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Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the
overwhelmingmajority of the cases by loss-of-functionmutations in the gene encodingmethyl-CpG binding pro-
tein 2 (MECP2). High circulating levels of oxidative stress (OS)markers in patients suggest the involvement of OS
in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse
models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic,
and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of
wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-
neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate
that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y
males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and
Mecp2-308models; and 3) is rescued byMecp2 brain specific gene reactivation. Our data provide direct evidence
of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the
brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates
that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that
Mecp2 is involved in the protection of the brain from oxidative stress.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
PAs, 4-hydroxy-2-nonenal protein adducts; AdA, adrenic acid; ARA, arachidonic acid; ASDs, autism spectrum disorders; AUs,
CRE, Cre-Recombinase; DHA, docosahexaenoic acid; F2-IsoPs, F2-isoprostanes; F2-dihomo-IsoPs, F2-dihomo-isoprostanes; F4-
PAs, 4-HNE protein adducts; MECP2, methyl-CpG-binding protein 2 — human gene; Mecp2, methyl-CpG-binding protein 2 —
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stinCre, rescued Lox/stopmice (Mecp2 reactivated in thenervous tissue);Mecp2 308/y, symptomaticMecp2 308-mutated hemi-
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Introduction

Rett syndrome (RTT, MIM 312750) is a progressive neuro-
developmental disorder affecting almost exclusively the female gender
with a frequency of approximately 1:10,000 live births, and is a leading
cause of severe intellectual disability and autistic features (Chahrour
and Zoghbi, 2007; Weaving et al., 2005). Other features include stereo-
typic hand movements, communication dysfunction, seizures, postural
hypotonia, tremors, autonomic dysfunction, microcephaly and growth
failure (Chahrour and Zoghbi, 2007). The classical clinical picture of
the disease (Rett, 1966) is characterized by a period of 6 to 18 months
of apparently normal neurodevelopment, followed by an early neuro-
logical regression, with a progressive loss of acquired cognitive, social,
and motor skills in a typical 4-stage neurological regression pattern
(Hagberg, 2002; Neul et al., 2010).

RTT is known to be caused in the overwhelmingmajority of the cases
by sporadic de novo loss-of-function mutations in the X-linked methyl-
CpG-binding protein 2 (MECP2) gene (Amir et al., 1999) encoding
methyl-CpG binding protein 2 (MeCP2), a nuclear protein that binds
to methylated CpGs and regulates gene expression (Chahrour et al.,
2008; Jones et al., 1998). Different types of mutations within MECP2
are known to cause RTT, including missense, nonsense, deletions and
insertions (Bienvenu and Chelly, 2006).

Despite almost two decades of research into the functions and role
of MeCP2, surprisingly little is known about the mechanisms leading
from MeCP2 deficiency to disease expression, with many questions
still unsolved regarding the role of MeCP2 in the brain and,more gener-
ally, during development and in physiopathology (Guy et al., 2011;
Zachariah et al., 2012).

Over the last decade, several cellular and mouse models have been
developed (Bertulat et al., 2012; Calfa et al., 2011; Cheung et al., 2011;
Delepine et al., 2013; Yazdani et al., 2012). Recently, primary fibroblasts
fromRTT patients highlighted a role ofMeCP2 in stabilizingmicrotubule
dynamics, explaining in part the observed dendritic abnormalities
found in the absence of functional MeCP2 (Delepine et al., 2013).

Mouse models, in which the Mecp2 allele has been modified to
prevent production of a fully functional Mecp2 protein, have been
established. Mice range from Mecp2-null mutations to specific point
mutationsmimicking those observed in humans, phenocopying several
motor and cognitive features of RTT patients (Chen et al., 2001; Guy
et al., 2001; Moretti et al., 2005, 2006; Picker et al., 2006; Santos et al.,
2007; Shahbazian et al., 2002). Although mice cannot model all aspects
of the human RTT, certainly they recapitulate many features of the
disease and are generally accepted as excellent tools to study MeCP2
function (Ricceri et al., 2008). Although no treatments able to fully
arrest or rescue the neurological regression are to date available for
the human disease, intriguingly, delayed reintroduction of Mecp2 into
fully affected Mecp2-null mice is sufficient to rescue RTT-like pheno-
types (Guy et al., 2007; Robinson et al., 2012). Restoration of Mecp2
function in astrocytes alone significantly improves the developmental
outcome of Mecp2-null mice (Lioy et al., 2011). These findings strongly
indicate that the RTT phenotype is reversible upon restoration of Mecp2
function. A recent report on the feasibility of a systemic delivery of
Mecp2, rescuing behavioral and cellular deficits in female mouse
model of RTT strongly supports this point (Garg et al., 2013). In this sce-
nario, microglia was shown to be amajor player in the pathophysiology
of RTT, thus suggesting that bone marrow transplantation might offer a
feasible therapeutic approach for this disorder (Derecki et al., 2012,
2013).

