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For tbe exterior boundary-value problem of electromagnetic reflection at 
perfect conductors a new integral equation approach is developed. It extends the 
method introduced by Brakhage and Werner and by Leis for exterior boundary- 
value problems for the scalar Hehnholtz equation to tbe underlying case of 
Maxwell’s equations. In a unified approach for all frequencies the existence of a 
solution is established by using the first part of Fredholm’s alternative only. 

1. INTRODUCTION 

Boundary-value problems for the scalar Helmholtz equation 

Ag, + K29J = 0, K # 0, Im(K) > 0, (1-l) 

can be reduced to Fredholm integral equations of the second kind by seeking 
the solutions in the form of a double-layer potential 

(1.2) 

for the Dirichlet problem and a single-layer potential 

d4 = J, Y(Y) @h Y) WY) (1.3) 

for the Neumann problem as described in many textbooks, e.g., [6,9]. By S we 
denote the boundary of the domain D in which the boundary-value problem is 
to be considered and n is the unit normal to S directed into D. By 

1 
@(?Y) := z , 

&cle--Yl 

X-YI 
(1.4) 
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we denote the fundamental solution of (1. I) in three dimensions. The continuous 
functions p and Y represent the unknown densities for which the integral 
equations have to be solved. 

For exterior problems where D is unbounded the corresponding homogeneous 
integral equations have nontrivial solutions if and only if the homogeneous 
interior Neumann problem in Di := Iw3\D (when dealing with the exterior 
Dirichlet problem) and the homogeneous interior Dirichlet problem (when 
dealing with the exterior Neumann problem) have nontrivial solutions. There- 
fore, since for h(K) > 0 the homogeneous interior problems only have the 
trivial solution, the first part of Fredholm’s alternative implies that the in- 
homogeneous integral equations have exactly one solution. Thus, existence for the 
exterior boundary-value problems is established for Im(K) > 0. However, 
difficulties arise for real K because the interior problems have a countable set 
of positive eigenvalues. Hence, the first part of Fredholm’s alternative no longer 
applies to such values of K which are eigenvalues to the interior Neumann or 
Dirichlet problem. For these K, using the second part of Fredholm’s alternative, 
existence to the exterior problems can still be established, but the solutions to 
the corresponding integral equations no longer remain unique and the proofs 
require a detailed study of the interior eigensolutions [6, 7, 111. Since, after 
incorporating Sommerfeld’s radiation condition in the form1 

(1.5) 

uniformly for all directions X/I x I, by Rellich’s lemma [14] we always have 
uniqueness for the exterior problems, the complications at the interior eigen- 
values arise from the method of solution and not from the nature of the problem 
itself. In addition the different behavior of the integral equations at the interior 
eigenvalues causes complications in the investigations of properties of the solu- 
tions to the boundary-value problems such as dependence on the frequency K. 
It also leads to considerable numerical difficulties when using the integral 
equations to obtain approximate solutions to the boundary-value problems. 
Therefore, various modifications of the original approach have been developed 
to overcome these difficulties and obtain integral equations which are found 
to be uniquely solvable for all K by applying only the first part of Fredholm’s 
alternative. 

Werner [ 181 suggested adding a volume potential 

VW = s,- Y(Y) @P(x, Y) dY (1.6) 
I 

1 By (a, b), [a, b], and (a, b, c) we denote the scalar product, vector product, and triple 
scalar product of the vectors a, b, and c, respectively. 
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with continuous density y to the surface potentials (1.2) or (1.3) such that the 
dissipative differential equation 

A p + (K” + i+ = 0 in Di (1.7) 

is satisfied, where -r is an appropriately chosen continuous real function. Then, 
for all K the boundary-value problems are reduced to uniquely solvable systems 
of two Fredholm integral equations of the second kind for the unknown surface 
and volume densities. 

Werner’s approach gave rise to a further modification due to Brakhage and 
Werner [2] and Leis [8,9], in which the solutions are sought in the form 

(1.8) 

Again, integral equations of the second kind are obtained which are uniquely 
solvable for all K. Because of the singular behavior of the normal derivative of 
double-layer potentials in the case of the Neumann problem the integral equation 
turns out to be singular and a certain regularization technique has to be employed. 

