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Abstract

In this paper, we will calculate the effective potential for a theory of multiple M2-branes. As the theory 
of multiple M2-branes can be described by a Chern–Simons-matter theory, this will be done by calculating 
the Kählerian effective potential for a Chern–Simons-matter theory. This calculation will be performed in 
N = 1 superspace formalism. We will initially study an Abelian Chern–Simons-matter theory, and then 
generalize those results to the full non-Abelian Chern–Simons-matter theory. We will obtain explicit ex-
pressions for the superpropagators for this theory. These superpropagators will be used to calculate the 
one-loop effective potential.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is known that the action for multiple M2-branes should have N = 8 supersymmetry. This is 
because the superconformal field theory describing multiple M2-branes is dual to the eleven di-
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mensional supergravity on AdS4 ×S7. Furthermore, we have AdS4 ×S7 ∼ [SO(2, 3)/SO(1, 3)] ×
[SO(8)/SO(7)] ⊂ OSp(8|4)/[SO(1, 3) × SO(7)]. Thus, the supergroup OSp(8|4) can get real-
ized as N = 8 supersymmetry of the field theory dual to the eleven dimensional supergravity on 
AdS4 × S7. Furthermore, the on-shell degrees of this theory are exhausted by bosons and physi-
cal fermions. So, the gauge sector of the theory for multiple M2-branes cannot have any on-shell 
degrees of freedom. These requirements are met by a theory called the BLG theory [1–5]. This 
theory is a Chern–Simons-matter theory. However, the gauge fields in this theory are valued in a 
Lie 3-algebra rather than a conventional Lie algebra. This theory describes two M2-branes, and it 
is not possible to use the BLG theory to describe more than two M2-branes. This is because there 
is only one known example of finite dimensional Lie 3-algebra, and this example describes two 
M2-branes. However, by complexifying the matter fields, the gauge sector of the BLG theory can 
be written as sum of two Chern–Simons theories, with levels k and −k. The gauge fields of these 
Chern–Simons field theories are valued in regular Lie algebra, and the matter fields transform in 
the bifundamental representation.

It is possible to relax the requirement of manifest N = 8 supersymmetry and generalize this 
approach to a Chern–Simons-matter theory with N = 6 supersymmetry. This theory is called 
ABJM theory and it coincides with the BLG theory for the only known example of the Lie 
3-algebra [6,7]. The gauge symmetry of this theory is represented by Chern–Simons theories 
with the gauge group Uk(N) × U−k(N), where k and −k are Chern–Simons levels. It may be 
noted that even though this theory only has manifest N = 6 supersymmetry, its supersymmetry 
is expected to be enhanced to the full N = 8 supersymmetry for k = 1 or k = 2 [8]. This en-
hancement occurs due to the effects generated from monopole operators. As the ABJM theory 
has a gauge symmetry, we will need to fix a gauge to calculate the Kählerian effective potential. 
This can be done by adding the gauge fixing and ghosts terms to the original ABJM action. The 
gauge fixing of the ABJM theory and the BRST symmetry for this theory have been throughly 
studied [9–12].

In this paper, we will analyze the Chern–Simons-matter theories in N = 1 superspace. It may 
be noted that even though this will only have manifest N = 1 supersymmetry, the actual the-
ory will have higher amount of supersymmetry. We will use N = 1 superspace formalism since 
the Kählerian effective potentials is well understood in N = 1 superspace formalism [13–19]. 
It may be noted that the ordinary Chern–Simons theory does not get renormalized, except for 
a finite one-loop shift [20,21]. The renormalization of Chern–Simons theory coupled to matter 
fields has also been studied [22]. The renormalization of supersymmetric Chern–Simons-matter 
theories has also been studied [23–25]. The matter fields exist in the fundamental representa-
tion of the gauge group. However, in a theory of multiple M2-branes, the matter fields exist in 
the bi-fundamental representation of the gauge group. It is possible to express the action of two 
M2-branes as matter-Chen-Simons theory where the gauge fields are valued in a Lie 3-algebra, 
and the one-loop renormalization such a theory has also been analyzed [26,27]. The scattering 
amplitudes in the ABJM theory have also been studied [28,29]. However, it is important to study 
the correction to the Kählerian effective potential. This is because we expect to understand the 
dynamics of M5-branes by studding the M2-branes ending on M5-branes [30–41]. This analysis 
is done using the superspace formalism. So, we will need to understand the one-loop corrections 
to the Kählerian effective potential, to understand the quantum behavior of this theory. Further-
more, certain symmetries can be broken in the theory of multiple M2-branes. In fact, the inclusion 
of a mass term breaks the conformal invariance of the ABJM theory [42–45]. So, we will need to 
compute the effective Kählerian effective potential for various deformations of the ABJM theory. 
Even though we only compute the Kählerian effective potential for the ordinary ABJM theory, 
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the method used in this paper can be easily generalized to study the Kählerian effective poten-
tial for various deformations of the ABJM theory. Thus, apart from explicitly demonstrating the 
fact that the Kählerian effective potential does not get corrected at one-loop, we also develop a 
formalism which can be used for deriving such results for various deformations of the ABJM 
theory.