The occurrence of a redox imbalance in RTT has been previously re-
ported both in patients (De Felice et al., 2009, 2011; Durand et al., 2013;
Grillo et al., 2013; Leoncini et al., 2011; Pecorelli et al., 2011; Sierra et al.,
2001; Signorini et al., 2011) and in an experimental mouse model
(Grosser et al., 2012). However, a clear evidence of oxidative damage
in the brain, the key organ in this neurodevelopmental disease, is still
lacking to date.
Oxidative stress is a condition in which the free radical insult is
predominant on the antioxidant defense, with a consequent oxidative-
mediated damage of biomolecules known to be relevant in different
pathologies (Halliwell and Gutteridge, 2007). To this regard, in
the brain, given its high content in lipids, the lipid peroxidation end-
products isoprostanes (IsoPs) have a major pathogenetic relevance.
IsoPs are a unique series of prostaglandin-like compounds generated,
via a free radical-catalyzed mechanism, from a number of different
polyunsaturated fatty acids (PUFAs), including arachidonic acid (ARA),
eicosapentaenoic acid (EPA), adrenic acid (AdA), and docosahexaenoic
acid (DHA). Plasma F2-IsoPs originating from ARA are considered as an
index of generalized lipid peroxidation, whereas the IsoPs originating
from DHA are usually termed F4-NeuroPs due to its main localization
in the nervous tissue. F2-dihomo-IsoPs, deriving from Ada oxidation,
have been characterized as potential markers of free radical damage to
the myelin in the human brain (Signorini et al., 2013). All types of
IsoPs can been evaluated in their esterified form at the cellular site to
supply specific information on the lipid cell oxidation, and IsoPs have
been extensively investigated in neurological disease (Durand
et al., 2013; Singh et al., 2010). At the same time, redox active iron,
such as the non-protein-bound iron (NPBI), is considered a trigger
of free radical reaction and the relevance of the iron homeostasis in
the brain pathologies is well documented (Rouault, 2013; Schroder
et al., 2013).

As for isoprostanes, there are also numerous findings supporting the
important presence of 4-hydroxy-2-nonenal (4-HNE) protein adducts
in many oxidative stress related neurological diseases. For example,
increased 4-HNE levels have been observed in the brain tissue from
patients with Alzheimer's disease, Pick's disease, Lewy bodies related
diseases, amyotrophic lateral sclerosis, Huntington's disease and
Parkinson's disease, indicating therefore, a pathophysiological role
of this aldehyde and its ability to form protein adducts in several
pathologies (Poli et al., 2008). Moreover, a marked increase of 4-
HNE was also detectable in the blood of patients with neurodegener-
ative and neuropsychiatric diseases (Pecorelli et al., 2013; Poli et al.,
2008; Valacchi et al., 2014), confirming that this is a reliable marker
of oxidative stress not only at the tissue levels, but also at the system-
ic level.

In the present study we investigated the relationship between
oxidative damage andphenotypic expression of RTT, by assessing several
oxidative stress (OS) markers in whole brain tissues from different
Mecp2 mutant experimental models, as well as in a model of brain
specific reactivation of Mecp2.
Materials and methods

Breeding

Mecp2 −/y (B6.129P(C) −Mecp2tm1.1Bird/J Jax stock number:
003890), Mecp2-308 (B6.129S-Mecp2tm1Hzo/J Jax stock number:
005439), Mecp2 stop/y (B6.129P2-Mecp2tm2Bird/J Jax stock number:
006849) and NestinCre mice (B6.Cg-Tg(Nest-cre)1Jln/J Jax stock num-
ber: 003771) all back crossed to C57BL6/J for at least 12 generations
were maintained under standard conditions and in accordance with
Home Office regulations and licenses.

Mecp2 mutant hemizygous males and heterozygous females were
obtained by mating heterozygous females with wt males. Wild type
littermates were used as controls. Mecp2 stop/y NestinCre males were
produced by mating heterozygous Mecp2 +/stop females with hemizy-
gous NestinCre males.

The animals were sacrificed and the tissues were recovered and
stored at −80 °C. The national or institutional guidelines were used
for the care and use of animals, and approval for the experiments
were obtained from the ethical committees of the Italian Ministry of
Health, and the UK Home Office.
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Genotyping

Genomic DNA was extracted from ear clips or tail tips of pups. The
genotype of the mice was determined by polymerase chain reaction
using PCR primers and following the conditions described in the web
site of the Jackson Laboratories (USA).

Scoring of symptoms

Mice were scored on a weekly basis for a number of symptoms aris-
ing from Mecp2 deficiency as previously reported (Guy et al., 2007).
Phenotype severity was expressed as aggregate score.

Blood sampling

Bloodwas collected in heparinized tubes and all manipulationswere
carried out within 2 h after sample collection. The blood samples were
centrifuged at 2400 g for 15 min at 4 °C and plasma was collected.
Butylated hydroxytoluene (BHT) (90 μM) was added to platelet poor
plasma as an antioxidant. The resulting plasma samples, strictly
hemoglobin-free, were stored at −80 °C until assay. Plasma was used
for free F2-IsoPs, F4-NeuroPs, and F2-dihomo-IsoPs determinations.

Brain collection

After transcardial perfusion with saline, brains were removed and
bisected on the sagittal plane. Brain hemisphereswere immediately fro-
zen in dry ice and stored at−80 °C until assay. At the time of the assays,
brain was homogenized (10%W/V) in phosphate-buffered saline (PBS),
pH 7.4. Brain homogenate was used for the determination of total (sum
of free and esterified) F2-IsoPs, F4-NeuroPs, and F2-dihomo-IsoPs, as
well as for NPBI quantification. Brain tissue lysates were also used for
4-HNE-PA adduct determination.