In another approach Ursell [16] replaced in potentials (1.2) and (1.3) the 
fundamentalsolution@, whichmay be regarded as the free space Green’s function, 
by a Green’s function for the exterior of some ball B lying inside Di and satis- 
fying the dissipative boundary condition 

g+itp-0 (1.9) 

on the boundary of B. 
Finally Jones [5] proposed a modification in which the free space fundamental 

solution @ is altered by adding a suitable finite sum behaving singularly at some 
point inside Di . We would like to mention that recently Ursell [17] has given a 
shortened version of the proof of one of the main results in Jones’ work. 

Similar problems occur in the treatment of exterior boundary-value problems 
for the time-harmonic Maxwell equations 

rot E - iKH = 0, rot H $ it& = 0 in D, K # 0, h(K) 2 0, (1.10) 

subject to the radiation condition 

(1.11) 

uniformly for all directions x/i x I. The investigation of stationary electromagnetic 
reflection [13] leads to the electric boundary condition 

[n, E] = c on S, (1.12) 
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where c denotes a given tangential field. Approaching this boundary-value 
problem by representing the desired solution in the form 

(1.13) 

one obtains a Fredholm integral equation of the second kind for the unknown 
continuous tangential field a. The corresponding homogeneous equation has 
nontrivial solutions if and only if the homogeneous interior boundary-value 
problem for the Maxwell equations in Di with boundary condition 

[n, Hj = 0 on S (1.14) 

has nontrivial solutions. Again, for Im(K) > 0 this interior problem has only the 
trivial solution and for real K there exists a countable number of positive eigen- 
values. Hence, in the first case existence follows by means of the first part of 
Fredholm’s alternative while in the latter case the second part of Fredholm’s 
alternative must be applied. Existence proofs by this approach were obtained by 
Mtiller [lo, 121, Weyl [21], Saunders [15], and Calder6n [3]. 

As in the case of the Helmholtz equation it is desirable to develop modifica- 
tions of (1.13) in order to achieve integral equations for which the first case of 
Fredholm’s alternative applies for all K. From the four methods mentioned above 
for the Helmholtz equation so far only Werner’s approach using volume poten- 
tials has been extended by him to the case of Maxwell’s equations [20]. Werner 
reformulated the problem into the slightly more general form of a boundary-value 
problem for the vector Helmholtz equation 

AE + K~E = 0 in D, K # 0, Im(4 b 0, (1.15) 

with electric boundary conditions 

(1.16) 

(1.17) 

and radiation condition 

rot E, -f- 
I 

-+ -f!- div E - iKE = o 
1x1 1x1 

lXI-+% (1.18) 

uniformly for all directions x/l x I. Here, c denotes a given tangential field and y 
a given scalar function. In his modified approach Werner adds to (1.13) a 
volume potential of the form 

E(x) = s,, b(y) @(x, Y) dr (1.19) 
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with a continuous density b such that 

AE + (K” + i~)af? = 0 in Di (1.20) 

and in addition, in order to deal with the second boundary condition (1.17), 
he adds a surface potential 

@) = J-s X(Y) n(Y) @(x9 Y) dS(Y) (1.21) 

with a continuous density A. Then, a system of three Fredholm integral equations 
of the second kind is obtained for the one-volume and the two-surface densities 
which is shown to be uniquely solvable for all K. 

The aim of this paper is to extend the approach due to Brakhage and Werner [2] 
and Leis [8,9] from the case of the Helmholtz equation to the case of the Maxwell 
equations-in other words, to eliminate the volume potential (1.19) in Werner’s 
method. In Section 2 we shall prove a representation theorem for solutions to 
(1 .I 5) and (1.18). Then, in Section 3 we shall give the precise statement of the 
boundary-value problem we are investigating and prove uniqueness. In Section 
4 we try to find a solution to the boundary-value problem in a form which is 
motivated by the expressions occurring in the representation theorem and is the 
sum of four surface potentials with one vector and one scalar density combined 
in the fashion of (1.8). We obtain a system of two integral equations of the second 
kind for the two unknown densities. Because of the singular behavior of two of 
the potentials, it is necessary, for an appropriate discussion of the integral 
equations, that the integral operators involved be considered in a Banach space 
of uniformly Holder continuous functions and vector fields. This difficulty of 
having to require Holder continuity rather than merely continuity is related in 
some way to the singularity in approach (1.8) for the Neumann problem. The 
investigation of the integral operators is carried out in Section 5 with the result 
that the Riesz theory for compact operators is applicable. Since the homogeneous 
integral equation is proved to possess only the trivial solution for all K, by the 
Riesz theory existence of a solution to the inhomogeneous integral equation and 
therefore of the boundary-value problem (1 .15) to (I .18) follows. Thus, we have 
obtained the existence result by showing uniqueness, which actually means that 
the first part of Fredholm’s alternative applies for all K. 