The Lagrangian for the ABJM theory can be written as L = LM + LCS + L̃CS, where LCS

and L̃CS represent the Chern–Simons terms with levels k and −k. Here �α and �̃α represent the 
Lie algebra valued N = 1 spinor superfields which can be used to construct the field strength, 
Wα = 1

2DβDα�β − i
2 [�β, Dβ�α] − 1

6 [�β, {�β, �α}] and W̃α = 1
2DβDα�̃β − i

2 [�̃β, Dβ�̃α] −
1
6 [�̃β, {�̃β, �̃α}]. The matter content of the U(N)−k × U(N)k ABJM theory can be represented 
by the superfields (�I )a

â
, such that they transform in the bifundamental representation. The 

Lagrangian for the matter fields is given by a sum of the kinetic term with the potential term. 
The potential term is represented by the superpotential V . The Lagrangian for the kinetic part 
is constructed from covariant derivatives, ∇α�I = Dα�I + i�α�I − i�I �̃α , and ∇α�I† =
Dα�I† + i�̃α�I† − i�I†�α .

2. Abelian Chern–Simons-matter theory

In this section we will calculate the Kählerian effective potential for the Abelian Chern–
Simons-matter theory in N = 1 superspace formalism [46,47]. This will be used to motivate 
the study of the Kählerian effective potential for the full Chern–Simons-matter theory in the next 
section. The superfield strength Wα can now be written as Wα = 1

2DβDα�β, W̃α = 1
2DβDα�̃β . 

Now we will analyze the effective potential for the following simple Lagrangian

L =
∫

d2θ tr

{
k

4π

(
�αDβDα�β − �̃αDβDα�̃β

)
+ 1

4
∇α�I†∇α�I

}
. (1)

This Lagrangian can be used to understand the behavior of the Kählerian effective potential 
for theories where the matter fields transform in bifundamental representation. It may be noted 
that all matter fields are complex and the superpotential of the Abelian ABJM theory can vanish. 
To find the effective potential we shift the scalar superfields as [13–19],

�I → 1√
2

(
�I + φI

c

)
(2)

�I† → 1√
2

(
�I† + φI

c

)
, (3)

where �I , �I† in the right hand side are quantum complex superfields and φI
c are the real con-

stant background superfields.
In order to determine the Kählerian effective potential, we will assume that, φI

c are constant 
and DαφI

c = 0. After the shifting the Chern–Simons part or the Lagrangian remains invariant 
(the VEV of the spinorial superfield must be zero, otherwise, we break the Lorentz symmetry). 
The matter part can be written as follows,

LM = 1

8

∫
d2θ

{
Dα�I†Dα�I + i	α[Dα�I†�I − �I†Dα�I ]

+ 	α	α�I†�I + 2	α	αφI
c 
I + 2φI

c 	αDα�I + 	α	α(φI
c )2

}
, (4)

where
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	α = �α − �̃α, 
I = Re[�I ], �I = Im[�I ]. (5)

The term 2φI
c 	αDα�I appears after shifting the matter fields. This term contributes to the 

propagator of the fields �I and 	α . We can eliminate it with an adequate choice of the gauge 
fixing term. We use the following Rξ gauge-fixing term,

Lgf =
∫

d2θ
1

8ξ

{(
Dα�α + ξφI

c �I
)2 −

(
Dα�̃α + ξφI

c �I
)2

}
. (6)

