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Abstract

Unambiguous isospin violation in the strong interaction sector is a key issue in low energy hadronic physics, both experimentally
retically. Bernstein has employed the Fermi–Watson theorem to demonstrate that pion photoproduction is a process where isospin
theπN system can be revealed, an approach we review here. Here we propose a general operator approach to the phenomenon in
production, thereby providing an analogue for the framework that was proposed forπN scattering by Kaufmann and Gibbs. The resulting se
amplitudes could form the basis for determining the multipole amplitudes for photoproduction. Thus, the so resulting phase shift dete
from photoproduction can then be used via the Fermi–Watson theorem to resolve discrepancies inπN phase shift analyses. We point out th
casting effective Lagrangian results in terms of our framework would be beneficial. The upcoming polarization experiments are an idea
test our approach, and also to constrain better the isotensor currents which strictly are not forbidden.
 2006 Elsevier B.V.

1. Introduction

Of the key issues in hadronic physics (for a eponymous white paper on the subject, see Ref.[1]), the issue of isospin violation i
the low energy strong interaction sector is an important one (see Section 5.1 of[1]), both theoretically and experimentally. Char
symmetry breaking in hadronic reactions (for a review see, Refs.[2,3]) for which there have been remarkable new experime
signatures in the reactionsdd → απ0 [4] and in the reactionnp → dπ0 [5]. Related investigations in the theoretical front have a
been presented, see, Ref.[6]. In general the issue of charge symmetry breaking and isospin conservation (also known as
independence in the hadronic sector) and violation have consequences in the nucleon–nucleon sector, for a sample of r
e.g., Refs.[7–9].

The situation is less clear in scattering processes: there have been several analyses ofπN scattering data with the aim o
establishing isospin violation in the system[10,11], which all see evidence for isospin violation, although the numerical siz
the violation remains uncertain. This matter is of great importance to low energy strong interaction dynamics as pointe
Weinberg[12]. Indeed, isospin violation due to the quark mass differencemd − mu, wheremd andmu are fundamental paramete
of the standard model[13], will lead to pronounced effects in theπN scattering lengths at leading order in chiral perturba
theory, recalling here that chiral perturbation theory is the effective low energy theory of the strong interactions (for a few e
reviews, see, e.g.[14]). Meißner and co-workers have worked out the consequences of the quark mass difference to highe
a series of investigations[15].

A completely general approach to isospin violationπN scattering has been presented in Ref.[16]. In this framework, which is
based on the treatment of all possible operators that may arise due to isospin violation are considered and classified tho
terms of operators, denoted byθi , i = 1, . . . ,10. It thus provides a general platform for the analysis of theπN system.

In QCD isospin violation is due to the non-vanishing of(md −mu), and is introduced at the level of the microscopic Lagrang
as an isovector. Isospin violation would arise in all hadronic processes involving the strong interactions, as well as the
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magnetic interactions. This could, in principle, at higher orders generate all possible isospin violating operators in each p
interest, that could connect the particles in the initial state to those in the final state subject to the constraints of isospin ad
charge conservation, and the strengths of which ought to be computable in QCD in principle. Indeed theθi of Kaufmann and Gibbs
is precisely this set forπN scattering.1

In the effective low-energy theory, it should also be possible to recast all the operators arising in chiral perturbation th
combinations of theθi of Kaufmann and Gibbs with calculable coefficients in terms of the low-energy constants and quark m
for partial results, see Ref.[17].

Bernstein[18–21] in a series of publications has pointed out that pion photoproduction is an ideal setting for probing
violation in theπN sector, in the reactionγp → πN . [For recent experimental information on pion photoproduction, see,
[22].] It may be recalled that in the isospin symmetric limit it is described in terms of two isospin amplitudes correspon
I = 1/2,3/2. A celebrated result associated with pion photoproduction is that the pion photoproduction phases are indeeπN

phase shifts in this limit, which goes under the name of the Fermi–Watson theorem[23], when the electromagnetic interaction
retained to leading order. Bernstein has generalized the theorem in the presence of isospin violation when there are
channels, and on treating quantities proportional to the isospin violating quantitymd − mu on par with quantities ofO(e), wheree

is the electronic charge. The isospin violation due to the charged and neutral pion mass difference, a quantity ofO(e2) is put in by
hand, as is the elastic phase shiftδγ .

