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We generally follow the terminology of Azad (J. Math. Anal. Appl. 82 (1981), 
1432) and Ming (J. Math. Anal. Appl. 76 (1980) 571-599). In addition to the fun- 
damental concepts for fuzzy sets, we emphasize the usefulness of the concepts of 
fuzzy point-fuzzy elementhood. For fuzzy sets A and B a new characterization is 
given for relations A c B and A = B. This knowledge permits us to combine the two 
definitions of fuzzy point-fuzzy elementhood. In the third section some results are 
given concerning various special types of fuzzy sets in fuzzy topological spaces, and 
the fuzzy semi-regular, fuzzy regular spaces defined by Azad. In the last section, the 
definitions of H. almost continuous, W. almost open functions Urysohn space 
which are defined by Hussain, Wilansky, and Noiri, respectively, are extended to 
fuzzy sets. Furthermore some results are obtained in the functions of the fuzzy 
topological spaces defined by Azad and those are defined here. ? 1987 Academic Press, 

Inc. 

1. BASIC NOTATION AND DEFINITIONS 

X always denotes a nonempty set. Fuzzy sets of X will be denoted by 
capital letters as A, B, C, etc. The value of a fuzzy set A at the element x of 
X will be denoted by A(x), and fuzzy points will be denoted by p, Y, s. 

We write p pi A, p E* A, respectively, when the definitions of a fuzzy 
point and being an element of a fuzzy set are as given by 
Srivastava-La1 [3] and Ming [2]. Hence p pi A means p takes its single 
non-zero value in (0, 1) at the support xP (the support of p), and 
p(x,) <A(x,), while p e2 A means p takes its single non-zero value in 
(0, 1 I, and pb,) 6 A@,). 

In this article p E A will stand for either p E, A or p ~~ A. If we say only 
“fuzzy point p” then p will be considered as in [2] or [3]. Also, in the case 
p pi A we use the same definitions as given in [2]. 

Let A and B be fuzzy sets, p a fuzzy point in X, tc(p), tee(p), A, A, A’ 

will denote, respectively, the neighborhood system of p, the Q- 

* This research is a part of auther’s Ph.D. Thesis which was submitted to the University of 
Hacettepe in 1982. 
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neighborhood system of p, the interior of A, the closure of A, and the com- 
plement of A. If A is quasi-coincident with B this will be denoted by AqB, 
and if p is quasi-coincident with A this will be denoted by pqA. 

Known results valid for the general case p E A will not be proved. 

2. FUZZY SETS 

PROPOSITION 2.1. Zf A(x) is not zero for x E X then, 

A(x) = sup P(X) = sup P(X). 
0 <p;(x) -c A(x) 0 <p;.(x) s A(x) 

(Here supp pi. = x for every L.) 

Proof. Trivial. 

THEOREM 2.2. 

(i) A c B iffp~~ A implies p Ed B for every p E, X. 

(ii) A c B iff p Ed A implies p Ed B for every p Ed X. 

(iii) A c B iff p E A implies p(x,) < B(x,) for every p in X. 

ProoJ (i) Let A c B and p E, A. Clearly p(x,) < A(x,) < B(x,). This 
gives p(x,) < B(x,), so we have p Ed B. 

Conversely suppose p E, A =z. p E, B but that A qk B. Then for some 
XE X, B(x) < A(x). If p is a fuzzy point with support x, and satisfying 
B(x) < p(x) < A(x) then p E, A but p 4, B, which is a contradiction. This 
completes the proof of (i). 

The proofs of (ii) and (iii) are similar. 1 

COROLLARY 2.3. A = B iff p E A o p E B for every p in X. 

THEOREM 2.4. (i) ~EA~B iffped andpEB. 

(ii) p~AuBflp~A orpcB. 

Proof LetusprovethatpE,AnBiffpe,AandpE,B; 

PE, AnBop(x,)<AnB(x,) 

* I < inf{A(x,), B(x,)) 

* I < A(x,) and p(x,)<B(x,) 

-=-PE,A and PEI B. 