Indirect ImmunoFluorescence (IIF) analysis

Brains were dissected out, fixed in ethanol (60%), acetic acid (10%),
and chloroform (30%), and included in paraffin. Paraffin embedded
tissue sections of a thickness of 4 μm were deparaffinized in xylene
and rehydrated in graded ethanol solutions (100%, 95%, 80% and 70%)
for 5 min each.

Sections were rinsed twice in dH2O for 5 min each.
Briefly, antigen retrieval was obtained by incubation with buffer

10 mM citrate pH 6.0, at a temperature sub-boiling for 20 min. Slides
were left to cool for 10 min.

After blocking with PBS containing 5% BSA for 60 min, the sections
were incubated with the primary antibody (mouse anti-GFAP clone
GA5 Millipore 1:200, mouse anti-βIII tubulin isoform clone TU-20
Millipore 1:50; rabbit anti-8 isoProstaglandin F2 alpha Abcam 1:200),
overnight at 4 °C.

Incubation in secondary antibody fluorochrome conjugate (goat
anti-rabbit Alexa Fluor 488, goat anti-mouse Alexa Fluor 568) diluted
1:100 in antibody dilution buffer was performed for 1 h at room
temperature in the dark.

The nuclei were counterstained by incubating the sections for
10 min with 4′,6-diamidino-2-phenylindole (DAPI). Slides were
washed with PBS, and mounted with Antifade. Negative controls were
generated by omitting the primary antibody. The fluorescence was
observed under a microscope Leica AF CTR6500HS (Microsystems).

Western blot analysis

Protein extracts for western blot analysis were obtained fromwhole
brains. Tissueswere collected in ice cold PBS, then homogenized in RIPA
buffer (20 mM Tris–Cl pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% so-
dium deoxycholate, 1 mM EDTA, 0.1% SDS) with Protease Inhibitor
Cocktail by Turrax homogenizer. After 20 min of incubation in ice, the
homogenate was centrifuged at maximum speed for 20 min at 4 °C,
and the supernatant was stored at −80 °C. Protein extracts were run
on 10% SDS-PAGE gel with 50 μg protein per lane. Western blot assays
were performed with 1:2000 dilution of MeCP2 rabbit polyclonal anti-
body (Sigma-Aldrich, M9317). β-Actin rabbit polyclonal antibody
(Sigma-Aldrich, 1:2500 dilution)was used as loading control. Following
washes in PBS–Tween and incubation with specific secondary antibody
(goat anti-rabbit horseradish peroxidase-conjugated, Santa Cruz
Biotechnology Inc., CA, USA) for 1 h at RT, themembraneswere incubat-
ed with Supersignal West Pico Chemiluminescent Substrate (Pierce
Biotechnology, Rockford, USA). Signals were visualized on Amersham
Hyperfilm ECL (GE Healthcare Europe GmbH, Milan, Italy).
Isoprostane and F4-neuroprostane determinations

All isoprostane and neuroprostane determinations were carried out
by gas chromatography/negative ion chemical ionization tandem mass
spectrometry (GC/NICI–MS/MS) analysis after solid phase extraction
and derivatization steps.
Solid phase extraction and derivatization procedures
Each plasma sample was spiked with tetradeuterated prostaglandin

F2α (PGF2α-d4) (500 pg in 50 ml of ethanol), as an internal standard.
After acidification (2ml of acidifiedwater, pH 3), the extraction and pu-
rification procedures were carried out. It consisted of two solid-phase
separation steps: an octadecylsilane (C18) cartridge followed by an
aminopropyl (NH2) cartridge (Signorini et al., 2003). Each brain homog-
enate sample was purified as previously reported (Signorini et al.,
2009). Briefly, to an aliquot (1 ml) of brain homogenate aqueous KOH
(1 mM, 500 μl) was added. After incubation at 45 °C for 45 min, the
pH was adjusted to 3 by adding HCl (1 mM, 500 μl). Each sample was
spiked with tetradeuterated prostaglandin F2α (PGF2α-d4) (500 pg in
50 μl of ethanol), as an internal standard, and ethyl acetate (10 ml)
was added to extract total lipids by vortex-mixing and centrifugation
at 1000 g for 5 min at room temperature. The total lipid extract was
applied onto an NH2 cartridge and isoprostanes were eluted.

For both plasma and brain eluted samples, the carboxylic group was
derivatized as the pentafluorobenzyl ester, whereas the hydroxyl
groups were converted to trimethylsilyl ethers (Signorini et al., 2003).
F2-isoprostane GC/NICI–MS/MS
The measured ions were the product ions at m/z 299 and m/z 303

derived from the [M − 181]− precursor ions (m/z 569 and m/z 573)
produced from 15-F2t-IsoPs and the tetradeuterated derivative of pros-
taglandin F2α (PGF2α-d4), respectively (Signorini et al., 2003, 2009).
F4-NeuroPs GC/NICI–MS/MS
Quantification of F4-NeuroPswas performed by gas chromatography/

negative ion chemical ionization tandem mass spectrometry (GC/NICI–
MS/MS) according to a new method recently setup in our laboratory
(Signorini et al., 2003, 2009). The measured ions were the product
ions at m/z 323 and m/z 303 derived from the [M − 181]− precursor
ions (m/z 593 and m/z 573) produced from oxidized DHA and the
tetradeuterated derivative of PGF2α, respectively.
F2-dihomo-IsoPs GC/NICI–MS/MS
For F2-dihomo-IsoPs, the measured ions are the product ions atm/z

327 andm/z 303 derived from the [M− 181]− precursor ions (m/z 597
andm/z 573) produced from the derivatized ent-7(RS)-F2t-dihomo-IsoP
and 17-F2t-dihomo-IsoP, and the PGF2α-d4, respectively (De Felice et al.,
2011).