We explicitly want to emphasize that of course we do not obtain any new 
result on the existence of solutions to the boundary-value problem. Our aim 
merely is to obtain the existence by a unified approach for all K. The main 
advantage of our new method as compared with Werner’s method lies in the fact 
that no volume potential is used. This might make our method more suitable for 
a numerical implementation. We are also able to weaken slightly Werner’s 
assumptions on the regularity of the boundary and the given boundary data. 
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We conclude this introduction with the remark that similar investigations 
can be carried out for magnetic boundary conditions 

[n, rot E] = rt, (n, E) = 6 on S, (I .22) 

where d is a given tangential field and 6 a given function. 

2. A REPRESENTATION THEOREM 

Let D be an unbounded connected domain in R3. The boundary of D, 
denoted by S, is assumed to consist of a finite number of disjoint, closed, 
bounded surfaces belonging to the class C2. The complement of D in UP is 
designated by Di . By n we denote the unit normal to S directed into D. 

For convenience we state a representation theorem for solutions of the vector 
Helmholtz equation 

AE + K~E = 0 in D, K # 0, Im(K) 3 0, (2.1) 

satisfying the radiation condition 

rot E, -? 1 + 5 div E - iKE = o 
1x1 1x1 

IXI-+% (2.2) 

uniformly for all directions x/i x I. This representation is closely related to a 
representation theorem for solutions of the equation rot rot E - K~E = 0 given 
by Wilcox [22]. To simplify notation, for any domain G with boundary 8G we 
introduce the linear space of vector fields 

V(G) := {E: G + C3 j E E C*(G) n C(G), div E, rot E E C(G)}. (2.3) 

The representation theorem is based on the first vector Green’s theorem 

s {(A, AB) + (rot A, rot B) + div A div B) dx 
c 

(2.4) 

and the second vector Green’s theorem 

s {(A, AB) - (R 4) dx c 
= I a,{(n, A, rot B) + (n, A) div B - (n, B, rot A) - (n, B) div A} ds. 

(2.5) 



EXTERIOR BOUNDARY-VALUE PROBLEM 221 

Both theorems hold in bounded domains G with a sufficiently smooth boundary, 
e.g., 8G E C2, and for vector fields A, B E V(G) and are easily obtained from 
Gauss’ theorem. Here n denotes the outward drawn unit normal to 8G. 

THEOREM 2.1. Let E E V(D) be a solution of the vector Helmholtz equation (2.1) 
satisfying radiation condition (2.2). Then 

E(x) = rot 1s [n(y), E(y)] @(x, Y) ds(y) - grad j, (n(y), E(Y)) @(x7 Y) ds(y) 

- i s {[rot E(Y), n(y)1 + 44 div E(Y)) @b Y> d4.h x E D. 

(2.6) 
Proof. (I) First we verify that 

s I E I2 ds = O(l), R-+CO, (2.7) KR 

where K R := {x E lR3 1 1 x / = R}. To accomplish this we observe that from 
the radiation condition (2.2) it follows that 

0 = lim 
i R-s KR 

/[rot E, n] + n div E - iKE I2 ds 

= iz jKR (][rot E, n] + n div E I2 + I K I2 I E I2 (2.8) 

+ 2 Im{K(E, [rot E, n] $ n div E)}) ds, 

where n denotes the outward drawn unit normal to KR . We take R large enough 
so that KR C D and apply the first Green’s theorem (2.4) to the domain D, := 
(x E D 1 1 x 1 < R} to obtain 

K KR (E, [rot E, n] + n div E) ds 
I 

=~j {(n,E,rotE)+(n,E)divi?)ds (2.9) s 

-E/II2 jDR 1 E I2 dx + K jDR{/ rot E I2 + 1 div E I”> dx. 

Now we insert the imaginary part of (2.9) into (2.8) and find 

lim 
IS R+* K,q 

(I[rotE,n]+ndivE/‘+ I~l~1El~)ds 

+ 2 h(K) SD, (I K I2 1 E I2 + / rot E I2 + 1 div E 1”) dx/ (2.10) 

=-21m K 1 1, ((n, E, rot E) + (n, E) div E) ds/ . 
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All four terms on the left-hand side of (2.10) are nonnegative since Im(K) > 0. 
Therefore, the four terms must be individually bounded for R + cc, since their 
sum tends to a finite limit. Hence, (2.7) follows. 