The proofs of the other case, and of (ii) can be given in a similar way. 1 
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PROPOSITION 2.5. Let A be a fuzzy set and for x E X, A(x) = t # 0. Iffor 
any 1 which satisfies the inequality 0 <i < t, we choose the fuzzy point p 
such thatp(x)=l-i, thenpqA becauseA(x)+(l-A)=?-A+l>l. [ 

3. FUZZY TOPOLOGICAL SPACES 

Throughout this section, X will denote a fuzzy topological space with 
fuzzy topology 5. 

With a small modification the following result is taken from [2, 
Theorem 4. I’]. 

THEOREM 3.1. Let p E X and A c X. If p E A then AqM for every 
ME K~(P). If AqMf or every A4 E tco( p) then p(x,) d A(x,). 

Proof: Clear from [2, Theorem 4.1’1. 1 

THEOREM 3.2. A is a fuzzy open set iff A is a Q-neighborhood of p for 
every p E X which is quasi-coincident with A. 

Proof Let A be fuzzy open. Clearly if any fuzzy point p is quasi-coin- 
cident with A then A E tco( p). 

Conversely, let p E, A. Then 0 # p(x,) < A(x,) and we may consider the 
fuzzy point r with support xp and r(xB) = 1 - p(x,). By Proposition 2.5 we 
have rqA so by hypothesis A E tco(r). Hence we have UEZ with rqU and 
UCA, 

r(xp) + U(x,) = 1 - a + U(x,) > la U(x,) > p(x,) 

-PE, UcA 

-pE, A. 

Hence k c A, and A is fuzzy open. 1 

PROPOSITION 3.3. For a fuzzy topological space X, the following are 
equiualen t : 

(i) For any distinct fuzzy points p E, X, r E, X (i.e., satisfying 
supp p # supp r), there exist fuzzy open sets U and V such that p E, U, 
rEI Vand Un V=@. 

(ii) For any distinct fuzzy points p Ed X, r E* X, there exist fuzzy open 
sets U and U and V such that pqU, rqU, and U n V = a. 

(iii) For any distinct fuzzy points p Ed X, r E, X, there exist fuzzy open 
sets U and V such that pqU, rqV, and U n V = 0. 

409: 126,‘2-x 
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Proof The proof is easy but rather long and is omitted. 1 

X is said to be Hausdorff if it satisfies the equivalent condition of the 
Proposition 3.3 ([3] and [Z]). 

PROPOSITION 3.4. Let A, B c X and d c B c 2. 

(i) If A is a fuzzy semi-open set then so is B. 

(ii) Zf A is a fuzzy semi-closed set then so is B. 

Proof (i) Let A be a fuzzy semi-open set and d c B c A. There exists 
a fuzzy open set U such that U c A c 0. It follows that UC A” t A c A c 0 
and hence U c B c 0. Thus B is a fuzzy semi-open set. 

(ii) The proof is similar to (i). 1 

THEOREM 3.5. Let A c X. A is a fuzzy semi-open set tff for every p E A 
there exists a fuzzy semi-open set 0, such that p E 0, c A. 

Proof If A is a fuzzy semi-open set then we may take 0, = A for every 
PEA. 

Conversely we have A = UpEA { p} c Upt A 0, c A and hence 
A = Upe~ 0,. This shows that A is a fuzzy semi-open set. 1 

It can be easily seen from [2] that A is a fuzzy regular open (regular 
closed) set iff there exists a fuzzy set B such that A = $ (A = 3). 

PROPOSITION 3.6. X is a fuzzy semi-regular space tff for every p E, X 
there exists a neighborhood base of p consisting of fuzzy regular open sets. 

Proof: Let p pi X and ME rc( p). There exists a fuzzy open set T such 
that p pi TC M. From the definition of a fuzzy semi-regular space made by 
Azad [ I] and [3, Theorem 2.11 there exists a fuzzy regular open set A 
such that p E, A c T. Clearly A E K(P). 

Conversely, let T be a fuzzy open set. Then TE K(P) for every p Ed T. 
Thus there exists a fuzzy regular open set A, such that A, E K(P) and 
p~,A~~Tforeveryp~~ T. 