Fig. 1.Oxidative stress in plasma of twomurinemodels of Rett syndrome. Plasma levels of
F2-IsoPs are significantly increased in symptomaticMecp2−/ymice (N=16, median age,
M ± SD, age 9 ± 1.25 weeks) vs. matched wt littermates (N = 15, median age 9 ±
1.2 weeks) (A) and in symptomatic Mecp2 308/y (N = 9, median age 32 ± 11 weeks)
vs. matched wt littermates (N = 10, median age 32 ± 11 weeks) (B). Data are expressed
as medians (columns) and semi-interquartile range (bars). *P b 0.05; **P b 0.01.

69C. De Felice et al. / Neurobiology of Disease 68 (2014) 66–77
Non-protein-bound-iron determination

NPBI is a pro-oxidant factor, associated with hypoxia, hemoglobin
oxidation and subsequent heme iron release (Ciccoli et al., 2008).
Non-protein-bound-iron was determined as deferoxamine (DFO)–
chelatable free iron (DFO–iron complex, ferrioxamine). DFO 25 μM
was added to the brain homogenate. The homogenate was ultrafiltered
in centrifugal filters with a 30-kDa molecular weight cut-off and the
DFO excess removed by silica column chromatography. The DFO–iron
complex was determined by high-performance liquid chromatography
at the detection wavelength of 229 nm (Signorini et al., 2009).

4-HNE protein adducts

4-HNE PAs are markers of protein oxidation due to aldehyde binding
from lipid peroxidation sources (Signorini et al., 2013). Brain 4-HNE pro-
tein adducts were determined by western blot technique. Brain tissue
proteins (30 μg protein, as determined by using Bio-Rad protein assay;
BioRad, Hercules, CA, USA) were resolved on 4–20% SDS-PAGE gels
(Lonza Group Ltd., Switzerland) and transferred onto a hybond ECL ni-
trocellulose membrane (GE Healthcare Europe GmbH, Milan, Italy).
After blocking in 3% non-fatmilk (Bio-Rad, Hercules, CA, USA), themem-
braneswere incubated overnight at 4 °Cwith goat polyclonal anti 4-HNE
adduct antibody (cod. AB5605; Millipore Corporation, Billerica, MA,
USA). Following washes in TBS–Tween and incubation with specific sec-
ondary antibody (mouse anti-goat horseradish peroxidase-conjugated,
Santa Cruz Biotechnology Inc., CA, USA) for 1 h at RT, the membranes
were incubated with ECL reagents (Bio-Rad, Hercules, CA, USA) for
1 min. The bands were visualized by autoradiography. Quantification of
the relevant bands was performed by digitally scanning the Amersham
Hyperfilm ECL (GE Healthcare Europe GmbH, Milan, Italy) and measur-
ing immunoblotting image densities with ImageJ software.

Statistical analysis

Results were expressed as medians with inter-quartile ranges, or
means ± SD. Differences between groups were evaluated by the
non-parametric Mann–Whitney rank sum test, Wilcoxon rank test, or
Kruskal–Wallis test analysis of variance (ANOVA), as appropriate.
Associations between variables were tested by univariate regression
analysis. Multiple of medians (MoMs) for the brain OS markers were
used to account for the possible effect for potential sources of variation
including inter- and intra-group differences in strain, age, diet or breed-
ing. The MedCalc ver. 12.0 statistical software package (MedCalc. Soft-
ware, Mariakerke, Belgium) was used for data analysis. A two-tailed
P b 0.05 was considered to indicate statistical significance.

Results

The elevated concentrations of F2-isoprostanes (F2-IsoPs) in plasma
of symptomatic Mecp2 −/y (median age 9 weeks) and hemizygous
Mecp2 308/y mutated (median age 32 weeks) mice compared with
wild type (wt) indicate the presence of a systemic OS status in the
symptomatic phase of the disease (Figs. 1A–B), thus suggesting that
these strains constitute reliable RTT animal models to further investi-
gate the link between OS and Mecp2 deficiency.

In order to evaluate whether the oxidative damage observed in this
peripheral bodyfluid is actually associatedwith oxidative damage in the
brain, likely the main target organ of RTT given the major neurological
dysfunctions in the patients, the following OS markers, in additions to
F2-IsoPs were evaluated in whole brain from Mecp2 −/y 7 to 9 weeks
symptomatic null mice (median age 9 weeks; mean aggregate score,
M ± SD, 4.5 ± 0.43), and compared to age-matched wt littermates:
non-protein-bound iron (NPBI), F2-dihomo-isoprostanes (F2-dihomo-
IsoPs), F4-neuroprostanes (F4-NeuroPs) and 4-hydroxy-2-nonenal pro-
tein adducts (4-HNE PAs). The severity of the Mecp2-null phenotype
was quantified using a simple phenotypic scoring method (Guy et al.,
2007), which assesses a number of RTT like features seen inMecp2mu-
tant mice. Significantly elevated NPBI, F2-IsoP, and F4-NeuroP levels
were evident in the brain of symptomatic null mice as compared to
wt, thus demonstrating the occurrence of brain oxidative damage in
the symptomatic phase of the disease (Figs. 2A–C).

