices to show that if s; j1;y; js are
integers with spr and 0pj1;y; jspm � 1 such that

2j1 þ 2j2 þ?þ 2js � 2r�1 þ 2r�2 þ?þ 2 ðmod 2m � 1Þ ð2:5Þ

then 2j1 þ 2j2 þ?þ 2jso2m � 1:
For any integer a not divisible by 2m � 1; we use wðaÞ to denote the sum of the

digits of a ðmod 2m � 1) written in base 2 representation. Note that if
a þ bc0 ðmod 2m � 1), then wða þ bÞpwðaÞ þ wðbÞ; and wðaÞ þ wðbÞ � wða þ bÞ is
the number of carries that occurred in the addition of a and b: Applying this to the
above congruence we see that sXr � 1; thus s ¼ r or r � 1: Moreover, if s ¼ r; then

exactly one carry occurs in the (modular) addition 2j1 þ 2j2 þ?þ 2js ; and if

s ¼ r � 1; then necessarily f j1; j2;y; jsg ¼ f1; 2;y; r � 1g and 2j1 þ 2j2 þ?þ
2jso2m � 1:
Now suppose that 2j1 þ 2j2 þ?þ 2jsX2m � 1: Then, by our previous observation,

s ¼ r and exactly one carry occurs in the addition 2j1 þ 2j2 þ?þ 2js : This shows
that exactly two or exactly three exponents among j1; j2;y; js are equal. Without
loss of generality, we assume that either j1 ¼ j2ð j34j44?4js and they are not equal
to j1) or j1 ¼ j2 ¼ j3ð j44j54?4js and they are not equal to j1). In the former case
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we must have m � 1 ¼ j1 ¼ j24j34j44?4js40; and

2j1 þ 2j2 þ?þ 2js � 2j3 þ 2j4 þ?þ 2js þ 20 ðmod 2m � 1Þ;

contradicting (2.5). In the latter case, we must have m � 1 ¼ j1 ¼ j2 ¼
j34j44j54?4js40; and

2j1 þ 2j2 þ?þ 2js � 2m�1 þ 2j4 þ 2j5 þ?þ 2js þ 20 ðmod 2m � 1Þ;

again contradicting (2.5). This completes the proof of the lemma. &

We will also need the following lemma in the proof of Theorem 2.1.

Lemma 2.3. Let

D ¼ cðm � 1;m � 2;y;m � r þ 1;m � r � 1Þcðm � 2;m � 3;y;m � r; 0Þ

þ cðm � 2;m � 3;y;m � r þ 1;m � r � 1; 0Þcðm � 1;m � 2;y;m � rÞ:

Then Da0:

Proof. Recall that

cðm � 1;m � 2;y;m � r þ 1;m � r � 1Þ ¼ detðvm�1; vm�2;y; vm�rþ1; vm�r�1Þ;

cðm � 2;m � 3;y;m � r; 0Þ ¼ detðvm�2; vm�3;y; vm�r; v0Þ;

cðm � 2;m � 3;y;m � r þ 1;m � r � 1; 0Þ ¼ detðvm�2; vm�3;y; vm�rþ1; vm�r�1; v0Þ;

cðm � 1;m � 2;y;m � rÞ ¼ detðvm�1; vm�2;y; vm�rÞ:

Since vm�2; vm�3;y; vm�r�1 form a basis of the F2m -span of fv0; v1;y; vm�1g; there
exist ais and bis in F2m such that

vm�1 ¼ am�2vm�2 þ?þ am�rvm�r þ am�r�1vm�r�1; ð2:6Þ

v0 ¼ bm�2vm�2 þ?þ bm�rvm�r þ bm�r�1vm�r�1: ð2:7Þ

Then

cðm � 1;m � 2;y;m � r þ 1;m � r � 1Þ ¼ am�r detðvm�2; vm�3;y; vm�r; vm�r�1Þ;

cðm � 2;m � 3;y;m � r; 0Þ ¼ bm�r�1 detðvm�2; vm�3;y; vm�r; vm�r�1Þ;

cðm � 2;m � 3;y;m � r þ 1;m � r � 1; 0Þ ¼ bm�r detðvm�2; vm�3;y; vm�r; vm�r�1Þ;

cðm � 1;m � 2;y;m � rÞ ¼ am�r�1 detðvm�2; vm�3;y; vm�r; vm�r�1Þ:

Hence we have

D ¼ detðvm�2; vm�3;y; vm�r; vm�r�1Þ2
am�r am�r�1

bm�r bm�r�1

����
����:

Since vm�2; vm�3;y; vm�r�1 are linearly independent over F2m ;
detðvm�2; vm�3;y; vm�r�1Þ is non-zero. The second determinant in the right-hand
side (RHS) of the above equation has to be non-zero for otherwise (2.6) and (2.7)
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give a dependence relation for the r consecutive vectors vm�1; vm�2;y; vm�rþ1; v0
(note that v0 ¼ vm). This shows that Da0: &

We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Recall that we assume the defining equation for A isYr

i¼1
ð1þ TrðmixÞÞ ¼ 1;

where r ¼ m � d: Suppose that Trða0Þ ¼ 0: Then ð1þ Trð
Pd�1

i¼1 ail
2i�1ÞÞ ¼ 0 for all

lAA\f0g: Thus, the function from F2m to F2m associated with the polynomial ð1þ
Trð
Pd�1

i¼1 aix
2i�1ÞÞ

Qr
i¼1 ð1þ TrðmixÞÞ is the characteristic function of f0g in F2m :

Hence, we have

1þ Tr
Xd�1
j¼1

ajx
2j�1

 ! !Yr

i¼1
ð1þ TrðmixÞÞ

� x2
m�1 � 1 ðmod x2

m � xÞ: ð2:8Þ

The binary representation of the exponent of x2
m�1 (in the LHS of (2.8)) is 11y1 (m

ones altogether). Throughout this paper, we write the most significant bit (i.e., the
ðm � 1Þth bit) to the least significant bit (i.e., the 0th bit) from left-to-right. Note that
the binary representation of the exponent of any term in

Qr
i¼1ð1þ TrðmixÞÞ cannot

have more than r ones. The binary representation of the exponent of any term in

ð1þ Trð
Pd�1

j¼1 ajx
2j�1ÞÞ has at most d � 1 ones. Thus, the maximum number of ones

in the binary representation of the exponent of any term on the left-hand side (LHS)

of (2.8) is r þ ðd � 1Þ ¼ m � 1: Therefore, the coefficient of x2
m�1 on the LHS of (2.8)

is 0. This contradicts (2.8). So this case does not occur.