The Faddeev–Popov term corresponding to this gauge fixing term is given by

Lgh =
∫

d2θ

{
−1

2
c†D2c − ξ

4

∑
I

(φI
c )2c†c − ξ

4
φI

c c†
Ic

+ 1

2
c̃†D2c̃ + ξ

4

∑
I

(φI
c )2c̃†c̃ + ξ

4
φI

c c̃†
I c̃

}
. (7)

Now adding this gauge fixing term and the ghost term to the original Chern–Simons-matter 
Lagrangian, we obtain the following superpropagators (see Appendix A),

〈T �I (p, θ)�J (−p, θ ′)〉 = iδIJ

D2

p2
δ(θ − θ ′),

〈T 
I (p, θ)
J (−p, θ ′)〉 = iδIJ

D2

p2
δ(θ − θ ′),

〈T �α(p, θ)�β(−p, θ ′)〉 = − i

2

{(
π

2k p2
−

∑
I (φ

I )2ξ2

2(p2)2
D2

)
DαDβ

+
(∑

I (φ
I )2π2

8k2(p2)2
D2 − ξ

p2

)
DβDα

}
δ(θ − θ ′),

〈T �̃α(p, θ)�̃β(−p, θ ′)〉 = 〈T �α(p, θ)�β(−p, θ ′)〉|k→−k,ξ→−ξ ,

〈T �α(p, θ)�̃β(−p, θ ′)〉 = − i

2

{
π2 ∑

I (φ
I )2

8k2(p2)2
D2DβDα

−
∑

I (φ
I )2ξ2

4(p2)2
D2DαDβ

}
δ(θ − θ ′),

〈T c†(p, θ)c(−p, θ ′)〉 = i
D2 − ξ

∑
k φ2

k

2

p2 +
(

ξ
∑

k φ2
k

2

)2
δ(θ − θ ′),

〈T c̃†(p, θ)c̃(−p, θ ′)〉 = −i
D2 − ξ

∑
k φ2

k

2

p2 +
(

ξ
∑

k φ2
k

2

)2
δ(θ − θ ′). (8)

The one-loop Kählerian effective potential can be written as

�1 loop = i

2

∑
tr logOi , (9)
i
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where Oi is the operators acting in the quadratic part of the action. We will use the tadpole 
method to determine the one loop contribution. So, after integration with respect to θ ′ only terms 
proportional to D2 will survive (since D2δ(0) = 1), and after integration with respect to the 
internal momentum p, the only non-vanishing contribution in the dimensional regularization 
scheme can arise from non-zero poles in the propagators (since 

∫
ddp 1

p2 = 0 in the dimensional 

regularization). Therefore the one loop contribution of the fields �I , 
I , �α and �̃α vanishes, 
while the ghost contribution is compensated exactly with the antighost. So finally we obtain

�1 loop = 0 (10)

It is interesting to note that for the theory Uk(1) ×U−l(1), for k �= l the gauge loop contributes 
to the effective action even at one loop level with

�
Uk(1)×U−l (1)

1 loop ∝
∑
I

(φI
c )2

(
1

k2
+ 1

l2

)
sgn (k − l) (11)

which gives a zero for the theory Uk(1) × U−k(1), but contributes non trivially for k �= l.

3. Non-Abelian Chern–Simons-matter theory

In the previous section, we analyzed a simple Abelian Chern–Simons-matter theory in bifun-
damental representation. In this section, we will analyze the non-Abelian Chern–Simons-matter 
theory with gauge group U(N)k × U(N)−k . The Lagrangian for the gauge sector of this theory 
can be written as LCS + L̃CS, where

LCS = k

2π

∫
d2θ tr

{
�αWα + i

6
{�α,�β}Dβ�α + 1

12
{�α,�β}{�α,�β}

}
, (12)

L̃CS = − k

2π

∫
d2θ tr

{
�̃αW̃α + i

6
{�̃α, �̃β}Dβ�̃α + 1

12
{�̃α, �̃β}{�̃α, �̃β}

}
. (13)

The Lagrangian for the matter sector of this theory can be written as

LM = 1

4

∫
d2θ tr

{
∇α�I†∇α�I + V

}
, (14)

where the covariant superderivatives are defined by

∇α�I = Dα�I + i�α�I − i�I �̃α (15)

∇α�I† = Dα�I† + i�̃α�I† − i�I†�α, (16)

and the superpotential term V is given by

V = 16π

k
εIJεKL

(
�I�

K†�J �L†
)