One of the important objectives of the present work is to provide an operator framework for the analysis of hadronic
violation that feeds into pion photoproduction. Stated differently, we provide a framework for pion photoproduction, an
to that of Kaufmann and Gibbs forπN scattering. In practice this turns out to be straightforward, and requires an extensi
to inclusion of neutron targets. There is considerable amount of data available for this case as well, see, e.g.[24] and reference
therein.

We note here that some authors have reported many results on the subject of (neutral) pion photoproduction in th
conserving case[25]. It is likely that isospin violation is also worked out in chiral perturbation theory for pion photoproduc
and it would be beneficial to cast the results of those computations in terms of the operators presented in this work.

In Section2 we review the proposal of Bernstein by providing a setting for his version of the Fermi–Watson theorem
a general approach to the unitarity conditions found in the literature[26,27]. This provides a unified framework for inequivale
representations that Bernstein has considered in his treatment of the problem. This would also benefit us, for we shall pr
a determination of photoproduction multipole amplitudes from our operator approach can then be fed back via the Ferm
theorem to resolve the discrepancies in theπN phase shift analyses.

We will then proceed to describe the construction of the operators that enter the photoproduction process and classify
according to their tensorial properties in Section3. We will present expressions for the transition amplitudes which will explic
demonstrate the isospin violation. We will propose that these ought to be the basis for the analysis of the multipoles
photoproduction amplitudes. We shall then compare the determination of isospin violation in such an analysis, with that
Fermi–Watson approach. We shall finally point out that a phase shift analysis that results from our approach could be fed
theπN system via the Fermi–Watson theorem to resolve the discrepancy in those analyses.

Of special interest is the possibility of carrying out polarization measurements. In particular, there is the Jefferson La
Letter of Intent[28] (LOI) which proposes to carry out photoproduction experiments at high precision to determine better res
parameters. We provide a brief discussion on the significance of these measurements in constraining isospin violation c
here in Section4.

We recall that an analogous situation arose in the past when it was suggested that one may be able to observe a
contribution to the electromagnetic current. This possibility is not disallowed in the standard model at higher order,
considered seriously in[29,30], while non-vanishing evidence for its effect on photoproduction was also reported in the pas[31].
However, later experiments provided null results, for a review, see, e.g. Ref.[32]. We conclude by pointing out that the ne
polarization measurements that are planned may be used to better constrain the isotensor contributions.

A summary is provided in Section5. Finally in Appendix Awe recall the main features of the original formalism of Kaufma
and Gibbs forπN scattering as this process is so closely allied to pion photoproduction, and inAppendix B we present the
contributions of the amplitudes including the possible isotensor contributions to the electromagnetic currents to the rea
interest and briefly describe the special role that is played by the∆(1232) resonance in constraining the isotensor amplitude.

2. Fermi–Watson theorem approach to isospin violation

In this section we review the Fermi–Watson theorem approach to isospin violation. Our treatment is based on the ap
Oka [26] and that of Henley[27]. We present expressions presented by the latter, in a notation suited to our needs. For

1 In the following, we shall refer to the framework in which we determine the relevant set of operators for pion photoproduction, as the analogue of theamework
of Kaufmann and Gibbs forπN scattering, in recognition of their pioneering approach.
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coupled channel S-matrix, in which we have weak coupling between one channel denoted here byγ , with the other two denoted b
a, b, where the channels are mutually absorptive, the following representation holds for the partial waves of the scattering

SH =




ηγ e2iδγ i
√

ηaηγ SH
aγ ei(δa+δγ ) i

√
ηbηγ SH

bγ ei(δb+δγ )

i
√

ηaηγ SH
aγ ei(δa+δγ )

√
η2

a − ηaηbρ2e2iδa i
√

ηaηbρei(δa+δb)

i
√

ηbηγ SH
bγ ei(δb+δγ ) i

√
ηaηbρei(δa+δb)

√
η2

b − ηaηbρ2e2iδb


 ,

provided:

(1)SH
aγ = εH

aγ + iεH
bγ

ηaρ

ηγ +
√

η2
b − ηaηbρ2

,

and

(2)SH
bγ = εH

bγ + iεH
aγ

ηbρ

ηγ + √
η2

a − ηaηbρ2
.