From now on we assume that Trða0Þ ¼ 1: Then Trð
Pd�1

i¼1 ail
2i�1Þ ¼ 0 for all

lAA\f0g: Therefore, the function from F2m to F2m associated with the polynomial

Tr
Xd�1
j¼1

ajx
2j�1

 !Yr

i¼1
ð1þ TrðmixÞÞAF2m ½x�

is the zero function. That is, in F2m ½x�; we have the following congruence:

Tr
Xd�1
j¼1

ajx
2j�1

 !Yr

i¼1
ð1þ TrðmixÞÞ � 0 ðmod x2

m � xÞ: ð2:9Þ

For later use, we let TðxÞ and SðxÞ be polynomials in F2m ½x� of degree less than or
equal to 2m � 1 such that TðxÞ � Trð

Pd�1
j¼1 ajx

2j�1Þ ðmod x2
m � xÞ and SðxÞ �Qr

i¼1 ð1þ TrðmixÞÞ ðmod x2
m � xÞ:
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Now the proof proceeds as follows. We will first prove that ad�1 ¼ ad�2 ¼ 0: Next,
we will show that the ‘‘upper half’’ coefficients of pðxÞ are zero. More precisely, we
prove that am�dþ1 ¼ am�dþ2 ¼ ? ¼ ad�3 ¼ 0: Finally, we show that the ‘‘lower half’’
coefficients of pðxÞ are also zero. That is, a2 ¼ a3 ¼ ? ¼ am�d ¼ 0 (here we assume
that m � dX2).

Claim. ad�1 ¼ ad�2 ¼ 0: Consider the coefficient of the monomial xð2m�1�1Þ�2d�2
in

TðxÞSðxÞ; i.e., the LHS of (2.9). The binary expansion of its exponent is

0 1y11
zfflfflffl}|fflfflffl{r

0 1y1
zffl}|ffl{d�2

:

The number of 1’s in this expansion is ðm � 2Þ: The maximum number of 1’s in the
exponent of any summand in SðxÞ is r and the maximum number of 1’s in the
exponent of any summand in TðxÞ is d � 1:When adding two exponents (written in
their binary representations), any carry that may occur reduces the number of 1’s in
the sum. Since we are interested in an exponent whose number of 1’s is ðm � 2Þ; it
can only be obtained as a sum of two exponents (one is the exponent of a summand
in TðxÞ; the other in SðxÞ) with at most one carry.
If ð2m�1 � 1Þ � 2d�2 is obtained as a sum without carry then there is only one

possibility.

0 1y11
zfflfflffl}|fflfflffl{r

0 1y1
zffl}|ffl{d�2

¼ 0 1y11
zfflfflffl}|fflfflffl{r

000y00þ 00y000 11y11
zfflfflfflffl}|fflfflfflffl{d�2

:

Using the assumption that 2d4m þ 2; we see that rod � 2 and thus, the d � 2
consecutive 1’s have to come from the term x2

d�2�1 in TðxÞ; whose coefficient is ad�2:

If ð2m�1 � 1Þ � 2d�2 is obtained as a sum with exactly one carry, then that carry
has to happen at position d � 2 and so

0 1y11
zfflfflffl}|fflfflffl{r

0 1y1
zffl}|ffl{d�2

¼ 0 1y1
zffl}|ffl{r

0100y00þ 00y00 111y11
zfflfflfflfflffl}|fflfflfflfflffl{d�1

:

Again, the d � 1 consecutive 1’s have to come from the term x2
d�1�1 in TðxÞ; whose

coefficient is ad�1: Hence by (2.9), we have

cðm � 2;m � 3;y; d; d � 1Þad�2

þ cðm � 2;m � 3;y; d; d � 2Þad�1 ¼ 0: ð2:10Þ

Next, we look at the coefficient of xð2m�1�1Þ�2d�1
in TðxÞSðxÞ: As before,

the number of 1’s in the binary expansion of ð2m�1 � 1Þ � 2d�1 is m � 2:
Hence at most one carry may occur. Again, using r � 1od � 1 there are
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only three ways of obtaining ð2m�1 � 1Þ � 2d�1 as a sum of two exponents without
carry.

0 1y1
zffl}|ffl{r�1

0 11y1
zfflfflffl}|fflfflffl{d�1

¼ 0 1y11
zfflfflffl}|fflfflffl{r�1

000y00þ 00y000 11y11
zfflfflfflffl}|fflfflfflffl{d�1

¼ 0 1y11
zfflfflffl}|fflfflffl{r�1

01 0y00
zfflfflffl}|fflfflffl{d�2

þ00y0000 1y11
zfflfflffl}|fflfflffl{d�2

¼ 0 1y11
zfflfflffl}|fflfflffl{r�1

0 00y0
zfflfflffl}|fflfflffl{d�2

1þ 00y000 11y1
zfflfflffl}|fflfflffl{d�2

0:

If a carry occurs, then it has to be at position d � 1:

0 1y1
zffl}|ffl{r�1

0 11y1
zfflfflffl}|fflfflffl{d�1

¼ 0 1y1
zffl}|ffl{r�2

0100y01þ 00y00 111y1
zfflfflfflffl}|fflfflfflffl{d�1

0:

It follows from (2.9) that

cðm � 2;m � 3;y; dÞad�1 þ cðm � 2;m � 3;y; d; d � 2Þad�2

þ cðm � 2;m � 3;y; d; 0Þa2d�2
þ cðm � 2;m � 3;y; d þ 1; d � 1; 0Þa2d�1 ¼ 0: ð2:11Þ

Now, we claim that

cðm � 2;m � 3;y; dÞad�1 þ cðm � 2;m � 3;y; d; d � 2Þad�2 ¼ 0: ð2:12Þ

In order to prove (2.12), we will show that

cðm � 2;m � 3;y; d; d � 2Þ cðm � 2;m � 3;y; d � 1Þ
cðm � 2;m � 3;y; dÞ cðm � 2;m � 3;y; d; d � 2Þ

����
���� ¼ 0:

Once we prove this, it is clear that (2.12) will follow from (2.10). Hence, we need to
show that

cðm � 2;m � 3;y; d; d � 2Þ2 ¼ cðm � 2;m � 3;y; d � 1Þ

� cðm � 2;m � 3;y; dÞ; ð2:13Þ

which, by (2.1) is the same as

cðm � 1;m � 2;y; d þ 1; d � 1Þ ¼ cðm � 2;m � 3;y; d � 1Þ

� cðm � 2;m � 3;y; dÞ:

Making appropriate shifts using (2.1), the above equation is further equivalent to

cðr; r � 1;y; 2; 0Þ ¼ cðr � 1; r � 2;y; 1; 0Þcðr � 1;y; 2; 1Þ:

Hence, by Lemma 2.2, we have proved (2.12).
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Now the combination of (2.10)–(2.12) yields that

cðm � 2;y; d; d � 2Þ2 cðm � 2;y; d; d � 1Þ2

cðm � 2;y; d þ 1; d � 1; 0Þ cðm � 2;y; d; 0Þ

 !
a2d�1
a2d�2

 !