From this we get T= U A,,. Hence X is a fuzzy semi-regular space. 1 

THEOREM 3.7. X is a fuzzy semi-regular space tff for every p E X there 
exists a Q-neighborhood base of p consisting of ,fuzzy regular open sets. 

Proof Let p E X and ME K,(P). There exists TE 7 such that Tc M and 
TE no(p). Since pqT, there exists a regular open set A such that pqA and 
A c T ([ 1, Definition 7.8; 2, Proposition 2.31. This implies that A E K~( p). 

Conversely we suppose that X is not a fuzzy semi-regular space. This 
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implies that there exists a fuzzy open set T such that T cannot be written as 
a union of fuzzy regular open sets. 

Let T,, = U (B 1 B c T, B a fuzzy regular open set }. We have TO c T but 
TO # T. It can be easily shown that TO # 0. 

TO # T implies that there exists an element x of X such that T,(x) < T(x). 
We can choose E> 0 such that T,(x) + E < T(x). If we define p such that 
p(x) = 1 - T,(x) --E then pqT. Clearly TE am. There exists a fuzzy 
regular open set A such that A c T and A E K-~(P). At the same time, 
A c TO. We have 

A(x) + p(x) 6 T,(x) + 1 - T,,(x) -E < 1 

which is a contradiction. Hence X is a fuzzy semi-regular space. 1 

PROPOSITION 3.8. X is a fuzzy regular space iff for every p E, X there 
exists a neighborhood base of p consisting of fuzzy closed sets. 

Proof For every fuzzy open set T there exist fuzzy open sets U,, CI E Q 
(Q is an index set) such that 

T=U U,=u u, and U, c 0, for every c(. 
1 2 

The remainder of the proof is similar to the proof of Proposition 3.6. 1 

THEOREM 3.9. X is a fuzzy regular space iff for every p E X there exists a 
Q-neighborhood base of p consisting of fuzzy closed sets. 

Proof: This is similar to the proof of Theorem 3.7, the set TO involved 
in showing sufficiency in this case being 

T,=U (BCTI B is a fuzzy open set with Bc T}. [ 

4. FUNCTION ON FUZZY SPACES 

As the light to the knowledge in this section, the following theorem is 
gathered from some dissertation concerning fuzzy sets. For example, see 
CL 4, 51. 

THEOREM 4.1. Let f be a function from X to Y, and I be any index set. 
The following statements are true: 

(1) If A c X then f(A)‘c f(A’). 

(2) ZfBcY thenf-‘(B’)=f-l(B)‘. 

(3) IfA,,A,cXandA,cA, thenf(A,)cf(A,). 
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(4) IfB,, B,c YandB,cB, thenf-‘(B,)cf(B,). 
(5) If A c X then A c.f -‘(f(A)). 
(6) IfBc Y thenf(f-‘(B))c B. 
(7) ZfA,cXfOr every iEZ thenf(U,.,Ai)=UiEIf(Ai). 
(8) If Bi c Y for every i E I then 

f --’ 

(9) [f,f is one-to-one and A c X thenf-‘(f(A)) = A. 
(10) Zff is onto and Bc Y then f(f -l(B))= B. 
(11) IfA, BcX thenf(An B)cf(A)nf(B). 
(12) If Bit Yfor every iE I then 

f ’ (,/JBi) = n f ‘(Bi). 
rtl 

(13) Let g be a function from Y to Z. Zf BcZ then (go.f)-l(B)= 
.fp’(gm~‘(B)); IfAcXthen (gof)(A)=g(f(A)). 

In addition to these properties the following statement is true at the same 
time. 

(14) Zff is bijection then for A c X, f(A)‘= f(A’), because 

f(.f-‘(f(A)‘))=f(f ?f(A))‘)=f(A’). 

Let f be a function from X to Y. Clearly for every p E X, f(p) is a fuzzy 
point in Y, and ifsupp p=x, then supp(f(p))=f(x,),f(p)(f(x,))= p(x,). 