. (17)

The matter content of this theory consists of two N × N matrices of N = 1 superfields (�I )a
â

and their adjoints [8].
Now we will shift the superfields as follows,

�I → �I + diag(φI
1 , φI

2 , . . . , φI
N) (18)

�I† → �I† + diag(φI ,φI , . . . , φI ) , (19)
1 2 N
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where the diagonal matrices diag(φI
1 , φI

2 , . . . , φI
N) are real classical superfields. It may be noted 

that again these matrices conform the full moduli space of the theory since the superpotential is 
identically zero. The shifted superpotential can be written as

Vs = V + V3 + 16π

k

(
φ1

j φ2
l

(
�1

lj�
2
j l − �1

j l�
2
lj + �

1†
j l �

2†
lj − �

1†
lj �

2†
j l

))
, (20)

where V3 contains 3-vertex terms. Now we can write the following expression for the remaining 
part of the matter sector,

1

4

∫
d2θ

{
Dα�

I†
ij Dα�I

ji + i
(
Dα�

I†
ij �α jiφ

I
i − h.c.

)
− i

(
Dα�I

ij �̃α jiφ
I
i − h.c.

)
+ φI

i φI
i �α

ij�α ji + φI
i φI

i �̃α
ij �̃α ji − 2φI

i φI
j �α

ij �̃α ji

}
+ (interactions). (21)

Now we use a Lorentz gauge fixing for calculating the effective potential,

Lgf = 1

4ξ

∫
d2θ tr

(
Dα�α

)2 − 1

4ξ

∫
d2θ tr

(
Dα�̃α

)2
. (22)

The corresponding Faddeev–Popov term corresponding to this gauge fixing term can be written 
as

LFP = i

∫
d2θ Trc†Dα∇αc − i

∫
d2θ Trc̃†Dα∇αc̃. (23)

After shifting the superfields, the quadratic part of the action can be written as follows

(
�1

ij �2
ij �1�

ij �2�
ij �α

ij �̃α
ij

)(
A B

C D

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1�
kl

�2�
kl

�1
kl

�1
kl

�
β
kl

�̃
β
kl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

The matrix operators A, B, C and D are suitable defined. So, the matrix operator A is defined by

A = δilδjk

⎛
⎜⎜⎜⎝

−D2 m(i, j)

−D2 m(i, j)

m(i, j) −D2

m(i, j) −D2

⎞
⎟⎟⎟⎠ , (25)

where m(i, j) = 4π
k

(
φ1

j φ2
i − φ2

j φ1
i

)
. The matrix operator D is defined by

D = δilδjk

(
D1αβ − 1

2φI
j φI

i

− 1
2φI

j φI
i D2αβ

)
, (26)

where

D1αβ = k

2π
DβDα + 1

2ξ
DαDβ + 1

2
Cβα(φI

j )2,

D2αβ = − k
DβDα − 1

DαDβ + 1
Cβα(φI

j )2. (27)

2π 2ξ 2
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The matrix operator B is defined by

B = δilδjk

⎛
⎜⎜⎜⎜⎝

−iDβφ1
i iDβφ1

j

−iDβφ2
i iDβφ2

j

iDβφ1
j −iDβφ1

i

iDβφ2
j −iDβφ2

i

⎞
⎟⎟⎟⎟⎠ . (28)

Finally, the matrix operator C is defined by

C = BT |β→α. (29)

Now it is trivial to see that if we take the shift φI
i = φI

j , ∀i, j then m(i, j) = 0. It is possible to 
invert these matrices but the propagators have a complicated form in this general case. In order 
to simplify them we shift the superfields as follows

�I → �I + φI
c IN×N (30)

�I† → �I† + φI
c IN×N. (31)

In the non-Abelian case this shift represents a non-trivial restriction of the full moduli space of 
the theory. The scalar superpropagator has the following form

〈T �I
ij (p, θ)�

I†
ī j̄

(−p, θ ′)〉 = i

π
2k

φI
c φI

c p2 + (p2 + m(m − π
2k

φI
c φI

c ))D2

p2(p2 + m2)