¼
0

0

� �
: ð2:14Þ

By Lemma 2.3 the determinant of the coefficient matrix in (2.14) is non-zero and
thus, ad�1 ¼ ad�2 ¼ 0:

Claim. ad�3 ¼ ? ¼ arþ1 ¼ 0: Now let d � 24k4r and suppose that aj ¼ 0 for all
d � 1Xj4k: We want to show that ak ¼ 0: To this end, consider the coefficient of
xð2m�1�2d�1Þþð2k�1Þ in TðxÞSðxÞ: Since k4r there is only one way of attaining this
exponent when multiplying TðxÞ and SðxÞ:

0 1y1
zffl}|ffl{r

0y0 11y1
zfflfflffl}|fflfflffl{k

¼ 0 1y11
zfflfflffl}|fflfflffl{r

000y00þ 00y000 11y11
zfflfflfflffl}|fflfflfflffl{k

:

Hence by (2.9), cðm � 2;m � 3;y; d � 1Þak ¼ 0: As noted before, cðm � 2;m �
3;y; d � 1Þa0 so we have ak ¼ 0:

At this point we note that if d ¼ m � 1; i.e., r ¼ 1; then the above two claims
already show that a2 ¼ a3 ¼ ? ¼ ad�1 ¼ 0; and the theorem is proved in this case.
So from now on, we assume that m � 14d4m

2
þ 1: Also we will assume that mX10:

The case where 5pmp8 will be dealt with separately at the very end of the proof.

Claim. a3 ¼ ? ¼ ar ¼ 0: For any integer t; 3ptpr; suppose that aj ¼ 0 for all j4t;

we will prove that at ¼ 0: Here we need the following result, whose proof will be
given right after our proof of Theorem 2.1.

Result 1. Assume that mX10 and m�3
2

� �
XrXtX3: There exist 0 ¼ i1o?oirpm �

t � 3 such that

(i) cði1; i2;y; irÞa0; and

(ii) the number of consecutive integers in the set fi1; i2;y; irg is less than or equal to

t � 1:

With Result 1, we will look at the coefficient of x
ð2m�1�2m�t�1Þþ

Pr

j¼1 2
ij

in TðxÞSðxÞ;
i.e., the LHS of (2.9). Note that the exponent of this monomial has the m-bit binary
representation

0 11y1|fflfflffl{zfflfflffl}
t

0 0y1y1y1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m�t�2

;

where at the ijth bit, there is a 1, for each j ¼ 1; 2;y; r:
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Since the number of consecutive integers in the set fi1; i2;y; irg is less than or
equal to t � 1; there is only one way to get the term x

ð2m�1�2m�t�1Þþ
Pr

j¼12
ij

when
multiplying TðxÞ with SðxÞ; namely

0 11y1|fflfflffl{zfflfflffl}
t

0 0y1y1y1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m�t�2

¼ 0 00y0|fflfflffl{zfflfflffl}
t

0 0y1y1y1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m�t�2

þ0 11y1|fflfflffl{zfflfflffl}
t

0 00y0|fflfflffl{zfflfflffl}
m�t�2

:

Therefore, the coefficient of x
ð2m�1�2m�t�1Þþ

Pr

j¼1 2
ij

in TðxÞSðxÞ is cði1; i2;y; irÞa2
m�t�1

t :
It follows now from (2.9) that

cði1; i2;y; irÞa2
m�t�1

t ¼ 0:

Noting that cði1; i2;y; irÞa0 we have at ¼ 0:

Claim. a2 ¼ 0: Suppose that a2a0: Let QðxÞ ¼ Trða2x3 þ a1xÞ and let V ¼ F2m :
Note that since Trða0Þ ¼ 1; the assumption that TrðpðlÞÞ ¼ 1 for all lAA\f0g implies
that QðlÞ ¼ 0 for all lAA; where jAj ¼ 2d : The map Q : V-F2 is a quadratic form
with associated bilinear form

Bðx; yÞ ¼Qðx þ yÞ � QðxÞ � QðyÞ

¼Trða2ðxy2 þ yx2ÞÞ:

We will show that the maximum dimension of a subspace of V on which Q

vanishes is less than d: This will force a2 ¼ 0:
Let RadV ¼ fxAV j Bðx; yÞ ¼ 0; 8yAVg: Note that in even characteristic Q does

not have to be zero on RadV : Therefore, we consider V0 ¼ fxARadV j QðxÞ ¼ 0g:
We call Q non-singular if V0 ¼ f0g: By Witt’s theorem, the maximum dimension of a
totally singular subspace of a non-singular quadratic space ðV ;QÞ is at most
1
2
dimV

� �
: In our case we have RadV ¼ fxAV j x ¼ a2x

4g: In particular,
dimV0p2: If Q is nonsingular then the maximum dimension of a totally

singular subspace is at most m
2

� �
: If Q is singular then we consider the

induced (nonsingular) quadratic form %Q : V=V0-F2: The maximum dimension of

a subspace U of V=V0 on which %Q vanishes is at most 1
2
ðm � dimV0Þ: The

maximum dimension of a subspace of V on which Q vanishes is less than or

equal to dimðU>V0Þp12ðm þ dimV0Þpm
2 þ 1: It follows that in either case the

maximum dimension of a subspace of V on which Q vanishes is less than d; hence a2
has to be 0.
Finally, we deal with the case where 5pmp8: When m ¼ 5 or 6, there is no

admissible d satisfying the restriction that m � 14d4m
2
þ 1: When m ¼ 7

(resp. m ¼ 8), the only admissible d is 5 (resp. 6). In both cases, r ¼ m � d ¼ 2;
and by the first two claims, we have a3 ¼ a4 ¼ ? ¼ ad�1 ¼ 0: Now by
the same argument using quadratic forms as above, we can further prove that
a2 ¼ 0:
The proof of the theorem will be complete once we proof Result 1 above. &

ARTICLE IN PRESS
F. Fiedler et al. / Journal of Combinatorial Theory, Series A 108 (2004) 99–122 111



We now give the promised proof of Result 1. This result can be thought
as a generalization of the fact that a Moore determinant is nonzero, and it
may be of independent interest. The proof of Result 1 we give here is elementary,
but quite technical. The reader may want to skip the proof in a first reading of
the paper.
We state Result 1 formally as

Theorem 2.4. Let m; r; t be positive integers, and let m1;y; mrAF2m be linearly

independent over F2: If mX10 and Im�3
2 mXrXtX3; then there exist 0 ¼

i1oi2o?oirpm � ðt þ 3Þ such that

(1)

det

m2
i1

1 m2
i1

2 ? m2
i1

r

^ & ^
m2

ir

1 m2
ir

2 ? m2
ir

r

0
B@

1
CAa0; and

(2) the number of consecutive integers in the set fi1; i2;y; irg is at most t � 1:

We first fix some notation. Let V be the F2m-span of fv0;y; vm�1g; where vi ¼
ðm2i

1 ; m
2i

2 ;y; m2
i

r Þ
T: As before, all indices of the vectors vi are to be read modulo m:We

have dimF2m V ¼ r and fvi; viþ1;y; viþr�1g is a basis of V for all iX0 [LN, Lemma