(II) To prove the representation theorem we now choose an arbitrary fixed 
point x E D and circumscribe it with a sphere K,,(X) := {y E R3 1 1 x - y j = p>. 
We assume the radius R large enough that x E D, and the radius p small enough 
that K,(X) C D, and direct the unit normal 71 to K,(X) into the interior of K,(X). 
Now we apply the second Green’s theorem (2.5) in the domain {y E D, 1 
1 x - y j > p} to the fields A(y) : = E(y) and B(y) : = 4(x, y), where e 
stands for an arbitrary constant vector. Thus, with the help of (E, d(e@)) - 
(e@, dE) = 0 in the domain and 

(n, E, rot(e@) + (n, E) div(e@) - (n, e@, rot E) - (n, e@) div E 

= (e, g E - (E, grad @) n + (n, E) grad @ - {[rot E, n] + n div E} @) 

on the boundary we attain 

(S e9 s WY>, E(Y)I, grad, @CT r>l + (n(r), E(Y)) grad, @,(x9 Y) 

- ([rot E(Y), n(r)1 + 4~) div E(Y)) @(x9 YN NY)) 

= (ey ~K~~r~+KR IE(YI w + [E(Y), [grad, @(x, yh 4y>ll 

- ([rot E(Y), n(r)1 + 4~) div E(Y)) @CT Y)/ US) . (2.11) 

Since on K,(X) it holds that 

@(x, y) = g; , grad, @(x, y) = ($ - k) 6 n(y), 

a straightforward calculation shows that 

We rearrange 

f ( a@Yx, Y> = ~ 
KR WY) 

- i4x, Y)) E(Y) W) 

- s {[rot E(y), n(r)1 + 4~) div E(Y) - i4yN @@, Y> US 
K~ 

(2.12) 

+J 
KR 

n(r)]] (in - I x 1 y , ) @(x,Y)~Y) 
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and apply Schwa& inequality to each term. From the radiation condition 

wx, Y) --iKa=J(x,y)=o(+), YEKR, 
WY) 

(2.13) 

for the fundamental solution and from (2.7) we deduce 1, = o(l) for R --+ co. 
The radiation condition (2.2) and 

q”,Y)-o(+), YEKR, (2.14) 

yield Ia = o(1) for R --+ co. Finally, from (2.7), (2.14), and 

Y--x -- 
IY--xl ,~,~al/lYI-o(~). YEKR, (2.15) 

we get Ia = 0( 1 /R) for R -+ 00. Hence 

lim 
f R-* KR 

{*a-} ds(y) = 0. (2.16) 

Now summarizing (2.11), (2.12), and (2.16) we arrive at 

E(x) = ~sW4~), WY)I, grad, @(xl r)l + (n(y), E(Y)) grad, @P(x, y) 

- ([rot E(Y), n(y)1 + 4~) div E(Y)) @(x, YN 4~) 

which is easily transformed into (2.6) by observing that 

grad,@(x, y) = -grad,@(x, y). (2.17) 

We would like to point out that the third integral I3 appears because we had 
to take the center of the large sphere Ks in the origin rather than in the point x. 
This is due to the fact that the radiation condition (2.2) is imposed with respect 
to the origin. Wilcox’s proof of his representation theorem [22] has to be 
modified in the same manner. 

COROLLARY 2.2. Let E be as in Theorem 2.1. Then 

divW9 = /&iv E(y) $$$ - @(x, y) a $$y)l do, x E D, 

(2.18) 

where 9 derwtes a surface parallel to S separating the point x from S. In particular, 
div E satisjies the scalar Helmholtz equation (1 .l) in D and the Sommerfeld 
radiation condition (1.5). 