× δij̄ δj īδ(θ − θ ′), (32)

where m = π
k
φI

c φI
c . Now for I �= J , we have

〈T �I
ij (p, θ)�

J†
ī j̄

(−p, θ ′)〉 = −iδij̄ δj ī

π

2k

φI
c φJ

c

(
p2 − mD2

)
p2(p2 + m2)

δ(θ − θ ′). (33)

Finally, we can write

〈T �I
ij (p, θ)�I

īj̄
(−p, θ ′)〉 = iδij̄ δj ī

π

2k

φI
c φJ

c

(
p2 − mD2

)
p2(p2 + m2)

δ(θ − θ ′) (34)

〈T �
I†
ij (p, θ)�

I†
ī j̄

(−p, θ ′)〉 = −iδij̄ δj ī

π

2k

φI
c φJ

c

(
p2 − mD2

)
p2(p2 + m2)

δ(θ − θ ′). (35)

We use the following identity to invert the matrices:

M−1 =
(

N11 N12

N21 N22

)
(36)

where

M =
(

A B

C D

)
, (37)

and

N11 = (A − BD−1C)−1,

N12 = −(A − BD−1C)−1BD−1,

N21 = −D−1C(A − BD−1C)−1,

N22 = D−1 + D−1C(A − BD−1C)−1BD−1. (38)
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In this gauge the ghosts do not contribute and the spinor superpropagators have the following 
form,

〈T �αij (p, θ)�βīj̄ (−p, θ ′)〉 = − i

2

δij̄ δj ī

p2

{(
π

k
+ π2φI

c φI
c

2k2 p2
D2

)
DαDβ

+
(

πm2

2k(p2 + m2)
− πm D2

2k(p2 + m2)

)
DαDβ

}
δ(θ − θ ′),

〈T �̃α(p, θ)�̃β(−p, θ ′)〉 = 〈T �α(p, θ)�β(−p, θ ′)〉|k→−k,

〈T �αij (p, θ)�̃βīj̄ (−p, θ ′)〉 = − i

2

δij̄ δj ī

p2

{(
−π2φI

c φI
c

2k2 p2
D2DαDβ − π

k
CαβD2

)

−
(

πm2

2k (p2 + m2)
− πm D2

2k (p2 + m2)

)
DαDβ

}
δ(θ − θ ′).

(39)

Now because of the mixing between �I and �α, �̃α in the quadratic action there is a non-zero
pole in the propagators. We will use the tadpole method again. We can write the explicit integral 
over the propagator matrix after differentiating with respect to some parameter (let us say ω) of 
the theory,

∂ω�1 loop = i

2
TrM−1∂ωM (40)

The one loop effective action will be obtained after performing the operations in the right hand 
side of (40), and integrate with respect to ω. After the integration with respect to θ ′ only terms 
proportional to D2 survive. The integration over internal momenta leads us to the following 
expression:

TrM−1 = −|m|
4π

+ |m|
4π

= 0 (41)

where the first term is the contribution of the scalar superfields �I, �I†, which is exactly com-
pensated with the contribution of the spinorial superfields �α, �̃α . So, the one-loop effective 
potential still vanishes for non-Abelian Chern–Simons-matters theories.

�1 loop = i

2
Tr logM = 0. (42)

It may be noted that it was expected that the Kählerian effective potential will not get corrected 
at one-loop, based on the fact that Chern–Simons-matter theories in general do not get renormal-
ized, except for a finite one-loop shift [20–25]. However, it was important to show this explicitly. 
In fact, it is possible to deform the ABJM theory, and such superspace calculations can be used 
for analyzing the deformed ABJM theory. We will like to point out that even though we have 
not calculated the effects of such deformations, the methods used in this paper can also be used 
for analyzing the one-loop Kählerian effective potential for the deformed ABJM theory. Another 
advantage of using the superspace formalism is that we can now understand the behavior of the 
ABJM theory under a general shifting of fields. So, now we can infer that under a more general 
shiftings would be given by

�I → �I + diag(φI
1 , φI

2 , . . . , φI
N) (43)

�I† → �I† + diag(φI ,φI , . . . , φI ), (44)
1 2 N
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we obtain exactly the same result. It may be noted that at least from the superspace
perspective, it might be possible to obtain a non-trivial contribution beyond one-loop. This 
is because the shifting generates new 3-vertices in the superpotential term (Vs), Vs = V +
32π
k

{
φ1

c�2
([�2†,�1†] + [�2†,�1]

) + φ2
c�1

([�1†,�2†] + [�1†,�2]
)}

, where V = 16π
k

εIJ ×
εKL

(
�I�

K†�J �L†
)
. It would be interesting to analyze such corrections, and study the impli-

cations of such amplitudes for the ABJM theory.