These data indicate that the oxidative damage is mainly the
consequence of the peroxidation of arachidonic acid (ARA) and
docosahexaenoic acid (DHA), i.e., fatty acid precursors of F2-IsoPs and
F4-NeuroPs, respectively, as triggered by NPBI as pro-oxidant factor. On
the other hand, no significant changes for F2-dihomo-IsoPs or 4-HNE
PAs were detectable in this model at this disease stage (Figs. 2D–E;
Supplementary Fig. 1A).

To better evaluate the cellular origin of the OS alteration, an immu-
nohistochemical analysis with a specific F2-IsoP antibody was per-
formed. The assay revealed a strong increase in F2-IsoPs in βIII tubulin
positive cells (neurons, Fig. 3A) but not in glial fibrillary acidic protein
(GFAP) positive cells (astroglia, Fig. 3B) of Mecp2 −/y mice compared
to wt, thus indicating the presence of an oxidative damage in neuronal
more than in astroglial cells.

Significant inverse relationships of F4-NeuroPs with brain weight
and body weight (Figs. 4A–B) were evidenced, suggesting an involve-
ment of the DHA-derived peroxidation products in the pathogenesis
of microcephaly and somatic growth deficiency in the Mecp2 −/y
mouse model of RTT.

In order to evaluate the timing of the oxidative brain damage, we sub-
sequently tested the same OS markers in whole brains from Mecp2−/y
5 weeks pre-symptomatic null mice (median age 5 weeks; mean aggre-
gate score 0.25 ± 0.25). As with the symptomatic null animals, brains
of pre-symptomatic null mice also showed significantly increased NPBI,
F2-IsoP, and F4-NeuroP tissue levels compared with wt, thus indicating
that the oxidative brain damage, unlike other epiphenomena of the dis-
ease, precedes the onset of overt behavioral abnormalities (Figs. 5A–C).
On the contrary, as observed in symptomatic mice, no statistical differ-
ences for F2-dihomo-IsoPs or 4-HNE PAs were observed (Figs. 5D–E;
Supplementary Fig. 1B).

These datawere confirmed byOSmarker analysis in an independent
strain, in which the endogenous Mecp2 allele is silenced by a targeted
stop cassette (Mecp2 stop/y) (Guy et al., 2007). Mecp2 stop/y mice are
phenotypically equivalent to Mecp2 −/y animals and the observed re-
sidual expression of Mecp2 of around 2.5% compared with wt levels is
not correlated with the severity of symptom progression (Robinson
et al., 2012). Altered concentrations of NPBI, F2-IsoPs, and F4-NeuroPs
are significantly detected in the brain at the pre-symptomatic stage



Fig. 2. Evidence of oxidative brain damage in symptomaticMecp2−/y mice (N = 16, median age 9 weeks). Significant increased levels of NPBI (A), F2-IsoPs (B), and F4-NeuroPs (C) vs.
matched wt littermates (N= 15, mean age 9 ± 1.2 weeks) are observed in whole brain tissue, whereas no significant changes in F2-dihomo-IsoPs (D), and 4-HNE PAs (E) are detected.
Data are expressed as medians (columns) and semi-interquartile range (bars). *P b 0.05; **P b 0.01. N.S.: no significant differences (P N 0.05).
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(median age 5 weeks;mean aggregate score 0.25± 0.42) (Supplemen-
tary Figs. 2A–C), whereas no statistical differences were detectable re-
garding F2-dihomo-IsoPs or 4-HNE PAs (Supplementary Figs. 2D–E).

We then evaluated OS alterations in a different RTT mouse model
(Shahbazian et al., 2002), with a truncating mutation (Mecp2-308). In
this specific RTT model, males show a much milder phenotype than
human males with RTT-causing mutations, and heterozygous females
Fig. 3. Double immunofluorescence in the brains of symptomaticMecp2−/y and matched wt l
GFAP (red) (B). In the merge image the nuclei were identified by counterstaining with the nuc
also display a milder phenotype than that of RTT girls. These mutant
mice live longer and are therefore easier to study as compared to the
Mecp2-null models.

Therefore, OSmarkers were tested in the brain tissue of symptomatic
Mecp2 308/y and Mecp2 308/x mice. Mecp2 308/y (median age
32 weeks) showed significant increase in NPBI, F2-IsoPs, F4-NeuroPs,
and 4-HNE PAs as compared to wt mice (Figs. 6A–C, E; Supplementary
ittermates at 9 weeks, for F2-IsoPs (green)/βIII tubulin (red) (A) and for F2-IsoPs (green)/
lear marker DAPI (blue).
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Fig. 4. Inverse linear relationship of brain F4-NeuroPs vs. brain weight in symptomaticMecp2−/y mice (A) and of brain F4-NeuroPs vs. bodyweight in symptomaticMecp2−/y mice (B).
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Fig. 1C), thus confirming the relationship between the symptomatic
phase of the disease and the fatty acid peroxidation leading to lipid and
protein damage. On the other hand, no statistical difference for
F2-dihomo-IsoPs was detectable (Fig. 6D).