Zf p E Y then f - ‘(p) needs not be a fuzzy point in X. Zf f is one-to-one and 
p E f (X) then f - ‘(p) will be a fuzzy point in X. In this case if supp p = y, 
then suppf ‘(P)=.~~‘(Y,) andf ?p)(f ?y,))=p(y,J 

PROPOSITION 4.2. Let f be a function from X to Y and p E X. 

(1) Zffor Bc Y we haoef(p)qB then pqf -l(B). 
(2) Zffor AcX we hauepqA thenf(p)qf(A). 

ProoJ: (1) Let f(p)qB for Bc Y. Clearly f(p)(f(x,))c B(f(x,))> 1. 
This gives that 

f~‘(B)(x,)+p(xp)=B(f(xp))+f(p)(f(xp))>1jpqf-’(A), 

[4, Definition 1.1; 2, Definition 2.2’1 



FUZZYSETSANDFUNCTIONS 415 

(2) Let pqA for A c X. This gives, p(x,) + A(x,) > 1. This implies that 

f(P)(f(X,)) +f(‘wf(x,)) = P&J + sup A(.u) 
rE.fr’(f(-qJ)) 

2p(x,)+A(x,)> 1. 

Clearly we have f(p) qf(A ). 1 

To the end of this work, X and Y denote fuzzy topological spaces with 
fuzzy topology t and 9, respectively, and by f: X + Y we denote a function 
f of a fuzzy space X into a fuzzy space Y. 

THEOREM 4.3. Zff: X-+ Y fuzzy open then f ~ ‘(B) c f’(B), for every 
Bc Y. 

Proof Let B c Y and p E f - ‘(B). First let us show that if NE xe( p) 

thenfWbqAf(P)). 
Let NE K&P). Then there exists UE t such that pqUc N. This implies 

that f (p) qf( U) c f(N) (Proposition 4.2). Since f is fuzzy open function we 
have f (LJ) E 8. Thus f(N) E Ka(f ( p)), 

PEf ?Z+f(P)Ef(f -‘(@)=B. 

Again let NE ~o( p). Since f(N) E KP( f ( p)) and from Theorem 3.1 there 
exists y E Y such that f(N)(y) + B(y) > 1. We choose E > 0 such that 
f(N)(y)+ B(y) --E > 1. Since f(N)(y) =su~~~~/-I,~~) N(x) there exists 
x0 E f -‘( y) such that f(N)( y) -E < N(x,) for this E. For this x0, 

f ?B)(x,) = B(f(x,)) = B(y). 

We have N(x,)+f-‘(B)(x,)>f(N)(y)-~+B(y)>l. Thus Nqf-l(B). 
Since this result is true for every NE K~( p), we have p(x,) 6 f-‘o(x,) 
(Theorem 3.1). Now we arrive at the result f-‘(B) cf’o, 
(Theorem 2.2). i 

COROLLARY 4.4. Zf f: X -+ Y is a fuzzy open and fuzzy continuous 
function then f ~ l(B) = f’(B), for every B c Y. 

ProoJ: It is clear from [4] and Theorem 4.3. 

THEOREM 4.5. Let f: X -+ Y. The following are equivalent: 

(1) f is a fuzzy semi-continuous function. 

(2) For every p E X and every ME tc( f (p)), there exists a fuzzy semi- 
open set A such that p E A and A c f ~ ‘(M). 
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(3) For every p E X and every A4 E K(f (p)), there exists a fuzzy 
semi-open set A such that p E A and f (A) c M. 

(4) For every PE X and every ME ~Jf(p)), there exists a fuzzy 
semi-open set A such that pqA and A c M. 

(5) For every p E X and every M E KQ( f ( p)), there exists a fuzzy semi- 
open set A such that pqA and A c ,f ~ ‘(M). 

(6) f-‘(U)cf p’(U), for every UEQ. 

(7) For every fuzzy closed set B in Y, f ~ l(B) is a fuzzy semi-closed set 
in X. 

(8) For every fuzzy closed set B in Y, ,f -l(B) = f’(B). 