3.5]. By v2
j

i we mean component-wise exponentiation of vi by 2
j: Hence v2

j

i ¼ viþj:We

will use binary vectors to denote subsets of fv0;y; vm�1g as follows. Let u ¼
ðu0; u1;y; uiÞAFiþ1

2 be a vector of length i þ 1: By LðuÞ we will denote the F2m-span

of fvj j uj ¼ 1g: We also allow concatenation of binary vectors. If u ¼ ðu0; u1;y; uiÞ
and u0 ¼ ðu00; u1

0;y; uj
0Þ then

u � u0 ¼ ðu0; u1;y; ui; u0
0; u1

0;y; uj
0Þ:

If we concatenate several copies, say iX1; of the same vector u then we denote the

resulting vector by u�i: Sometimes it may happen that we have a concatenated vector

u0 � u�i with i ¼ 0: In this case we assume that no copy of u had been appended to u0;
that is, u0 � u�0 ¼ u0:
Now Theorem 2.4 can be reformulated as follows.

Theorem ð2:40Þ. For rp m�3
2

� �
there exists a binary vector w of length at most

m � ðt þ 2Þ such that LðwÞ ¼ V and the number of consecutive 1’s in w is at most t � 1:

First of all, note that it suffices to prove the theorem in the case where r is equal to
m�3
2

� �
: Indeed, if we have found a vector w for m�3

2

� �
¼ R then the same vector w will

satisfy our requirements for smaller r: The reason is as follows. Suppose that roR:
We can extend the set fm1; m2;y; mrg to a set of R elements fm1; m2;y; mr;y; mRg in
F2m that are linearly independent over F2: By assumption, we can find 0 ¼
i1oi2o?oiRom � ðt þ 3Þ such that vi1 ; vi2 ;y; viR form a basis of F

R
2m ; where vij ¼

ðm2ij

1 ; m
2ij

2 ;y; m2
ij

R ÞT: Let vij
0 be the projection of vij onto the first r coordinates, that is,
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vij
0 ¼ ðm2ij

1 ; m
2ij

2 ;y; m2
ij

r ÞT for 1pjpR: Then fvi1
0; vi2

0;y; viR
0g spans Fr

2m : Hence

this set contains r vectors vij1
0; vij2

0;y; vijr
0 that are linearly independent over F2m :

By assumption, 0pij1oij2o?oijrom � ðt þ 3Þ and the number of consecutive
integers in fij1 ; ij2 ;y; ijrg is at most t � 1: If ij1a0 then it is clear that
we can use f0; ij2 � ij1 ;y; ijr � ij1g instead. From now on, we will assume

that r ¼ m�3
2

� �
:

We write r ¼ kt þ a; where 0papt � 1: Since rXt; we have kX1: Let a ¼
ð1;y; 1ÞAFa

2; u ¼ ð0; 1;y; 1ÞAFt
2; %u ¼ ð1; 0;y; 0ÞAFt

2; and 0 ¼ ð0;y; 0ÞAFt
2: Then

dimLða � u�kÞ ¼ r � k since a � u�k is a vector of length r with exactly k zeros. We

will append copies of u or %u to a � u�k to describe a set of vectors vi that generate V :

Note that by appending u to a � u�ðkþbÞ; 0pbok; we have

dimLða � u�ðkþbþ1ÞÞXdimLða � u�ðkþbÞÞ:

Lemma 2.5. (1) If Lða � u�ðkþbþ1ÞÞ ¼ Lða � u�ðkþbÞÞ; then Lða � u�ðkþbþiÞÞ ¼ Lða �
u�ðkþbÞÞ for any positive integer i:

(2) If Lða � u�ðkþ1ÞÞ ¼ Lða � u�kÞ þ F2mvrþc where 1pcpt � 1; then Lða �
u�ðkþbþ1ÞÞ ¼ Lða � u�ðkþbÞÞ þ F2mvrþbtþc for any positive integer b:

(3) Let y be a binary vector of length c and 1t ¼ ð1; 1;y; 1ÞAFt
2: Suppose LðyÞ is a

proper subspace in V and there exists a vector zAFt
2 such that fvi j ðz � yÞi ¼

1gDfvi j ðy � 1tÞi ¼ 1g: Then LðyÞD! Lðy � 1tÞ:

Proof. (1) Observe that since Lða � u�ðkþbÞÞ ¼ Lða � u�ðkþbþ1ÞÞ; we have dependence
relations vrþbtþj ¼

Prþbt�1
i¼0 civi for 1pjpt � 1 where ci ¼ 0 if i is of the form a þ st:

This gives dependence relations v2
t

rþbtþj ¼ vrþðbþ1Þtþj ¼
Prþbt�1

i¼0 c2
t

i viþt; hence Lða �
u�ðkþbþ2ÞÞDLða � u�ðkþbþ1ÞÞ:
(2) Observe that our assumption implies that for 1pjpt � 1 with jac; we have

dependence relations vrþj ¼ crþcvrþc þ
Pr�1

i¼0civi where ci ¼ 0 if i is of the form a þ st:

As before, we then obtain the relation vrþbtþj ¼ c2
bt

rþcvrþbtþc þ
Pr�1

i¼0c
2bt

i viþbt where

ci ¼ 0 if i is of the form a þ st: Clearly,
Pr�1

i¼0c
2bt

i viþbtALða � u�ðkþbÞÞ as ci ¼ 0 if i is of

the form a þ st: We thus obtain (2).
(3) Suppose LðyÞ ¼ Lðy � 1tÞ: Then the t consecutive vectors vc; vcþ1;y; vcþðt�1Þ

are all in LðyÞ: On the other hand,

fx2
t j xALðyÞgDLðz � yÞDLðy � 1tÞ ¼ LðyÞ:

It follows that for any xALðyÞ; we have x2
t

ALðyÞ: In particular,
vcþit; vcþ1þit;y; vcþðt�1Þþit are all in LðyÞ for every positive integer i: We thus have

v0;y; vr�1ALðyÞ: This contradicts our assumption that VaLðyÞ: &

We are now ready to prove Theorem 2:40: Recall that kX1 and we may assume

r ¼ m�3
2

� �
:
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Proof. We will consider two cases.