Interestingly, heterozygous 308 mutated females (Mecp2 308/x),
which exhibit a milder form of the disease with a delayed onset of the
Fig. 5. Evidence of oxidative brain damage in pre-symptomaticMecp2−/ymice vs.matchedwt
13, median age 5 weeks). No significant changes for F2-dihomo-IsoPs (D), and 4-HNE PAs (E) ar
*P b 0.05; **P b 0.01. N.S.: no significant differences (P N 0.05).
behavioral manifestations (median age 54 weeks), showed biochemical
signs of oxidative brain damage limited to F2-IsoPs, and F4-NeuroPs
(Figs. 7B–C), whereas no statistical differences were observed for NPBI,
F2-dihomo-IsoPs, or 4-HNE PAs (Figs. 7A, D–E; Supplementary Fig. 1D).

Likewise, brain oxidative damage precedes the symptomatic phase
also in the Mecp2 308/x mice, given that presymptomatic animals
littermateswith significant increase of NPBI (A), F2-IsoP (B), and F4-NeuroP (C) levels (N=
e observed. Data are expressed asmedians (columns) and semi-interquartile range (bars).
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Fig. 6. Evidence of oxidative brain damage in symptomatic hemizygous maleMecp2-308 mutated mice vs. matched wt littermates (N = 9, median age 32 weeks) showing significant
increase of the assessed OS markers (A–C, E), with the single exception of F2-dihomo-IsoPs (D). Data are expressed as medians (columns) and semi-interquartile range (bars).
*P b 0.05; **P b 0.01. N.S.: no significant differences (P N 0.05).
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(median age 22 weeks) show a significant increase in NPBI, F2-IsoPs,
and F4-NeuroPs (Figs. 8A–C). In contrast, no significant differences for
F2-dihomo-IsoPs, or 4-HNE PAs were observed between mutant mice
and their wt counterparts (Figs. 8D–E).

In order to compare the entity of the different oxidative events in the
different Mecp2 mutant mouse models, the levels of each marker were
expressed as a function of the median levels in the age-matched wt
controls (multiple of medians of the wt, MoMs) (Supplementary Figs.
3A–E). Besides the need to level off the methodological variability,
MoMs were used to account for potential confounders including inter-
and intra-group differences in strain, age, diet or breeding. Normalized
F2-IsoP levels were found to be significantly lower in the symptomatic
Mecp2 308/x and in the presymptomaticMecp2−/y-null mice, thus in-
dicating that brain ARA peroxidation is relatively lower in thesemodels.
Symptomatic Mecp2 308/y and Mecp2 stop/y show relatively higher
brain levels of 4-HNE PAs, thus indicating that the oxidative protein
damage consequent to aldehyde binding is increased in this murine
models of the disease.

When comparing the differences between relative OS marker levels
in the different mouse models, a trend just at the borders of the statisti-
cal significance was observed for F4-NeuroPs (ANOVA, P = 0.0587),
whereas no significant differences were detectable for NPBI and F2-
dihomo-IsoPs (Kruskal Wallis ANOVA, P = 0.2325 and, P = 0.1380,
respectively).

No significant relationships between the entity of the brain oxidative
damage (as expressed asMoMs for the age-matchedwt control popula-
tion) and the clinical phenotype severity, as expressed as aggregate
score (Guy et al., 2007), were observed (r ≤ 0.3499; P ≤ 0.2010, data
not shown).

In order to further test a potential cause–effect relationship between
oxidative brain damage and Mecp2 loss-of-function, brain levels of
OS markers were evaluated in brain specific Mecp2 rescued mice.
Specifically, the endogenous Mecp2 allele silenced by a targeted stop
cassette (Mecp2 stop/y) was activated specifically in the brain during
embryogenesis by expressing the Cre recombinase under the control
of Nestin promoter (Mecp2 stop/y NestinCre mice) (Tronche et al.,
1999). As expected (Robinson et al., 2012), a variable residual expres-
sion of the Mecp2 protein was observed in the brain tissues of the
symptomatic Mecp2 stop/y (mean age 17 weeks; median aggregate
score 6.5± 0.7), whereas a normal or near to normalMecp2 expression
was detectable in the brain of rescued Mecp2 stop/y NestinCre animals
(mean age 17 weeks; median aggregate score 0) (Fig. 9A).

Symptomatic Mecp2 stop/y mice, like the Mecp2 −/y mice, showed
oxidative damage in the brain, with NPBI, F2-IsoP, and F4-NeuroP levels
being significantly elevated as compared to those of age-matched wt
expressing Cre recombinase (wt-Cre) littermates, whereas no statistical
differences were observed for F2-dihomo-IsoPs and 4-HNE PAs (Fig. 9B
and Supplementary Fig. 3). On the other hand, rescued stop/y mice
showed levels of brain OS comparable to those of age-matchedwt litter-
mates (Fig. 9B; Supplementary Fig. 1E), thus indicating a full rescue of
the brain OS damage following brain specific Mecp2 gene reactivation,
and demonstrating that the altered redox homeostasis at the brain
level in this RTT murine model can be fully reversed following restora-
tion of the Mecp2 function.