In the above,εH
aγ , εH

bγ represent the matrix elements for the transitions,ρ is the absorption parameter in the 2×2 subsector spanne
by a, b.

Bernstein has presented expressions for two cases, in the limit whenηi , i = γ, a, b are all equal to unity. These correspond
the cases when

(A) a = 0, b = c, for the case of elastic and charge exchange scattering in which the three channels of interest areγp, π0p, π+n

[19], and
(B) a = 1, b = 3 which represent the value 2I , whereI is the definite isospin in theπN system, where the three channels

interest areγN , (πN)2I=1, (πN)2I=3 [20].

In case (A), and in the limit of unit elasticities,ρ is identified with sinφ in Ref. [19] and the transition matrix elements are t
corresponding multipole amplitudes for pion photoproduction. For completeness we reproduce the S-matrix given therei
three channelsγp, π0p, π+n:




e2iδγ iM ′
0 iM ′

c

iM ′
0 cosφe2iδ0 i sinφei(δ0+δc)

iM ′
c i sinφei(δ0+δc) cosφe2iδc


 .

In this limit the multipoles for pion photoproduction read:

M ′
0 = ei(δγ +δc)

[
A′

0 cos(φ/2) + iA′
c sin(φ/2)

]
,

M ′
c = ei(δγ +δc)

[
A′

c cos(φ/2) + iA′
0 sin(φ/2)

]
.

In the aboveA′
0, A′

c are quantities proportional to the multipole matrix elements for the charge non-exchange and charge e
scattering respectively. Bernstein proceeds to relate the quantities above to multipole amplitudes of pion photoproducti
near threshold region, we have cos(φ/2) → 1 and here it is now possible define a quantity

β � E0+
(
γp → π+n

)
acex

(
π+n → π0p

)
,

whereE0+ is the multipole moment andacex is a πN scattering length. This quantity is used to demonstrate the unitarity
associated with the two-step processγp → π+n → π0p, in the limit of isospin conservation, barring the pion mass differen
Furthermore, in this limit Bernstein points out that the presence of isospin violation denoted byδacex may be detected.

It must be pointed out that away from the threshold region, the limit cos(φ/2) → 1 no longer holds. Our operator constructi
of the next section may be used to demonstrate isospin violation away from threshold as well.

In case (B), the result is presented for the case whereρ = sinψ , whereψ is a small quantity, and for unit elasticities. Th
corresponds to the S-matrix for the channelsγN , (πN)2I=1, (πN)2I=3:




e2iδγ iM1 iM3

iM1 cosψe2iδ1 i sinψei(δ1+δ3)

iM2 i sinψei(δ1+δ3) cosψe2iδ3


 .

The unitarity condition then yields:
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M1 = ei(δγ +δ1)
[
A1 cos(ψ/2) + iA3 sin(ψ/2)

]
,

M3 = ei(δγ +δ3)
[
A3 cos(ψ/2) + iA1 sin(ψ/2)

]
.

In the aboveA1, A3 are quantities proportional to the multipole matrix elements for the amplitudes of definite isospin in the a
of final state interactions and isospin violation. Bernstein also sets for this case,δγ = 0. Using experimental information based
two independent analyses ofπN scattering, Bernstein concludes that at a pion kinetic energy of about 40 MeV,ψ � 0.010± 0.004
[20]. In contrast, it is hoped that the operator approach which is to be described in the next section can assist in unam
demonstrating isospin violation, without taking recourse to any information from theπN sector. Furthermore, this coupled chan
analysis is valid only below the 2π threshold.

3. Operator approach to isospin violation

The traditional analysis of pion photoproduction, see Ref.[33], relies on two assumptions:

(a) that the electromagnetic current transforms as

1

2

(
f s + f vτ0

)
,

viz. an isoscalar and an isovector part, and, and that;
(b) there is no isospin violation in the hadronic system, due to which the interaction in isospin is proportional to an oper

transforms an isoscalar:

(3)OS ≡ τ · �.

In the above,τ ≡ (τ0, τ1, τ2) is an isovector containing the Pauli matrices and� is an isovector containing the pions.