409/72/I-15 
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Proof. Obviously for any fixed x in (2.4) we can replace the boundary S by a 
parallel surface s separating x from S by applying the representation theorem 
to the exterior of 3. Then taking the divergence we find 

div E(x) = 
sl 

-(n(y), E(Y)) L.&@(x, y) + (n(y), grad, @P(T Y>, rot E(Y)) 

,” div E(y) w\ d&y), x ED. (2.19) 

Since E is two times continuously differentiable on 3 we can apply Stokes’ 
theorem to obtain 

f 9 (n(r), grad, @(x, Y>, rot E(Y)) WY) 

= Jprh ~O~~P(~~ Y) rot E(y)11 - (4~)~ rot rot E(Y)) @(x, Y)> d4A 

= I ,MY), 4~)) @(x~Y> - (NY), grad divE( @(x~Y))~(Y)- (2.20) 

Combining (2.19) and (2.20) we get (2.18). This representation clearly implies 
that div E solves the scalar Helmholtz equation and satisfies Sommerfeld’s 
radiation condition. 

3. STATEMENT OF BOUNDARY-VALUE PROBLEMS AND UNIQUENESS 

We shall consider the following exterior boundary-value problem from the 
theory of stationary electromagnetic reflection at perfect electrical conductorsjj 31. 

Problem (AZ). Find two vector fields E, HE Cl(D) n C(D) satisfying the 
time-harmonic Maxwell equations 

rot E - iKH = 0, rot H f id? = 0 in D, K # 0, h(K) > 0, (3.1) 

the boundary condition 

[n, E] = con S, (3.2) 

and the radiation condition 

[K&l-E=o(&)> lxl--t=+ (3.3) 

uniformly for all directions x/l x 1. It is assumed that for the given tangential field 
c E Copa( 0 < 01 < 1, the surface divergence Div c exists in the sense of the 
limit integral definition [13] and is of class Coax. 
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From the representation theorem for solutions to the Maxwell equations (in 
bounded domains) [13] we observe that any solution of (3.1) automatically 
belongs to C*(D). Th ere ore, f using the vector identity rot rot E = -AE + 
grad div E, we see that for any solution of the Maxwell equations both of the 
vector fields E and H are divergence free and satisfy the vector Helmholtz 
equation AE + K~E = 0 and AH + K~H = 0. Therefore, following Werner [20], 
instead of Problem (M) we shall consider the slightly more general exterior 
boundary-value 

Problem (H). Find a vector field E E V(D) satisfying the vector Helmholtz 
equation 

AE $ K~E = 0 in D, K # 0, Im(K> 3 0, 

the boundary conditions 

[n, El = c, 
div E = y, 

on S, 

and the radiation condition 

(3.4) 

(3.5) 

(3.6) 

rot E, -I% 1 + -?- div E - iKE = o 
1x1 1x1 

IxI+-03, (3.7) 

uniformly for all directions x/j x /. Here, y E C”va(S), 0 < 01 < 1, is a given 
function and c E Cove(S) is a given tangential field satisfying the same additional 
property as that required in Problem (M). 

For any solution E to Problem (H) with div E = 0 on S from Corollary 2.2 
we conclude that div E E G(D) r\ C(D) is a solution to the homogeneous 
exterior Dirichlet problem for the scalar Helmholtz equation satisfying the 
Sommerfeld radiation condition. Hence, uniqueness for the Dirichlet problem 
yields div E = 0 in D. But then E and H : = (l/iK) rot E obviously solve 
Maxwell’s equations. Thus, the following equivalence is true. 

THEOREM 3.1. Let E and H be a solution to Problem (M). Then E solves the 
special case of Problem (H) where y = 0. Conversely, let E be a solution to Problem 
(H) with y = 0. Then E and H := (l/iK) rot E solve Problem (M). 

Uniqueness for Problem (H) can be established by Rellich’s lemma [9, 141. 

THEOREM 3.2. Problem (H) has no more than one solution. 

Proof. Let E be a solution to Problem (H) with homogeneous boundary 
conditions 

h El = 0, div E = 0 on S. (3.8) 
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Then from (2.10) we deduce 

lim 
R-m I! 

KR (/[rot E, n] + n div E I2 + 1 K 1’ 1 E 1”) ds 

+21+)jDR(lK?lEI 2 + 1 rot E I2 + 1 div E 1”) dsl = 0. 
(3.9) 

In the case h(K) > 0 we immediately find 

s IE(2dx=0, 
D 

whence E = 0 in D follows. In the case h(K) = 0 from (3.9) we obtain 

s I E I2 ds = o(l), R+CQ. (3.10) 
KR 

Since the components of E satisfy the scalar Helmholtz equation from (3.10) we 
conclude E = 0 in D by Rellich’s lemma. 