Case Lða � u�k � u�iÞaV for all i40: In this case the dimensions of the subspaces
in the nested sequence

Lða � u�kÞDLða � u�ðkþ1ÞÞD?Lða � u�ðkþiÞÞD?

stop growing eventually. Let b be the largest integer such that dimLða �
u�ðkþbÞÞ4dimLða � u�ðkþb�1ÞÞ: Since r4dimLða � u�ðkþbÞÞXr � k þ b; we have
0pbok: By repeated application of Lemma 2.5, part 3, we see that

V ¼ Lða � u�ðkþbþ1Þ � 1�ðk�b�1Þ
t Þ if dimLða � u�ðkþbÞÞ4r � k þ b;

Lða � u�ðkþbÞ � 1�ðk�bÞ
t Þ if dimLða � u�ðkþbÞÞ ¼ r � k þ b:

(

Since Lða � u�ðkþbþiÞÞ ¼ Lða � u�ðkþbÞÞ for all positive integer i;

V ¼ Lða � u�ðkþbÞ � 0 � %u�ðk�b�1ÞÞ if dimLða � u�ðkþbÞÞ4r � k þ b;

Lða � u�ðkþbÞ � %u�ðk�bÞÞ if dimLða � u�ðkþbÞÞ ¼ r � k þ b:

(

Subcase dimLða � u�ðkþbÞÞ4r � k þ b: We define w to be the vector obtained by

dropping the last ðt � 1Þ zeros from the last copy of %u in the vector a � u�ðkþbÞ � 0 �
%u�ðk�b�1Þ: Note that the length of w is at most m � ðt þ 2Þ; LðwÞ ¼ V ; and the
number of consecutive 1’s in w is at most t � 1:

Subcase dimLða � u�ðkþbÞÞ ¼ r � k þ b and b40: Appending the ðk þ bÞth copy of
u increased the dimension of Lða � u�ðkþb�1ÞÞ by exactly one, i.e., dimLða � u�ðkþbÞÞ ¼
1þ dimLða � u�ðkþb�1ÞÞ: Thus, Lða � u�ðkþbÞÞ ¼ Lða � u�ðkþb�1ÞÞ þ F2mvrþðb�1Þtþi for

some 1pipt � 1: Let uiAFt
2 be the vector with ði þ 1Þth entry being one and all other

entries 0: Then it is clear that Lða � u�ðkþbÞÞ ¼ Lða � u�ðkþb�1Þ � uiÞ: Recall that V ¼
Lða � u�ðkþbÞ � %u�ðk�bÞÞ: Therefore, we deduce

V ¼ Lða � u�ðkþb�1Þ � ui � %u
�ðk�bÞÞ:

To find the required vector w; we simply drop the last ðt � 1Þ zeros from the last
copy of %u in a � u�ðkþb�1Þ � ui � %u�ðk�bÞ: Clearly, the resulting vector is of length r þ
ðk � 1Þt þ 1 which is at most m � ðt þ 2Þ and satisfies what we require.

Subcase dimLða � u�ðkþbÞÞ ¼ r � k þ b and b ¼ 0: In this case we have Lða � u�kÞ ¼
Lða � u�ðkþiÞÞ for all i40: It follows that for any 0pjpr � 1 and for any i;

vjþitALða � u�kÞ if and only if jca ðmod tÞ: As vaþmeLða � u�kÞ; it follows that a þ
m � a ðmod tÞ: Hence, we have t j m: Since we may assume r ¼ m�3

2

� �
it follows that

t ¼ 2a þ 3; t ¼ 2a þ 4; or t ¼ a þ 2: In each case, 0papt � 2:
First we will assume t � 2XaX1: It follows that vt�1ALða � u�kÞ and thus

vm�1ALða � u�kÞ: Recall that any r consecutive vectors in fv0; v1;y; vm�1g are
linearly independent. In particular, fvm�1; v0;y; vr�2g are linearly independent. Let
z ¼ ð0;y; 0; 1ÞAFm�r�kt

2 : It is clear that Lða � uk�1 � ð0; 1; 1;y; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t�2

; 0Þ � 0�k � zÞ is an
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ðr � kÞ dimensional subspace in Lða � u�kÞ: As dimLða � u�kÞ ¼ r � k; it follows that

Lða � u�ðk�1Þ � ð0; 1; 1;y; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t�2

; 0Þ � 0�k � zÞ ¼ Lða � u�kÞ:

Consequently, by Lemma 2.5, part 3, we conclude that

Lða � u�ðk�1Þ � ð0; 1; 1;y; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t�2

; 0Þ � %u
�k � zÞ ¼ Lða � u�k � %u

�k � zÞ ¼ V :

The vector a � u�ðk�1Þ � ð0; 1; 1;y; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{t�2

; 0Þ � %u�k � z does not have more than t � 1

consecutive 1’s since apt � 2: Shifting this vector by one to the right it follows that
V ¼ Lðð1Þ � a � u�k�1 � ð0; 1; 1;y; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

t�2

; 0Þ � %u
�k�1 � ð1ÞÞ:

The length of the vector w ¼ ð1Þ � a � u�k�1 � ð0; 1; 1;y; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{t�2

; 0Þ � %u�k�1 � ð1Þ is r þ ðk �

1Þt þ 2; which is at most m � ðt þ 2Þ � ða � 1Þ: We are done as aX1:
It remains to deal with the case where a ¼ 0: Recall that tX3 and t ¼ 2a þ 3;

t ¼ 2a þ 4; or t ¼ a þ 2: This forces t ¼ 3 or 4. Consequently, m ¼ 6k þ 3 when
t ¼ 3; or t ¼ 4 and m ¼ 8k þ 4:
Since vrþ1ALðu�kÞ; there exist cis in F2m such that

vrþ1 ¼
Xt�1
j¼1

Xk�1
i¼0

cjþtivjþti:

It follows that

vrþ2 ¼
Xt�1
j¼1

Xk�1
i¼0

c2jþtivjþ1þti ¼
Xk�1
i¼0

c2ðt�1Þþtivtðiþ1Þ þ
Xt�2
j¼1

Xk�1
i¼0

c2jþtivjþ1þti:

Since t42 we have vrþ2ALðu�kÞ: Note that also
Pt�2

j¼1
Pk�1

i¼0 c2jþtivjþ1þtiALðu�kÞ and
thus,

Pk�1
i¼0 c2t�1þtivtðiþ1ÞALðu�kÞ: However, we also have

Pk�1
i¼0 c2t�1þtivtðiþ1ÞALð0 �

%u�kÞ: Now observe that V is spanned by the r linearly independent vectors

v1; v2;y; vkt; Lð0 � %u�kÞ is spanned by the k vectors vt; v2t;y; vkt; and Lðu�kÞ is
spanned by the r � k vectors in fv1; v2;y; vktg\fvt; v2t;y; vktg: Therefore,Pk�1

i¼0 c2t�1þtivtðiþ1ÞALðu�kÞ-Lð0 � %u�kÞ has to be the zero vector in Fr
2m : This forces

ct�1 ¼ cðt�1Þþt ¼ ? ¼ cðt�1Þþðk�1Þt ¼ 0:
If t ¼ 4; then by applying a similar argument on vrþ3; we see that ct�2 ¼ cðt�2Þþt ¼

? ¼ cðt�2Þþðk�1Þt ¼ 0: Thus, in both cases, we obtain

vrþ1 ¼
Xk�1
i¼0

c1þtiv1þti:
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Let h be the largest integer such that c1þtha0: If hak � 1; then vrþ1þðk�h�1Þt ¼Pk�1
i¼0 c1þti