Discussion

OS has beenwidely implicated in several pathological conditions in-
cluding neurological disease (Ferguson, 2010; Halliwell and Gutteridge,
2007; Praticò, 2010). Lipid peroxidation, a critical component of OS, is a
process well known to induce oxidative damage to key cellular compo-
nents, implicated in several diseases. In particular, free radicals and
specifically reactive oxygen species (ROS) are able to attack polyunsat-
urated fatty acids (PUFAs) of cell membranes, thus generating the
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Fig. 7. Evidence of oxidative brain damage in symptomatic heterozygous femaleMecp2-308mutatedmice vs. matched wt littermates (N= 5, median age 54 weeks) showing significant
increase of F2-IsoPs (B), and F4-NeuroPs (C). No significant changes inNPBI (A), F2-dihomo-IsoPs (D), and 4-HNE PAs (E) are observed. Data are expressed asmedians (columns) and semi-
interquartile range (bars). *P b 0.01. N.S.: no significant differences (P N 0.05).
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prostaglandin-like end-products IsoPs, along with a family of α,β-
unsaturated reactive aldehydes, such as 4-HNE.

Isoprostanes are considered as the gold standard for the OS in vivo
evaluation (Galano et al., 2013; Signorini et al., 2013). Specifically, F2-
IsoPs are the oxidation end-products of ARA, a polyunsaturated fatty
acid, abundant in both brain gray and white matter, F4-NeuroPs are
the end-products of DHA, abundant in neuronal membranes, whereas
F2-dihomo-IsoPs are known to derive from oxidation of AdA (De
Felice et al., 2011), a fatty acid abundant in white matter, specifically
myelin and can be considered a marker of white matter oxidative
damage (Supplementary Fig. 4).

Our data, obtained in establishedmousemodels of Rett syndrome, ap-
pear to be in linewith the emerging view that a lipid abnormalitymay be
key to the pathogenesis of the Rett syndrome (Buchovecky et al., 2013;De
Felice et al., 2013; Nagy and Ackerman, 2013; Sticozzi et al., 2013). Of
course, it should always be kept in mind that experimental models for a
disease unavoidably carry intrinsic limitations related to inter-species dif-
ferences with the mimicked human pathology. To this regard, a puzzling
discrepancy with the behavior of the OS markers in blood samples from
RTT patients is represented by the lack of changes in F2-dihomo-IsoP
levels in the tested RTT mouse models (data not shown), which is in
good agreement with the presence of increased level of F2-IsoPs in neu-
rons but not in astroglia (Fig. 3), but is in contrast with the marked in-
crease in F2-dihomo-IsoPs previously documented in plasma samples
from patients at an early stage of the disease (De Felice et al., 2011).

Nonetheless, the data presented here point out to several interesting
considerations:

i) alterations of the redox balance have been confirmed in murine
models of RTT. More importantly, imbalances of OS “gold
standard” markers are well evident especially in neurons;
ii) our findings indicate that an OS-driven brain damage occurs in
two different mouse models of RTT: the Mecp2-null and Mecp2-
308 animals. Thus, our findings further strengthen the above
reported observations, having extended our investigation on
OS markers to murine RTT models in which Mecp2 is
hypofunctional, rather than limiting our studies to Mecp2-null
mice in which the Mecp2 protein is totally absent (Katz et al.,
2012);

iii) brain oxidative damage precedes the clinical manifestations by
several weeks in Mecp2 −/y, stop/y and Mecp2-308/x models,
where we detected a significant brain redox alteration prior to
symptoms onset. These data are consistent with a close relation-
ship between Mecp2 deficiency and development of RTT, and
indicate the existence of a phase of the disease in which
biochemical signs of enhanced OS are present in the brain, well
before the clinical signs of the pathology, although some clinical
evidence suggests that the disease could start at birth or even
prenatally (Leonard and Bower, 1998). Notably, prior experi-
mental data obtained with a mouse model carrying Mecp2
T158Amutation suggest that the underlying deficits in neural ac-
tivity precede the establishment of behavioral symptoms (Goffin
et al., 2012). Furthermore, in vitro electrophysiological studies
showed reduced cortical excitability in Mecp2 −/y mice even at
2–3 weeks of age, that is well before the onset of neurological
symptoms (Dani et al., 2005);

iv) in a translational perspective, these findings would strongly sug-
gest that neurology of RTT girls may be abnormal long before the
onset of clinical signs, in line with several clinical (Burford et al.,
2003; Einspieler et al., 2005a,b; Marschik et al., 2011; Temudo
et al., 2007) and preclinical evidence (De Filippis et al., 2010;
Picker et al., 2006);
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Fig. 8. Evidence of oxidative braindamage inpre-symptomatic heterozygous femaleMecp2-308mutatedmice showing significant increase ofNPBI (A), F2-IsoPs (B), and F4-NeuroPs (C) vs.
matched wt littermates (N = 3, median age 22 weeks). No significant changes in F2-dihomo-IsoPs (D), and 4-HNE PAs (E) are observed. Data are expressed as medians (columns) and
semi-interquartile range (bars). *P = 0.0339. N.S.: no significant differences (P N 0.05).
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v) the correction of Mecp2 deficient genotype in the rescued Mecp2
stop/y NestinCre animals, re-establish the correct level of IsoPs.
With this experiment we can affirm that the OS imbalance is a
reversible phenomenon, which may be corrected by the re-
introduction of a functional MeCP2. Moreover, the re-expression
of Mecp2 in a Nestin-driven manner strongly suggests that the
brain OS imbalance is due to a neural specific impairment of
Mecp2 function, although the underlying molecular mechanism
is still obscure.