4. TRANSFORMATION OF THE BOUNDARY-VALUE PROBLEM 
INTO AN INTEGRAL EQUATION 

Motivated by the form (2.6) of the representation theorem we try to find a 
solution to Problem (H) in the form 

E(x) = rot Is 4~) @P(x, Y) W) + i~rl Is b(r), a(r)1 @P(x~ Y) A(Y) 

- js A(Y) 4~) @P(x, Y> W) + i~rl grad js A(Y) @P(x, Y> d4yh x E D. 

(4.1) 

The unknown tangential field a and the scalar function h are assumed to belong 
to C”su(S), 0 < (Y < 1. We have set 

7 := 1 if Re(K) > 0, 

7 := -1 if Re(fc) < 0, 

and by 7 we denote a positive constant which will be appropriately chosen later 
(Theorem 5.2). 
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Obviously E E r?(D) solves the differential equation (3.4). To verify that E 
satisfies the radiation condition (3.7) it suffices to show that for any bounded 
vector field e defined on the bounded set S the vector fields 

-4(x, y) : = rot&r> @(x9 Y% 

4(x, Y) : = e(y) @i(% Y>, 

E&x, y) : = grad,@(x, y), 

fulfill the radiation condition 

I$(x, y) : = [rot, E&, y), fi] + & div, E&T Y) - i~Edx, Y) 
(4.2) 

IxI--+m, j-1,2,3, 

uniformly for all directions x/i x ) and all y E S. By straightforward calculations 
we find 

+ k-h -!!T5Sd [e(r), +J lx-yJ 

( 
3iK 3 - 

K2+m- Ix-y12 i 

u% Y> = e(r) [ (6 ) grad, @(x, y)) - i~@(x, Y)] 

Rs(x, y) = -iK [grad, @(x, Y) - k 6 @(Xj Y)) . 

Now (4.2) obviously follows from 

grad, @(x, y) - Z’K go @(x, Y) = 0 (&) , 

@(%Y) = 0 (&) P 

for j x j - co, uniformly for all directions x/i x ( and all Y E S. 
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From the regularity properties of single-layer surface potentials with uniformly 
Holder continuous densities [4] we observe that E can be extended into B such 
that E and div E belong to C”sol(D). By the jump relations we find that the bound- 
ary conditions (3.5) and (3.6) are satisfied provided the densities a and h are 
solutions to the integral equations 

x E s, 

(4.3) 

$4~) i- iv div s [n(r), a(r)1 @(x9 Y) NY) s 

+ A(,)$# s x E s. 
s d4Y) - h2 s, h(Y) @(x9 Y) h(Y) = Y(Xh 

(4.4) 

To make sure that E E V(D) it remains to be shown that rot E E C(D). 
In general, for arbitrary densities a, y E Pa(S) it can be shown by counter- 
examples that rot E is not continuous in B. However, as we verify presently, 
if a and A satisfy (4.3) and (4.4) that means if E satisfies the boundary conditions 
(3.5) and (3.6) then rot E E Corm. 

We can decompose 

E = rot A + F + grad #, (4.5) 

where 

A(x) : = 1 a(y) @(x, Y> ddY)T XED, 
s 

F(x) := s, +MY), 4~11 - X(Y) 4~11 @(xv Y) ddy), XED, (4.6) 

VW : = f.77 s, WY) @(x3 Y> W)l XED, 

and obtain 

rot E = grad div A + tc2A + rot F in D. (4.7) 

By virtue of the regularity properties of surface potentials we find that A, F E 
Cl*“(D) since a, A E COsa(S). Therefore, the proof of rot E E CO*a(@ is accom- 
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plished when we show that div A E Cl*=(D). S ince A is a solution to the vector 
Helmholtz equation (2.1) satisfying radiation condition (2.2) from Corollary 
2.2 we have 

div A(x) = j, [div A(y) w - @(x, y) a $$‘)I ds(y), x E D. 

Using (4.5) and Stokes’ theorem we transform 

s 
Cp -f- div A ds = j 

s an 
,{(n, rot(E - F)) - ~a(n, A)} @ ds 

= 
s 
s{(n, E -F, grad @) - K’(n, A) @} ds. 

Now we are able to pass to the limit s + S and using the boundary condition 
(3.5) we obtain 

div A(x) = 1s /div A(y) $$jf + (MY),F(Y)I - c(y), grad, @P(x, YN 

+ K”@(Y)~ A(Y)) @(xt Y)) dW x E D. 