0v1þti where c1þtðk�1Þ
0 ¼ c2

tðk�h�1Þ

1þth a0: Hence, it follows that

V ¼ Lðu�ðk�1Þ � ð0; 0; 1Þ � %u�ðk�h�1Þ � ð1; 1; 0Þ � %u�hÞ if t ¼ 3;
Lðu�ðk�1Þ � ð0; 0; 1; 1Þ � %u�ðk�h�1Þ � ð1; 1; 0; 0Þ � %u�hÞ if t ¼ 4:

(

If h ¼ k � 1; i.e., c1þtðk�1Þa0; then we see that

V ¼ Lðu�ðk�1Þ � ð0; 1; 0Þ � ð1; 0; 1Þ � %u�ðk�1ÞÞ if t ¼ 3;
Lðu�ðk�1Þ � ð0; 1; 0; 1Þ � ð1; 0; 1; 0Þ � %u�ðk�1ÞÞ if t ¼ 4:

(

When kX2; after dropping the zero in the first copy of u and the last zero in the last
copy of %u; we obtain a vector we require in each case. When k ¼ 1; we deduce that
t ¼ 4 as m ¼ 9 is excluded (cf. Example 2.7), and clearly the required vector is then
ð1; 0; 1; 1; 0; 1Þ:

Case Lða � u�k � u�bÞ ¼ V for some bpk: We consider two subcases depending on

the increase in dimension in the nested sequence Lða � u�kÞD! Lða � u�ðkþ1ÞÞD! ?D! V :
Subcase bok: The dimension of one of the subspaces in the sequence increases by

more than one compared to that of its predecessor, and 1pbpk � 1: Thus, a �
u�ðkþbÞ is a vector of length a þ ðk þ bÞtpa þ ð2k � 1Þt ¼ m � a � ðt þ 3Þ: By
construction, this vector does not have more than t � 1 consecutive 1’s and we are
done.

Subcase b ¼ k: The dimension of each vector space in the nested sequence Lða �
u�kÞD! ?D! Lða � u�ð2kÞÞ ¼ V increases by exactly one compared to that of its

predecessor. Hence there is a smallest index j; 1pjpt � 1; such that vaþktþjeLða �
u�kÞ and Lða � u�ðkþ1ÞÞ ¼ Lða � u�kÞ þ F2mvaþktþj: It follows from Lemma 2.5, part 2,

that V ¼ Lða � u�2kÞ ¼ Lða � u�ð2k�1ÞÞ þ F2mvaþð2k�1Þtþj: Therefore, we conclude

V ¼ Lða � u�ð2k�1Þ � ð0;y; 0|fflfflffl{zfflfflffl}
j

; 1ÞÞ:

Note that the length of the vector a � u�ð2k�1Þ � ð0;y; 0
zfflfflffl}|fflfflffl{j

; 1Þ is r þ ðk � 1Þt þ ð j þ 1Þ;

which is at most m � ðt þ 2Þ � ða � j Þ: By construction, it does not have more than
t � 1 consecutive 1’s. Therefore, we are done if jpa:
We still have to deal with the case where j4a: In this case,

Lða � u�kÞ ¼ Lða � u�k � ð0; 1;y; 1|fflfflffl{zfflfflffl}
j�1

ÞÞ

since j was the smallest index such that Lða � u�ðkþ1ÞÞ ¼ Lða � u�kÞ þ F2mvrþj:

However, it is clear that the set fvj;y; vrþð j�1Þg\fvaþt;y; vaþktg is linearly
independent. Therefore,

Lða � u�kÞ ¼ Lðð0;y; 0|fflfflffl{zfflfflffl}
j

; 1;y; 1|fflfflffl{zfflfflffl}
tþa�j

Þ � u�ðk�1Þ � ð0; 1;y; 1|fflfflffl{zfflfflffl}
j�1

ÞÞ
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as both spaces have the same dimension. It follows that

V ¼ Lða � u�ð2k�1Þ � ð0; 1;y; 1|fflfflffl{zfflfflffl}
j

ÞÞ ¼ Lðð0;y; 0|fflfflffl{zfflfflffl}
j

; 1;y; 1|fflfflffl{zfflfflffl}
tþa�j

Þ � u�ð2k�2Þ � ð0; 1;y; 1|fflfflffl{zfflfflffl}
j

ÞÞ:

Deleting leading and tailing zeros, we obtain a vector that has length at most
m � ðt þ 2Þ � a: This completes our proof. &

Combining Theorem 2.1 with known constructions, we have

Theorem 2.6. Let mX5 but ma9: Then the largest d of a non-Denniston maximal arc

of degree 2d in PGð2; 2mÞ generated by a fp; 1g-map via Theorem 1.2 is m
2

� �
þ 1:

Proof. Let pðxÞ ¼
Pd�1

i¼0 aix
2i�1AF2m ½x�: Assume that TrðpðlÞÞ ¼ 1 for all lAA\f0g;

where A is an additive subgroup of F2d : If mX5 but ma9; and if m4d4m
2
þ 1; then

by Theorem 2.1, pðxÞ is a linear polynomial, hence the maximal arc generated by the
fp; 1g-map is a Denniston maximal arc. This shows that when mX5 but ma9; the
largest d of a non-Denniston maximal arc of degree d in PGð2; 2mÞ generated by a
fp; 1g-map via Theorem 1.2 is p m

2

� �
þ 1:

On the other hand, there are always fp; 1g-maps generating non-Denniston
maximal arcs of degree 2

m
2b cþ1 if mX5 (see [FLX,HM,M]). The conclusion of the

theorem now follows. &

We remark that when m ¼ 9; there is an example of fp; 1g-maps that generates a
non-Denniston maximal arc of degree 26: This example appears in [HM].

Example 2.7 (Hamilton and Mathon [HM]). Let g be a primitive element in F29 :

Note that 73ð23 � 1Þ ¼ 29 � 1; so b ¼ g73 is a primitive element in F23 : Let mi ¼ bi for
i ¼ 0; 1; 2 and A ¼ fxAF29 j TrðmixÞ ¼ 0; 8i ¼ 0; 1; 2g: That is, A ¼
fxAF29 j Tr29=23ðxÞ ¼ 0g since m1; m2; m3 are linearly independent over F2: Let pðxÞ ¼
x7 þ 1: Direct computations show that TrðpðlÞÞ ¼ 1 for all lAA\f0g: Therefore, the
set of points on the conics in fFpðlÞ;1;l j lAA\f0gg together with the common nucleus
F0 forms a non-Denniston maximal arc of degree 2

6:

3. Upper bound for the degree of non-Denniston maximal arcs in PGð2; 2mÞ generated
by fp; qg-maps

In this section we try to extend the result in previous section to fp; qg-maps, where
q is not necessarily 1:

Theorem 3.1. Let A be an additive subgroup of size 2d in F2m ; and let pðxÞ ¼Pd�1
i¼0 aix

2i�1AF2m ½x�; qðxÞ ¼
Pd�1

i¼0 bix
2i�1AF2m ½x�: Assume that mX7 but ma9; and
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m4d4m
2
þ 2: If TrðpðlÞqðlÞÞ ¼ 1 for all lAA\f0g; then a2 ¼ a3 ¼ ? ¼ ad�1 ¼ 0 and

b2 ¼ b3 ¼ ? ¼ bd�1 ¼ 0: That is, pðxÞ and qðxÞ are both linear and the maximal arc

obtained from the fp; qg-map via Theorem 1.2 is a Denniston maximal arc.