Proof: ( 1) 3 (2). Let p E X and A4 E rc( f (p)). There exists U E 9 such 
that f(p) E U c M. f ~ ‘( U) is a fuzzy semi-open set and we have 
pEf-‘(U)=Acf-‘(M). 

(2) * (3) Let p E X and ME rc( f ( p)). There exists a fuzzy semi-open set 
A such that PEA and Acf-‘(M). So we have PEA, 
f(A)cf(f ‘(M))cM. 

(3)+(l) Let UE$ and let us take pEf ‘(U). This shows that 
f(p)Ef(f~-‘(U))cU. Since U is a fuzzy open set we have U~rc(f(p)). 
There exists a fuzzy semi-open set A such that p E A and f(A) c U. This 
showspEAcf-‘(f(A))cf-l(U). From Theorem3.5, f-‘(U) is a fuzzy 
semi-open set. 

(l)*(4) Let PEX and MEKg(f(p)). There exists UE~ such that 
f(p) qUcM.f -l(U) 1s a fuzzy semi-open set and from Proposition 4.2 we 
have pqf- ‘( U). If we take A = f ~ ‘( U) then 

f(A)=f(f -‘(U))c UcM. 

(4) * (5) Let p E X and ME Ka(f (p)). There exists a fuzzy semi-open 
set A such that pqA and f(A) c M. Hence we have pqA and 
Acf-‘(f(A))cf--‘(M). 

(5)*(l) Let us show that f.-‘(U) is a fuzzy semi-open set for any 
UEQ. 

Let UE$ and pelf -l(U). This implies that f(p)E, U (because 
I <f -‘(U)(x,), f(x,)(f(x,)) = I andf -‘(U)(x,) = U(f(x,))), 

f(P) El U*f(p)(f(x,)) < U(f(x,)). 

If we define the fuzzy point p’ being 

P’(X,) = 1 - P(X,), 
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then 

f(P’)(f(X,)) =P’(xp) = 1 - P&J = 1 -f(PNf(X,h 

f(p’) qU (Proposition 2.5). Since U is a fuzzy open set, we have 
UE rcQ(f( p’)). Thus there exists a fuzzy semi-open set A such that 
p’qA cf-‘( U). 

P’4A 3 PYX,) + 4x,) ’ 1 

=24x,) > 1 - P&J = P(X,) 

*pykf-‘(U). 

From Theorem 3.5, we have f-‘(U) is a fuzzy semi-open set. 
(1) 3 (6) Sincef-‘( U) is a fuzzy semi-open set for every UE 9 we have 

f-‘(U) =.f* [ 1, Theorem 4.2). 
(6) * (1) Frop [2, Theorem 4.21, since any fuzzy set A which satisfies 

the relation A c A in X will be a fuzzy semi-open set, we have that f-‘( U) 
is a fuzzy semi-open set for every U E 9. 

(1) * (7) Let B be a fuzzy closed set in Y. This implies that B’ E 9. We 
have f-‘(B’)=f-‘(B)‘. f-‘(B’) is a fuzzy semi-open set so is f’(B)‘. 
Clearly f-‘(B) is a fuzzy semi-closed set [ 1, Theorem 4.21. 

(7)*(8), (8)+(7), and (7)+(l) can be easily proved. i 

THEOREM 4.6. Let f: X + Y. The following are equivalent: 

(1) f is a fuzzy weakly continuous function. 

(2) For every fuzzy closed set B in Y, we have f -l(B) = fq. 

(3) ForeverypEXandMEtc(f(p)),f-‘(R)Ek(p). 

(4) For every p E X and ME k(f(p)), there exists U E T such that 
pE u, f(U)cfV. 

(5) For euery PEX and MEka(f(p)),f-‘(M)EJcp(p). 

(6) For every p E X and ME rca(f( p)), there exists U E z such that 
U~tc&p) andf(U)cH. 

(7) For every p E X and any fuzzy net { p, } r E O which is converging to 
p, if ME tce( f( p)) then there exists /I E @ such that f (p,) qB for every 
a 2 /I, where @ is a directed set. 

(8) For every VEQ, f’(V)C f -l(v). 