In the past, assumption (a) has been questioned (and it has been shown that even in the standard model, at higher
electromagnetic field, this assumption is violated). This is the basis of the isotensor contribution to the electromagnetic cu
Appendix B,2 which transforms as

f t

2
√

15
(τ1 + τ2 − 2τ0).

There has been no treatment of a departure from assumption (b) in general in the literature. In fact, by providing all
isospin violating terms in this context, here we are providing the general operator framework accounting for strong isospin
in the process. This amounts to providing the counterpart for pion photoproduction, of the framework of Kaufmann and G
πN scattering.

Isospin violation in the hadronic system can arise from the most general term of the typeτiΦj , i, j = 0,1,2. The nine possible
combinations can be organized into a scalarOS , a vector whose components are given by

−iεijkτjΦk,

and a traceless symmetric tensor whose components are

(τiΦj + τjΦi)
(
1− δij

)
, τ1Φ1 − τ2Φ2, τ1Φ1 + τ2Φ2 − 2τ0Φ0.

Of the operators listed above, thei = 0 component of the vector operator alone, and the last of the tensor components liste
alone conserve electric charge. Therefore we can introduce 2 operators:

(4)OV ≡ −i(τ1Φ2 − τ2Φ1),

(5)OT ≡ τ1Φ1 + τ2Φ2 − 2τ0Φ0.

The setOS , OV , OT for pion photoproduction, is the counterpart of the setθi , i = 1, . . . ,10 ofπN scattering in the Kaufmann an
Gibbs framework (seeAppendix A). It may be reiterated thatOS is isospin conserving while the other two,OV , OT are isospin
violating.

We begin by recalling that the overall matrix element for the scalar case involves the amplitudes that we shall denoteA
(−)
S ,

A
(+)
S andA

(0)
S when the Pauli matrices appearing in the interaction of the nucleon with the photon and pion are arranged a

(6)

(
1

2
A

(−)
S [τi, τ0] + 1

2
A

(+)
S {τi, τ0} + A

(0)
S

)
Φi.

2 The determination of this contribution to the amplitude is a tremendous experimental challenge. We shall discuss this further in Section4. In Appendix B, we
also provide a short discussion on the mechanism for the relevant isotensor contributions.
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In analogy therefore, the new operators contribute to the matrix element for the cases of vector and tensor through a
denoted byA(−)

R ,A
(+)
R ,R = V,T associated with the commutator, anti-commutator accompanyingf v andA

(0)
R ,R = V,T accom-

panyingf s .
The contributions of these amplitudes to the physical reactions may now be evaluated in a straightforward manner w

reads for the reactions denoted byRa , a = 1,2,3,4, and defined below. They read:

(7)R1: T
(
γ n → π0n

) = −A
(0)
S + A

(+)
S + 2A

(0)
T − 2A

(+)
T ,

(8)R2: T
(
γp → π0p

) = A
(0)
S + A

(+)
S − 2A

(0)
T − 2A

(+)
T ,

(9)R3: T
(
γ n → π−p

) = √
2A

(0)
S − √

2A
(−)
S − √

2A
(0)
V + √

2A
(−)
V + √

2A
(0)
T − √

2A
(−)
T ,

(10)R4: T
(
γp → π+n

) = √
2A

(0)
S + √

2A
(−)
S + √

2A
(0)
V + √

2A
(−)
V + √

2A
(0)
T + √

2A
(−)
T .

We take this opportunity to suggest that this set of amplitudes be the basis for the analysis of pion photoproduction m
analysis. In this manner, isospin violation in the hadronic sector could be probed with no recourse to the Fermi–Watson
The amplitudesA(±)

R ,A
(0)
R ,R = V,T get contributions due to(md − mu) �= 0. The vector amplitudes receive contributions

leading order in this quantity, while the tensor will receive contributions only at higher order.
We may infer from this that the analogue of the triangle relation of Kaufmann and Gibbs (seeAppendix A) for pion photopro-

duction reads:

(11)T
(
γ n → π−p

) + T
(
γp → π+n

) = −√
2
(
T

(
γ n → π0n

) − T
(
γp → π0p

))

in the absence of isospin violation,viz, when all the amplitudes due toOV ,OT are set to zero.
In light of the expressions above, it may be seen that indeed one cannot probe the vector like isospin violating int

without a charge exchange reaction involving the nucleons. This is in accordance with the observations of Weinberg[12] and those
of Bernstein[18–20]. On the other hand, it is possible to observe isospin violating interactions of the tensor type in neutr
production. Such an interaction is not likely to be important in the low-energy regime where the isospin violating cont
can be coupled at leading order only in a vectorlike manner. However, our framework opens up the possibility of probing
violation at higher energies by considering the reactions above.