4. Conclusion

In this paper, we have analyzed a Chern–Simons-matter theory in N = 1 superspace formal-
ism. This was done for studding the one-loop effective potential for a theory describing multiple 
M2-branes. We initially studied an Abelian Chern–Simons-matter theory, and then generalized 
those results to the full non-Abelian Chern–Simons matter theory. Thus, we first fixed a gauge by 
adding a gauge fixing term and a ghost term, and then we shifted the superfields. It was possible 
to calculate the expression for one-loop effective potential in this Chern–Simons-matter theory. 
Thus, we were able to calculate expressions for superpropagators of this theory. Finally, we used 
these superpropagators to calculate the one-loop effective potential. The vanishing value of such 
a one loop correction is in compete agreement with the results for N = 6 ABJM theory. The 
superpropagator structure described here provides a nice starting point to discuss, for example 
non perturbative effects, with the advantage that bot fermionic and bosonic degrees of freedom 
are taken into account in one single supergraph.

It is possible for strings to end on D-branes in string theory. Similarly, it is possible M2-branes 
to end on other objects in M-theory. These other objects can be M5-brane, M9-branes, and gravi-
tational waves [30]. It may be noted that a system of multiple M2-branes ending on two M9-brane 
is expected to generate E8 × E8 symmetry. This occurs due to the existence of the gravitational 
anomaly, and this is similar to the Horava–Witten formalism [31,32]. It may be noted that it is 
possible to understand the physics of M5-branes by analyzing a system of M2-branes ending 
on M5-branes. This makes a system of open M2-branes ending on a M5-brane very interesting. 
In fact, the BLG model has been used to motivate a novel quantum geometry on the M5-brane. 
This has been done by studding a system of M2-branes ending on M5-branes in presence of 
a constant C-field [33]. In fact, the BLG action with Nambu-Poisson 3-bracket has been iden-
tified with the action of M5-brane, in presence of a large world-volume C-field [34]. It may 
be noted that by analyzing a single M2-brane ending on a M5-brane, it was possible to study 
non-commutative string theory on the M5-brane world-volume [35–37]. Thus, it is important to 
understand the BLG theory and the ABJM theory, in presence of a boundary. It may be noted 
that the BLG theory has been studied in presence of a boundary [38,39]. In fact, even bound-
ary effects for the ABJM theory have been studied [40,41]. It was observed that the boundary 
breaks half the supersymmetry of the original theory. Furthermore, the gauge invariance of the 
theory could only be preserved by introducing new degrees of freedom on the boundary. It will 
be interesting to analyze the one-loop effective potential for the ABJM theory in presence of a 
boundary. The issue of higher loop corrections to ABJM theory in N = 1 superspace is under 
current investigation.
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Appendix A. Superpropagators in the Kählerian approximation

All operators in the bosonic sector can be written in terms of six projectors:

P0 = 1, P1 = D2, P2 = θ2, P3 = θαDα, P4 = θ2D2, P5 = i∂αβθαDβ (A.1)

Therefore, the Kählerian approximation corresponds to take the projectors not involving ex-
plicitly Grassman variables. The table of composition for these operators is the following

◦ P0 P1
P0 P0 P1
P1 P1 �P0

Now if the quadratic part of the action can be written as �O�†, the propagator for the bosonic 
fields can be calculated by imposing the condition

O
∑

i

piPi = 1 (A.2)

where the functions pi will depend in general on the parameters of the theory and momenta. In 
the spinorial sector the strategy is the same. In this case we need to introduce the bi-spinorial pro-
jectors. The full basis has 14 elements (see for example [48]), but in the Kählerian approximation 
we need only four

Ri,αβ = i∂αβPi, Si,αβ = CαβPi (A.3)

where the composition can be read from the table above. In this sector, if Oαβ is the operator 
acting in the quadratic part of the action, i.e. �αOαβ�β , the propagator of the spinorial superfields 
can be calculated by imposing the condition

Oαβ

(∑
i

riR
βγ

i +
∑

i

siS
βγ

i

)
= δ γ

α . (A.4)
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