Proof. ( 1) =- (2) Let B be a fuzzy closed set in Y.B’ E 9, 
f-‘(B’) c (f-‘(B’))‘. Th’ is implies that (f -‘(B))‘c (f-‘((B)‘))“, [l, 
Lemma 3.21, 

(f -‘(B))‘c ((f-‘(8))‘)‘= (m)‘=+ f -l(B) =f. 
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(2)*(l) Proof is similar to (l)*(2). 
( 1) * (3) * (4) =z= (1) and (5) * (6) can be easily proved. 
(6) * (7) Let PE X, pz + p, and ME ~Jf‘(p)). There exists UE r such 

that UE K~( p) and f(u) c M. Since pa -+ p, there exists /I E @ such that 
pz qU for every a 3 /I [2, Definition 11.41. From Proposition 4.2 we have 
f’( p,) qf( U) c fV, for every (x 3 j. Clearly f( p,) qR, for every a 2 8. 

(7) = (5) We suppose that (7) does not imply (5). There exists at least 
one p E X and A4 E ~_r?(,f( p)) such that for every fuzzy open set UE JQ( p), 
we have U d f-‘(M). 

Thus, there exists an element x, of X such that U(x,) >f-‘(A)(x,), for 
every U E tiQ( p). We can choose E, > 0 for every fuzzy open set U E K~( p) 
such that U(X,)>,~~‘(~@)(X,)+E,. Clearly, U(x,)+ 1 -f-‘(a)(~,)- 
E,, > 1 for every fuzzy open set UE rca( p). 

Let us define the fuzzy points in the following way. 
P,(X,) = 1 -.I” wmxu) - &LL, for every fuzzy open set U E 'cs( p). 
This follows that U(x,) + p,(x,) > 1 for every fuzzy open set UE K&P). 

If we denote the family of fuzzy open sets which belong to am by 9, 
then we can easily see from [2, Proposition 2.21 that 9 is a directed set 
(the relation < in 9 is in the meaning of UC Vo U> V). 

The net {pu}cEy which is chosen in the above way converges to p. 
For every UE 9, 

f( P,)(f(X,)) = P,(Xu) 

= 1 -f~‘(M)(X,) - E, 

= 1 - A(f(xJ) - E,. 

We havef(pu)(f(x,)) + A(f(xU)) = 1 -8, < 1, which contradicts (7). 
Thus (7) implies (5). 
(1) = (5) Let p E X and ME ~~(f(p)). There exists UE 9 such that 

UEK&“(P)). Since, pqf.-‘(U)cf-“(M)cf ‘(I@) and f--‘(li;i)~z, we 
haveS-‘(m)E~~(p). 

(5)*(l) Let us show thatf-‘(U)cf-‘(0) for UEQ. Let UE~ and 
P%f ‘(U)*f(P)El U. If we define P’(X,) = 1 -P&J then 
f(p’)(f(x,)) = 1 -f(p)(f(x,)). Since f(p)(f(x,)) < U(f(x,)), we have 
f( p’) qU (Proposition 2.5). Thus UE K&( p')). This implies that 
f-- ‘( 0) E K~( p'). There exists TE r such that p’qTc f -‘( 8). From here we 
write, p'(x,) + T(x,) = 1 - p(x,) + T(x,) > 1. This gives that 

T(x,)>~(x,)+~:Tcf ‘(0) 

Hence we obtainf-‘(U)cj’ ‘(0). 
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(2) =z. (8) Let VE 9. P is a fuzzy closed set and I/ c I? Hence 
f-‘(P)3~3f. 

(8) =S (2) Let B be a fuzzy closed set in Y. This gives that $ E 9 and 
$c B. Hence f-‘cs,jP1(j) cf-l(B). 1 

DEFINITION 4.7. Let (X, r) be a fuzzy topological space. If for any dis- 
tinct fuzzy points p, r in X such that p(x,) < 1, r(x,) < 1, there exists fuzzy 
open sets U and V such that p(x,) < V(x,), r(xp) < V(x,) and On P= @ 
then we say that X is a fuzzy Urysohn space. 