4. Polarization experiments

Bernstein[18–20]has pointed out repeatedly the availability of polarized targets/beams would significantly enhance the
of experiments to probe isospin violation. The main reason for this is that polarization affords the possibility of measu
multipole amplitude Im(E0+) (for notation see Ref.[33]) in the near threshold region. In this regard, we draw attention to
Jefferson Laboratory LOI[28] where it has been proposed to carry out photo production experiments using target/beam pola
It is expected that there will be high statistics experiments, including also neutron targets (the proposal here involves both
as well as carbon targets). Indeed, the measurements of the low multipoles of photoproduction amplitudes could be use
the deviations from the isospin conserving relation given in Eq.(11). It should also be possible to determine, process by proc
the contributions of the isospin violating amplitudes to the phases of the multipole amplitudes. Indeed, there is already d
the experiment E94-104[34] at high energies, which could possibly be analyzed for isospin violating effects at these energi

Another of the important objectives set out in the Jefferson Laboratory LOI[28] is to determine better the parameters of
resonance denoted byP33(1232). In this regard, we now turn to the issue of the determination of the isotensor contribut
the electromagnetic current. (Note also that our amplitudeA

(0)
T , upto a numerical factor is not distinguishable from the isoten

contribution to the electromagnetic current.) The determination of this amplitude is a very challenging one from an expe
point of view due to the contributions fromA(0)

S in the non-resonant region. However, one place where a clear signature can b
is at an energy corresponding to the production of anI = 3/2 resonance, the∆(1232), where the isoscalar part of the current ma
no contribution, and the production amplitude would involve only the isovector and isotensor parts, resulting in an inte
between the two contributions. Here, Sanda and Shaw[31] find evidence for an isotensor contribution to the electromagnetic cu
from data obtained with polarized photons. However, from analysis of later experimental data there have been null results
in the literature. In Ref.[35] an experiment with tagged photons found no evidence for isotensor component to the cross
while Ref. [36] reports results from an experiment that observes the differential crosssection at several different angle
also found no evidence. Null results are also reported in Ref.[37], based on experiments with polarized photons. Here it has
pointed out that target asymmetries could play a role in resolving ambiguities. In the light of the proposals presented in the
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due to the likelihood of the availability of polarization and other facilities at Jefferson Laboratory detailed therein, the up
experiments there could play a crucial role in settling this question.3

5. Discussion and summary

In this work, we have revisited the issue of observing isospin violation in the hadronic sector from pion photoproduct
have pointed out that the application of the Fermi–Watson theorem is one approach that has been considered in the pas
presented a comparison of different techniques used to arrive at the pertinent expressions by appealing to general trea
have pointed out that there is a general operator approach also to the phenomenon, which we have worked out here. In e
the counterpart of the Kauffman and Gibbs construction forπN scattering.

The operator approach described here, yields a set of amplitudes for pion photoproduction which should be the bas
determination of the multipole amplitudes for the processes of interest. The resulting phase shifts can then be inser
Fermi–Watson like system to provide a set of constraints forπN phase shift analyses which are in mutual disagreement a
moment. The Fermi–Watson approach of Bernstein uses well knownπN phase shift analyses to establish isospin violation
photoproduction. This latter is also constrained to be valid only below the 2π threshold, and is to leading order in the elec
charge. The treatment presented in case (A) of Bernstein requires theπN scattering length as an input to demonstrate iso
violation at the photoproduction threshold, while the treatment in case (B) requiresπN phase shift analyses as an input. O
treatment does not require these inputs.