In fact, the occurrence of alterations in OS brain markers, here evi-
denced when the Mecp2 gene is knocked out/silenced or mutated,
does not necessarily mean that redox control could be a new, direct,
function for theMecp2 protein; our data do only provide clear evidence
thatMecp2 deficiency is associatedwith a brain redox abnormality, thus
indicating that oxidative brain damage is a previously unrecognized
hallmark feature of murine RTT, and suggesting that Mecp2 is likely
involved in the protection of the brain from OS.

Given that a loss of Mecp2 likely leads to the dysregulation of thou-
sands of genes (Chahrour et al., 2008), with all the complex down-
stream consequences of this, it is not possible, to date, to relate any
specific phenotypic features to the increased OS marker levels in the
brain and/or plasma of the affected animals. At the same time, it is un-
deniable that RTT patients andMecp2mutant animal models are facing
remarkable breathing challenges, exemplified by recurrent apneas and
breath-holds (De Felice et al., 2010; Ramirez et al., 2013), which
ultimately lead to a clinical phenotype defined not only by complex
genetic causes (Grillo et al., 2013), but also by a series of interacting
mechanisms involving a variety of compensatory, synaptic and
neuromodulatory alterations, as well as disturbed homeostasis and OS
(Grosser et al., 2012; Ramirez et al., 2013). Since several receptors and
ion-channels are known to be redox-modulated (Poli et al., 2008;
Sticozzi et al., 2013), it is possible that the mitochondrial (Grosser
et al., 2012) and redox changes (De Felice et al., 2009; Grosser et al.,
2012) evidenced in patients and animal models could contribute to
the hyperexcitability and diminished synaptic plasticity in MeCP2
deficiency.

The key role of OS mechanisms in determining some of the char-
acteristic neurological features in RTT appears to be also confirmed
by the recent report on reduction in neuronal hyperexcitability,
improvement in synaptic short-term plasticity, and restoration of
synaptic long-term potentiation in a Mecp2 null mouse model of
the disease following the incubation of hippocampal slices with a
free radical scavenger vitamin E derivative compound (Janc and
Muller, 2014).

It is important to underline that biochemical signs of brain oxidative
damage predate the onset of symptoms, including the respiratory fea-
tures, in the examinedmutantmice. Although human and experimental
evidence indicate that Obstructive Sleep Apnea Hypopnea Syndrome
and intermittent hypoxia can be associated with enhanced OS, conflict-
ing reports exist (De Felice et al., in press and references therein). How-
ever, the relationships between apneas/upper airways obstruction/
intermittent hypoxia and OS status in RTT patients appear to be limited
to the generation of a pro-oxidant status, as indicated by a reported link
between intraerythrocyte-NPBI, but not F2-IsoPs, and apneas (De Felice
et al., in press). Therefore, it becomes clear that mechanisms other than
apneas/intermittent hypoxia should be the major sources of enhanced
OS in human RTT and, by inference, mouse models of the disease.
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Fig. 9. Rescue of oxidative brain damage in Mecp2 stop/y NestinCre mice. Western blot analysis of Mecp2 protein in the brains of wt, wt-Cre, Mecp2 stop/y, and Mecp2 stop/y NestinCre
mice.β-Actinwas used as loading control (A). Analysis of NPBI, F2-IsoPs, F4-NeuroPs, F2-dihomo-IsoPs and 4-HNE PAs in the brains of wt-Cre (N=5,median age 17 weeks), Mecp2 stop/y
(N=2,median age 17 weeks), andMecp2 stop/yNestinCre (N=6,median age 17 weeks)mice (B). OSmarkers are expressed asmedians (columns) and semi-interquartile range (bars).
ANOVA: Kruskal–Wallis analysis of variance. *P b 0.05. N.S.: no statistically significant differences (P N 0.05).
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Taken as a whole, the oxidative hypothesis of RTT (De Felice et al.,
2012b) would seem to explain several intriguing features of the
human disease. For instance, the risk of OS-driven brain damage may
represent one of the possible reasonswhyMeCP2 activitymust befinely
tuned and tightly regulated, including embryonal microRNA control
(Han et al., 2013). In addition, the occurrence of biochemical signs of
oxidative brain damage preceding the neurological symptoms may
explain the inconsistency of the apparently normal developmental
phase (i.e., latency period) before clinical onset in the RTT patients. Fi-
nally, the previously unrecognized key role of Mecp2 in the regulation
of redox homeostasis could explain the potential reversibility of the
disease following functional restoration of the Mecp2 protein.

Taken together, our data suggest the existence of awindow inwhich
an early OS-modulating therapy could reduce/limit phenotype severity.
As there are no currently proven effective pharmacological therapies for
human RTT that can either halt progression or reverse the neurological
and cognitive abnormalities, although many strategies are ongoing
(Panayotis et al., 2011) our findings could pave the way for an early
OS-modulating intervention during the preclinical window in RTT.
This concept is supported by a previous pilot study in RTT patients at
an early stage of the disease using ω-3 PUFAs (De Felice et al., 2012a).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nbd.2014.04.006.
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