PROPOSITION 4.8. For fuzzy topological space X, the “following are 
equivalent: 

(1) X is a ,fuzzy Urysohn space. 

(2) For any distinct fuzzy points p e1 X, r E, X, there exist fuzzy open 
sets U and V such that p E, U, r E, V, and Dn P= 0. 

(3) For any distinct fuzzy points PE X, rE X, there exist fuzzy open 
sets U and V such that pqU, rqV, and 0 n V= 0. 

Proof The proof is easy but long. 

THEOREM 4.9. Let Y be a fuzzy Urysohn space. If f: X -+ Y is fuzzy 
weakly continuous and one-to-one then X is a fuzzy Hausdorff space. 

Proof Omitted. 

THEOREM 4.10. Let f, : X + Y, fi : X + Y be fuzzy weakly continuous 
functions, let Y be a Urysohn space, and A = U { PE X 1 f,(p) = f*(p)}. 
Then, A is a fuzzy closed set. 

Proof Omitted. 

COROLLARY 4.11. Let fi : X + Y, fi : X + Y be fuzzy weakly continuous 
functions, Y be a fuzzy Urysohn space and A c X. If d = X andf,( p) = f2( p) 
for every p E A then f, = f2. 

THEOREM 4.12. Let f: X + Y. The following are equivalent: 

(1) f is fuzzy almost continuous. 

(2) For every VES,f-‘(V)c(f-‘(8))‘. 

(3) For every fuzzy regular closed set A in Y, f - ‘(A) is a fuzzy closed 
set. 

(4) For every fuzzy closed set B in Y, f-‘(J) c f -l(B). 
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(5) For every p~Xand every M~~(f(p)),f-‘(&)~ic(p). 

(6) For every p E X and every ME ~(f( p)), there exists UE z such that 

pE U andf(U)cii?. 

(7) For every p E X and every ME K&(P)), there exists U E T such 

that pqU and f (U) c I& 

(8) For every p E X and every ME K&(P)), fee '(A?) E Q(P). 

(9) For every p E X, if any net { pa}lce convzrges to p, then for every 
ME ~&f(p)), there exists /? E @ such that f( p,)qhf for every ct 9 b. 

Proof: (1) o (2) (3) o (4) are proved by Azad [ 11. The others can be 
proved in a similar way to the proof of Theorem 4.6. 1 

DEFINITION 4.13. Let f: X+ Y be a function. f is called, 

(a) Fuzzy H. almost continuous, if for every fuzzy open set U in Y, 
f ‘(U) cf- (in short f, fuzzy H.a.c.). 

(b) Fuzzy W. almost open, if for every fuzzy open set U in Y, 
f -‘( 0) Cf -‘( U) (in short f, fuzzy W.a.0.). 

Remark 4.14. For the function f: X + Y, the following statements are 
valid: 

f, fuzzy continuous *f, fuzzy H.a.c., 
f, fuzzy H.a.c. &- f, fuzzy weakly continuous, 
f, fuzzy almost continuous $ f, fuzzy H.a.c., 
A fuzzy H.a.c. + f, fuzzy semi-continuous, 
f, fuzzy semi-continuous 6 f, fuzzy H.a.c., 
f, fuzzy open = f, fuzzy W.a.o., 
,f, fuzzy W.a.0. =~5 f, fuzzy semi-open. 

EXAMPLE~.~~. Let X=(a,b,c}, Y=(x,y,z} and T,cX, TZcX, 
T, c X, U, c Y, U, c Y, U, c Y be defined as follows: 

T,(a) = 0, T,(b) = 0, 3, T,(c) = 0, 2, 

T,(a) = 0, 9, T,(b) = 0, 6, TAc) = 0, 7, 

T,(a) = 0,2, T,(b) = 0, 3, T,(c) = 0, 2, 

U,(x) = 0, U,(Y) = 094, U,(z) = 0, 2, 

U,(x) = 0, U,(y)=O, 8, U,(z) = 032, 

U,(x) = 0, U,(Y) = 0, 6, U,(z) = 0, 2, 
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(a) Let z= (X, 0, T,, T2), lJ= {Y, 0, u,). 