Proof. Let r ¼ m � d: As in the proof of Theorem 2.1, we assume that the defining
equation of A isYr

i¼1
ð1þ TrðmixÞÞ ¼ 1;

where miAF�2m are linearly independent over F2: Also as argued in the proof of
Theorem 2.1, we may assume that Trða0b0Þ ¼ 1: Then

TrðpðxÞqðxÞ þ a0b0Þ
Yr

i¼1
ð1þ TrðmixÞÞ � 0 ðmod x2

m � xÞ: ð3:1Þ

For convenience, set TðxÞ ¼ TrðpðxÞqðxÞ þ a0b0Þ ðmod x2
m � xÞ and SðxÞ ¼Qr

i¼1 ð1þ TrðmixÞÞ ðmod x2
m � x). Also as before denote the coefficient of

x2
i1þ2i2þ?þ2is

in SðxÞ by cði1; i2;y; isÞ; where 1pspr and m �
1Xi14i24?4isX0: The remarks about cði1; i2;y; isÞ in the course of proving
Theorem 2.1 are of course valid here.
In the proof of Theorem 2.1 we use the fact that the exponent of any term in the

expansion of TrðpðxÞÞ is a cyclic shift of ð2i � 1Þ for some i: This is no longer true for
TðxÞ ¼ TrðpðxÞqðxÞ þ a0b0Þ if qðxÞ is not a constant. Instead, the exponent of
any term in the expansion of TðxÞ is 2sðð2j � 1Þ þ ð2k � 1ÞÞ; where m � 1XsX0;

d � 1XjXkX0: If kX1 then the binary representation of 2sðð2j � 1Þ þ ð2k � 1ÞÞ is a
cyclic shift of

0y01 0y0
zffl}|ffl{j�k

1y1
zffl}|ffl{k�1

0:

The number of 1’s in this representation is k: If k ¼ 0 then it is a cyclic shift of

0y0 1y1
zffl}|ffl{j

:

The number of 1’s is j: This shows that the maximum number of 1’s in the binary
representations of such exponents is d � 1: Note that if k ¼ 0 or k ¼ j then such an

exponent is 2sð2i � 1Þ for some s and i; hence its binary representation is a shift of i

consecutive 1’s.
We want to use techniques similar to those in the proofs of Theorem 2.1. That is,

we will be looking at the coefficients of various terms in TðxÞSðxÞ: We will be
particularly interested in terms xe in TðxÞ; where the exponent e has ðd � 1Þ or
ðd � 2Þ ones in its binary representation. If e has ðd � 1Þ ones, it must be a shift of
2d � 2 or 2d�1 � 1: The coefficients of x2

d�2 and x2
d�1�1 in TðxÞ are ad�1bd�1 and

a0bd�1 þ ad�1b0; respectively. If e has ðd � 2Þ ones, then it must be a shift of one of

ARTICLE IN PRESS
F. Fiedler et al. / Journal of Combinatorial Theory, Series A 108 (2004) 99–122118



2d�2 � 1; 2d�1 � 2; 2d�1 þ 2d�2 � 2: The coefficients of x2
d�2�1; x2

d�1�2; x2
d�1þ2d�2�2

are a0bd�2 þ ad�2b0; ad�2bd�2 and ad�1bd�2 þ ad�2bd�1; respectively.

Claim. ad�2bd�1 þ ad�1bd�2 ¼ 0: Consider the coefficient of x2
m�2d�2�2 in TðxÞSðxÞ:

The binary representation of the exponent is

1y1
zffl}|ffl{r

10 1y1
zffl}|ffl{d�3

0;

which has ðm � 2Þ ones. The maximum number of 1’s in the exponent of any
summand in SðxÞ is r and the maximum number of 1’s in the exponent of any
summand in TðxÞ is d � 1: When adding two exponents (written in their binary
representations), any carry that may occur reduces the number of 1’s in the sum.
Since we are interested in an exponent whose number of 1’s is ðm � 2Þ; it can only be
obtained as a sum of two exponents (one is the exponent of a summand in TðxÞ; the
other in SðxÞ) with at most one carry.
Suppose the exponent 2m � 2d�2 � 2 is obtained without carry. Using the

assumption that d4m
2
þ 2; we have d � 34r þ 1: So there is only one possibility.

1y1
zffl}|ffl{r

10 1y1
zffl}|ffl{d�3

0 ¼ 1y1
zffl}|ffl{r

000y00þ 0y010 1y1
zffl}|ffl{d�3

0:

Hence 0y010 1y1
zffl}|ffl{d�3

0 must come from the exponent of x2
d�1þ2d�2�2 in TðxÞ; whose

coefficient is ad�2bd�1 þ ad�1bd�2; and 1y1
zffl}|ffl{r

000y00 must come from x2
m�1þ?þ2d

in

SðxÞ; whose coefficient is cðm � 1;m � 2;y; dÞ:
Now suppose that the exponent 2m � 2d�2 � 2 is obtained with a carry, which

means that the contribution from TðxÞ is a shift of 2d�1 � 1: Then it has to be exactly
one carry which has to occur at position d � 2 since d � 34r þ 1: There is no way of
realizing this with any shift of 2d�1 � 1:
Therefore the coefficient of x2

m�2d�2�2 in TðxÞSðxÞ is ðad�2bd�1 þ ad�1bd�2Þcðm �
1;m � 2;y; dÞ; and by (3.1), we have

ðad�2bd�1 þ ad�1bd�2Þcðm � 1;m � 2;y; dÞ ¼ 0:

Noting that cðm � 1;m � 2;y; dÞ is a Moore determinant, which is non-zero, we
conclude that ad�2bd�1 þ ad�1bd�2 ¼ 0:

After proving the above claim, observe that now the exponent of any term in TðxÞ
whose number of 1’s is d � 1 or d � 2 has to be a cyclic shift of 2d�1 � 1 or 2d�2 � 1:
Thus, we are ready to proceed as in the proof of Theorem 2.1.
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Claim. a20b
2
d�2 þ ad�2bd�2 þ b20a

2
d�2 ¼ a20b

2
d�1 þ ad�1bd�1 þ b20a

2
d�1 ¼ 0: The coeffi-

cient of x2
d�1�2 in TðxÞ is

a20b
2
d�2 þ ad�2bd�2 þ b20a

2
d�2 ð3:2Þ

and the coefficient of x2ð2
d�1�1Þ is

a20b
2
d�1 þ ad�1bd�1 þ b20a

2
d�1: ð3:3Þ

Considering the coefficient of x2
m�2d�1�2 and that of x2

m�2d�2 in TðxÞSðxÞ; we
obtain equations similar to (2.10) and (2.11) with the expressions in (3.2) and (3.3)
taking the place of ad�2 and ad�1 in (2.10) and (2.11), respectively. Thus, using the
same reasoning as in the proof of Theorem 2.1, our claim follows.