By assumption we have Div c E C”*o(S). Hence, using Div{@([n, F] - c)} = 
([n, F] - c, grad @) + Q, Div{[n, F] - c} and Gauss’ theorem we get 

div A(x) = jS idiv A(y) w + p(y) @(x, y)! ds(y), x E D, (4.8) 

where we have set p := Div(c - [n, F]) + K’(n, A) on S. Now letting x tend 
to the boundary by the jump relation for double-layer potentials we find that 
div A E C”*a(S) solves the integral equation 

+ div 44 - 11, div A(y) w d4y) = js p(y) @(x, y) ds(y), x E s. 
(4.9) 

The right-hand side of (4.9) belongs to C1*a(S) since for the density we have 
p E C”*o(S). Thus, since the integral operator in Eq. (4.9) maps C”*o(S) into 
C1*a(S) [9, p. 42; 19, Lemma 71 we conclude div A E Cl,=(S). But then finally 
from (4.8) we see div A E C?(D) because double-layer potentials with densities 
of class Cl*=(S) belong to Pm(D) [9, p. 40; 19, Lemma 41. We now summarize 
our results in 

THEOREM 4.1. Provided the densities a, X E CO*a(S), 0 < 01 < 1, are a 
solution to the system of integral equations (4.3) and (4.4) then the vector field E 
defined by (4.1) is a solution to Problem (H). 

In the subsequent investigation of the integral equations we shall make use 
of the fact that by (4.1) we can extend the definition of the field E into the 
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interior domain Di . We shall distinguish by indices + and - the limits obtained 
by approaching S from inside D and Di , respectively. Then, again we have E, 
div E E Coax and from the jump relations we get 

b, E+l - b, E-1 = 4 (4.10) 

(n, E+) - (n, E-) = -z+, (4.11) 

div E, - div E- = h on S. (4.12) 

In order to obtain a jump relation for rot E we observe that in Di we also can 
decompose by (4.5) with definitions (4.6) extended into Di . Obviously 

A div A + K* div A = 0 in Di 

and from the jump relations it follows that 

div A+ = div A- on S. (4.13) 

Choose a domain bi C Di such that S C aDd is small enough that K is not an 
eigenvalue to the interior Dirichlet problem for D’i . Then we can represent by a 
double-layer potential 

div A(x) = in v(y) w ds(y), X&J, 
i 

the density of which is the unique solution to the integral equation 

h(y) = div A(x), XE3Di. 

Since for the boundary data we already know div A E Pa(S) analogously to 
the investigation of div A in D by Eqs. (4.8) and (4.9) we find div A E C1*m(r>i) 
[6, p. 14; 19, p. 1571. But then from (4.13) it follows that [n, grad div A+] = 
[n, grad div A-] on S and finally from (4.7) we conclude rot E E CO*“(DJ with 
the jump 

[n, rot E+] - [n, rot E-1 = iq[n, a] on S. (4.14) 

5. EXISTENCE OF A SOLUTION TO THE INTEGRAL EQUATION 

To investigate the integral equation we introduce the appropriate function 
spaces and integral operators. Define for 0 < 01 < 1 the Banach spaces 

xla := {a: s -+ a=3 1 (n, a) = 0, a E CJyS)}, 
x,a := {A: s - @ 1 x E CO+(S)}, 
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endowed with the Hiilder norms 

and introduce the product space X0 := Xxu x Xsa with norm 

a 
ll( III A 01 

:= II a Ila + II x /!a . 

Define integral operators Kj, , Lj,: Xsu + Xju, j, 1 = 1, 2 by 

VW (4 := -2 J, [4x), rot&(y) @(x7 r)>l4~), 

VW (4 := 2 js A(Y) W), n(r)1 @(x, Y) US, 

Ku4 (4 := 0, 

(K,,h) (x) : = -2 s, X(y) f-!$$ h(y), 

(Lll4 (4 := -2 js b(x), [n(r), a(r)11 @(x9 Y) d4Y), 

&2W (4 := -2 [4xX grad js W @lx, A ds(Y)] , 
L4 (4 := -2 div Is [n(r), a(r)1 @(x9 Y) NY), 

(L,,h) (x) := 2K2 j, hb’) @cx, Y> dsb’), x E s. 

In addition we introduce operators e,,: X2E --f Xla and f,,, : Xxa --+ X2U by 

@WY (4 := -2 [4x), grad 1, 4n ,$f y , ds(-v)] , 

(~21a) (x) := -2 div js Eii :‘,“i A(y), x E S. 