If we define f: Y + X satisfying f(x) = a, f(y) = b, f(z) = c then f is fuzzy 
H.a.c. but not fuzzy weakly continuous. 

(b) Let z= {X 0, T,, T2}, 9= {Y, 0, u,>. 

If we define f: X + Y satisfying f(a) = x, f(b) = y, f(c) = z then f is fuzzy 
almost continuous but not fuzzy H.a.c. 

(c) If we define z and 9 as in (a) andfas in (b) thenfis fuzzy W.a.o. 
but not fuzzy semi-open. 

Cd) Let z= {X 0, T,, T2}, g= {K 0, u,}. 

If define f as in (b) then f is fuzzy H.a.c. but not fuzzy semi-continuous. 

COROLLARY 4.16. f: X+ Y is fuzzy W.a.o. and fuzzy weakly continuous 
iff f - ’ ( P) = f - ’ ( V) for every fuzzy open set V in Y. 

ProoJ Clear from Definition 4.13 and Theorem 4.6. 

THEOREM 4.17. Let f: X + Y. The following are equivalent: 

(1) f is fuzzy H.a.c. 
(2) For every fuzzy closed set F in Y, f - ‘(F) 3 f-i(F). 

(3) For every PEX and every MEK(~(~)), f1(M)EK(p). 

(4) ForeuerypEXandeueryME~p(f(p)),f~EKQ(p). 

(5) For every p E X, if any net { p,},, e converges to p then for every 
ME Ke( f( p)) there exists /3 E @ such that plqf for every Q > /I. 

(6) For every fuzzy open set T in X, f(T) c f (T). 

Proof (1)*(2)*(3)o(4)*(5) can be proved in a similar way to 
that of Theorem 4.6. 

(2) * (6) Let TE z. Clearly p= T. f(T) is a fuzzy closed set in Y. We 
have 

f -‘(f(T))x(f -‘(f(T)))“~(f~‘(f(T)))o~ & T. 

This implies that f(f -‘(f(T)))=, f(T) 
Hence f(T)zf(T). 

(6) =s. (2) Let F be a fuzzy closed set in Y. Clearly f ~ ‘(F) E z. We have 

f((f-‘(F))“) cf((f-l(F))‘) cf(f -l(F)) cF= F. 

This implies that 

(f-‘(F))‘cf~‘(f((f-‘(F))‘)) cf-‘V’). I 
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THEOREM 4.18. If f: X--f Y is fuzzy W.a.o. and fuzzy weakly continuous 
then f is fuzzy almost continuous. 

Proof: Let A be a fuzzy regular closed set in Y. Clearly A = 1. Since A 
is a fuzzy open set and by Corollary 4.16, we have f ‘(A) = f -‘(A). Hence 
f -‘(A) = f -‘(k). This shows that f -‘(A) is a fuzzy closed set. Thusfis a 
fuzzy almost continuous function, (Theorem 4.12). 1 

COROLLARY 4.19. Let f: X + Y. f is fuzzy W.a.o. and fuzzy almost con- 
tinuous iff ,f- ’ ( F) = f for every fuzzy open set V in Y. 

Proof: Necessity is clear from [ 1, Remark 8.21 and Corollary 4.16. 
Sufficiency is clear from Corollary 4.16 and Theorem 4.18. [ 

THEOREM 4.20. If f: X + Y is fuzzy W.a.o. and fuzzy weakly continuous 
then, f is fuzzy H.a.c. 

ProoJ Let UEQ. We have f ‘(U) c f ~ ‘(8)cf-‘o (Theorem 4.6 
and Definition 4.13). Hence f is fuzzy H.a.c. 1 

PROPOSITION 4.21. If f: X + Y is fuzzy W.a.o. and fuzzy weakly con- 
tinuous then for every fuzzy regular open (fuzzy regular closed) set A in Y, 
f - ’ (A ) is fuzzy regular open (fuzzy regular closed) set in X. 

Proof: Easy. 1 
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