Claim. ad�1 ¼ ad�2 ¼ bd�1 ¼ bd�2 ¼ 0: Since Trða0b0Þ ¼ 1; the binary quadratic
form a20x

2 þ xy þ b20y
2 over F2m has only trivial zeros. Therefore, from

a20b
2
d�2 þ ad�2bd�2 þ b20a

2
d�2 ¼ 0;

a20b
2
d�1 þ ad�1bd�1 þ b20a

2
d�1 ¼ 0;

we obtain ad�2 ¼ bd�2 ¼ 0 and ad�1 ¼ bd�1 ¼ 0:

Claim. ad�3 ¼ ? ¼ arþ1 ¼ bd�3 ¼ ? ¼ brþ1 ¼ 0: Let d � 24k4r and suppose

that aj ¼ bj ¼ 0 for j4k: Consider the coefficient of x2
m�2dþ2kþ1�2 in TðxÞSðxÞ:

The exponent of this monomial has binary representation

1y1
zffl}|ffl{r

0y0
zffl}|ffl{d�k�1

1y1
zffl}|ffl{k

0;

which has ðm � 1Þ ones. This exponent can only be obtained as a sum of two
exponents (one is the exponent of a summand in TðxÞ; the other in SðxÞ) without
carry. As we discussed previously, there are three ways such that the number of 1’s in

the binary representation of 2j � 1þ 2k � 1 is k40: These are 2k � 1þ 20 � 1 (the
coefficient of x2

k�1þ20�1 in TðxÞ is akb0 þ a0bk), 2
k � 1þ 2k � 1 (the coefficient of

x2
k�1þ2k�1 in TðxÞ is akbk), and 2

j � 1þ 2k � 1 where j4k: In the last case, the

coefficient of x2
j�1þ2k�1 is

P
j4kðakbj þ bkajÞ; which is zero since aj ¼ bj ¼ 0 for j4k:

Hence the coefficient of x2
m�2dþ2kþ1�2 in TðxÞSðxÞ is

ðb20a2k þ akbk þ a20b
2
kÞcðm � 1;m � 2;y; dÞ ¼ 0:

As before, cðm � 1;m � 2;y; dÞ is a Moore determinant, which is non-zero.
Therefore ðb20a2k þ akbk þ a20b

2
kÞ ¼ 0: Since Trða0b0Þ ¼ 1; we have ak ¼ bk ¼ 0:

Note that in the case where d ¼ m � 1; the above claims already show that a2 ¼
a3 ¼ ? ¼ ad�1 ¼ 0 and b2 ¼ b3 ¼ ? ¼ bd�1 ¼ 0; so pðxÞ and qðxÞ are both linear.
Also observe that when m ¼ 7 (resp. 8), the only admissible d is 6 (resp. 7). In both
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cases, m � d ¼ 1; so pðxÞ and qðxÞ are both linear. Hence from now on, we will
assume that mX10 and m � 14d4m

2
þ 2:

Claim. ar ¼ ? ¼ a3 ¼ br ¼ ? ¼ b3 ¼ 0: Let 3ptpr and assume that aj ¼ bj ¼ 0
for j4t: Since rpm�3

2
and mX10; by Theorem 2.4, there exist 0 ¼

i1oi2o?oirpm � t � 3 such that cði1; i2;y; irÞa0 and the number of consecutive
1’s in fi1; i2;y; irg is at most t � 1: Now, we consider the exponent 2m � 2m�t þPr

j¼1 2
ij and we see that it can only be obtained in one way as a sum of two

exponents, one from TðxÞ; the other from SðxÞ:

0 1y1
zffl}|ffl{k

0y1y1
zfflfflfflffl}|fflfflfflffl{m�k�2

¼ 0 0y0
zffl}|ffl{k

0y1y1
zfflfflfflffl}|fflfflfflffl{m�k�2

þ0 1y1
zffl}|ffl{k

0 0y0
zffl}|ffl{m�k�2

:

It follows from (3.1) that

ðb20a2k þ akbk þ a20b
2
kÞcði1; i2;y; irÞ ¼ 0

and hence, ak ¼ bk ¼ 0:

Claim. a2 ¼ b2 ¼ 0: As in Theorem 2.1 we consider the quadratic form QðxÞ ¼
TrðpðxÞqðxÞ þ a0b0Þ over V ¼ F2m :Note that since Trða0b0Þ ¼ 1; the assumption that
TrðpðlÞqðlÞÞ ¼ 1 for all lAA\f0g implies that QðlÞ ¼ 0 for all lAA; where jAj ¼ 2d :
The bilinear form associated with QðxÞ is

Bðx; yÞ ¼ Trðða20b22 þ a2b2 þ a22b
2
0Þðxy2 þ yx2Þ2Þ;

RadV ¼fxAV j Trðða20b22 þ a2b2 þ a22b
2
0Þðxy2 þ yx2Þ2Þ ¼ 0 8yAVg

¼fxAV j x3 ¼ ða20b22 þ a2b2 þ a22b
2
0Þ

�1
2g,f0g:

As discussed in the proof of Theorem 2.1, if a20b
2
2 þ a2b2 þ a22b

2
0a0; then the

maximum dimension of a subspace of V on which Q vanishes is at most m
2

� �
þ 1: But

we knew that QðxÞ vanishes on A; which has F2-dimension d; and d4m
2
þ 2: This is a

contradiction. Hence a20b
2
2 þ a2b2 þ a22b

2
0 ¼ 0: Combining this with Trða0b0Þ ¼ 1; we

obtain a2 ¼ b2 ¼ 0:
So we have proven that both pðxÞ and qðxÞ must be linear, by the last part of

Theorem 1.2, the maximal arc generated by this fp; qg-map is a Denniston maximal
arc. This completes the proof. &

Combining Theorem 3.1 with known constructions in [FLX,HM,M], we have

Theorem 3.2. Let mX7 but ma9: Then the largest d of a non-Denniston maximal arc

of degree 2d in PGð2; 2mÞ generated by a fp; qg-map via Theorem 1.2 is either m
2

� �
þ 1

or m
2

� �
þ 2:
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It is an interesting question whether there exists a fp; qg-map generating a non-
Denniston maximal arc in PGð2; 2mÞ of degree m

2

� �
þ 2 when mX7: We remark that

in the case m ¼ 5; there is an example of fp; qg-maps which generates a non-
Denniston maximal arc of degree 16 in PGð2; 32Þ [M, p. 362].
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