In an obvious notation finally we define operators K, f,: X0 -+ X0 by 
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Then, the system of integral equations (4.3) and (4.4), abbreviated, reads 

(5.1) 

THEOREM 5.1. The operator K: Xa -+ X0 is compact and the operator L.: 
Xa -+ Xa is bounded. 

Proof. We decompose K,, = K;, + K;, , where 

K14 (4 : = 2 js a(y) w ds(y), 
(Ga) (4 := -2 js (n(x), a(r)) grad, @5(x, Y> 4~1, x E s. 

Since &,a is the normal derivative of a single-layer potential [4, p. 62; 19, 
Lemma 6], for any /3 E (0, 1) th ere exists a positive number k;, (depending on 8) 
such that 

lWh4 @)I G kL II a Urn 7 x E s, 

and 

VW (4 - VW (~11 G kL II a L I x - Y I’, X,YES. 

Using the fact that 

I(fW a(r>>l = I(+) - 4r>,a(r>)l < C I x -Y I II a Ilm , X,YES, 

with some constant C, by the same lengthy procedure as carried out by Giinter 
[4, p. 471 for the double-layer potential we find that for any /3 E (0, 1) there 
exists a positive number k;, (depending on /3) such that 

and 

IVG4 (4 - (&a) (~11 < kG II a /im I x -Y I’, X,YES. 

Hence, K,,: XIti + X,a is bounded for 0 < 01, /3 < 1. 
Analogously, by the properties of single- and double-layer potentials with 

continuous densities [4, p. 46; 19, Lemmas 1 and 61 we deduce that the operators 
K,,: X,a --f X$8, j, 1 = 1,2, and Ljj: Xi= -+ Xjfr, j = 1,2 are bounded for 
0 < 01, /I < 1. By expanding 

I 
@(x3Y)-471)x-?I(= 4Tr m=o(m+l)! IX--yP l- t wm+l 
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we find that the operators L,, - t,,: Xzu + Xra and L,, - t,,: X,a -+ X,6 are 
bounded for 0 < OL, p < 1. Now compactness of K follows from the property 
that the embedding operators 

p: x,s -+ X,“, j= 1,2, 

are compact provided /3 > OL [l; 19, Lemma 141. 
Finally, from the properties of single-layer potentials with uniformly Holder 

continuous densities [4, p. 66; 19, Lemma 31 we see that the operators t,,: 
x,a + xp, L,,: xla --f Xzu are bounded for 0 < a < 1. Hence, t is bounded. 

THEOREM 5.2. For all K with K # 0, Im(K) 3 0 the integral equation (5.1) 
has a unique solution provided 77 < 11 f, !I,‘. 

Proof. (I) First we prove that the operator M : = I - in& - K is injective, 
where I: Xa --+ X” denotes the identity operator. Let (3 be a solution to the 
homogeneous equation and define the vector field E by (4.1). Then, by Theorem 
4.1, the field E solves the homogeneous Problem (H) and thus by the uniqueness 
theorem, Theorem 3.2, we have E = 0 in D. Now, from (4.10), (4.11), (4.12) 
and (4.14) we get 

(n, E. , rot IL) = i77 1 a 12, 

(n, Em) div 0 = ~TT,J / h 12, On 
S. 

Therefore, by the first Green’s theorem (2.4), we obtain 

i77j l,(l a I2 + I x I”)ds = jo,(I rot E 12 f 1 div E I2 - ~~ 1 E I”) dx. 
, 

The imaginary part of this equation reads 

7 js(I a I2 + ) h 1”) ds = -27 Re(K) Im(K) ID, I E I2 dx. 
I 

From this, since r] > 0 and 7 Re(K) Im(K) > 0, we obtain 

s s(lale+I~/2)d~=0, 

whence a = 0 and h = 0 follow. 

(II) For 7 < Ilt 11;1 b o viously the inverse (I - k&)-l exists andis bounded. 
Hence, by the Riesz theory for compact operators I - k+!, - K is surjective 
since it is injective. 
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Summarizing from Theorems 5.2,4.1, and 3.2 by a unified approach for all K 
with K # 0 and h(K) 3 0 we have the existence result 

TROBLEM 5.3. Problem (H) has a unique solution. 

Finally, by the equivalence theorem, Theorem 3.1, we get 

THEOREM 5.4. Problem (M) has a unique solution. 
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