We have considered the virtues of polarization experiments and have pointed out that at the upcoming facilities, one
strain isotensor contributions to the electromagnetic current, expected to arise at higher orders better. Our work is like
useful platform for the construction of results from effective Lagrangians and a basis for analysis of crosssections which ca
to constrain isospin violation in the hadronic sector. Finally, we point out here that a determination of photoproduction am
including the effects due to the isospin violating operators presented here, could then be used via the Fermi–Watson t
resolve the discrepancies in theπN phase shift analyses.
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Appendix A. Formalism of Kaufmann and Gibbs for πN scattering

For the ten reactions (listed in Table 1 of Ref.[16]) of interest, a general analysis of isospin violation in terms of a se
10 standard operators designatedθi , i = 1, . . . ,10 (listed in Table 2 of Ref.[16]) is presented. The matrix elements for all the
operators are listed (see Table 3 of Ref.[16]) and the result is also presented in the isospin basis (see Table 4 of Ref.[16]4). We
note here some of the features of the work:

(1) θ1,5 are isospin conserving,θ4,6,(10) violate isospin but are invariant under charge reflection,θ3,7,(9) conserve neither isospi
nor charge reflection,θ8 besides not conserving isospin and charge reflection, only connectsI = 3/2 states;

(2) In the elementary examples of isospin violation, the combination

(A.1)θ3 −
√

1

3
θ5 +

√
2

3
θ6

represents the Coulomb interaction and that this combination gives the product of the nucleon and pion charge;
(3) π0–η mixing, a quantity that receives contributions at leading order in(md − mu) transforms as

(A.2)

√
8

9
θ2 +

√
40

9
θ7;

3 In this regard, it should be noted that pion electroproduction experiments have been consistently seeing evidence for an isotensor amplitude. Data from the recent
SLAC experiments NE11 and E133 yield[38], for the ratioσn/σp for the crosssections on neutron and proton targets, 0.72± 0.09, to be contrasted with the valu
from older data of Köbberling[39], of 0.91± 0.03, at the∆(1232) resonance. This ratio should be unity in the absence of isotensor contributions.

4 We point out here that all the signs corresponding to the entries ofθ9 andθ10 in Table 4 of Ref.[16] need to be consistently reversed.
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(4) The triangle identity, which holds in the isospin conserving limit, can be expressed as

(A.3)T
(
π+p → π+p

) − T
(
π−p → π−p

) = √
2T

(
π+p → π0n

)
.

In the work of Kaufmann and Gibbs a treatment of a final state theorem is presented, which allows one to transform certI = 1
operators into otherI = 1 operators by left and right multiplication by isospin conserving operators. In particular, it could
an operator that transforms with the transformation law ofρ − ω mixing (θ3) into one that has the transformation law ofπ0–η

mixing.

Appendix B. Isotensor contributions

We begin by recalling that in the limit of isospin conservation in the hadron sector, we have the isospin relations for th
tudest2I , I = 3/2, 1/2 reading

A3 = A
(+)
S − A

(−)
S ,

A1 = A
(+)
S + 2A

(−)
S .

Note thatA0 ≡ A
(0)
S contributes toI = 1/2 amplitude. The admission of an isotensor operator can lead up toI = 3/2 state, when

represented by an amplitudeA2. These together yield for the processes of interest[31]:

R1: −A0 + A1/3+ 2A2/
√

15+ 2A3/3,

R2: A0 + A1/3− 2A2/
√

15+ 2A3/3,

R3:
√

2
(
A0 − A1/3+ A2/

√
15+ A3/3

)
,

R4:
√

2
(
A0 + A1/3+ A2/

√
15− A3/3

)
.

It may also be noted that the amplitudeA2 contributes to theRi , i = 1,2,3,4 in the same way as
√

15A2. These amplitudes are th
basis of the analysis of photoproduction amplitudes in Ref.[31]. In this Letter, the multipole amplitudesMi

1+, i = 0,1,2,3 have
been studied in detail.

We present here some salient features of the possibility of detecting the signature of the isotensor amplitude from the
of the resonance∆(1232) [30,31] (see also Refs.[40,41]). At the resonance, the isoscalar amplitude does not contribute t
crosssection except for the nonresonant background. If, for example, the dominant multipolesM1+ are being probed, then th
presence of the isotensor would lead to an interference term proportional to Re(M2

1+M3
1+). The model for the isotensor term whic

is the basis of the analysis of Sanda and Shaw[31] is written down in the static model of Chew et al.[42], by introducing an
isotensorγ∆n coupling, and required the resulting multipole moment to verify a fixed-t dispersion relation. This allows for th
isotensor interaction to participate in the resonance production.
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