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Epilepsy affects 50 million people worldwide, and seizures in 30% of the cases remain drug resistant. This has
increased interest in responsive neurostimulation, which is most effective when administered during seizure
onset. We propose a novel framework for seizure onset detection that involves (i) constructing statistics
from multichannel intracranial EEG (iEEG) to distinguish nonictal versus ictal states; (ii) modeling the dy-
namics of these statistics in each state and the state transitions; you can remove this word if there is no room.
(iii) developing an optimal control-based “quickest detection” (QD) strategy to estimate the transition times
from nonictal to ictal states from sequential iEEG measurements. The QD strategy minimizes a cost function of
detection delay and false positive probability. The solution is a threshold that non-monotonically decreases
over time and avoids responding to rare events that normally trigger false positives. We applied QD to four
drug resistant epileptic patients (168 hour continuous recordings, 26–44 electrodes, 33 seizures) and achieved
100% sensitivity with low false positive rates (0.16 false positive/hour).

This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and
Prediction.
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1. Introduction

Automatic online seizure detection (AOSD) in intractable epilepsy
has generated great interest in the last 20 years and is a fundamental
step toward the development of neurostimulation-based responsive
antiepileptic therapies [1–3]. Pioneering works in the late 1970s
and early 1980s by Gotman et al. [4,5] showed that seizures can be
automatically separated from interictal activity, and since then,
several approaches to AOSD have been proposed by exploiting either
scalp or intracranial EEG recordings, single or multichannel analysis,
linear or nonlinear features.

Osorio et al. [6–9] used a wavelet-based decomposition of selected
intracranial EEG recordings (iEEGs) to (i) separate the seizure-related
component from the background noise, (ii) track the ratio between
these components in the time–frequency domain, and (iii) detect a
seizure when such a ratio crosses a fixed threshold for a sufficiently
long time. Parameters of the detection method (e.g., threshold,
duration of the suprathreshold condition, etc.) can be either fixed [6]
or adaptive [7,8]. Fixed threshold-based approacheswere also proposed
in [10–12], where the threshold was applied to linear spectral features
of the iEEGs.

Gotman et al. [13–15] proposed a probabilistic framework for
seizure detection using both scalp EEGs [15] and iEEGs [13,14]. In this
framework, amplitude and energy measures in multiple frequency
bands are computed for each channel via wavelet decomposition
and the corresponding sampled probability distribution function is
estimated. Then, the probability of a seizure is conditioned to the
value of such measures and estimated via Bayes’ rule. A patient-specific
threshold is finally applied on this conditional probability of seizure
to decide, for each channel, whether a seizure is likely or not, and a
seizure is detectedwhen that threshold is passed in a sufficient number
of channels.

In all the studies mentioned above, the AOSD was solved by
(i) introducing a relevant statistic that is computed from the available
measurements and that captures changes in brain activity at the seizure
onset, and (ii) a rule that, based on this statistic, determines whether
a seizure has occurred or not.

More recently, AOSD has been implemented using sophisticated
classification tools. In particular, EEG channels (either scalp or intracor-
tical) have been processed individually to extractmultiple univariate or
bivariate features in time, frequency, or wavelet domain [16–32]. Then,
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Table 1
Seizure origin, number of channels, duration of recordings, sampling frequency, and
frequency band used for estimation of the connectivity matrix.

Patient Sex Seizure
origin

Types of
seizures

# iEEG
channels

Hours of
recordings

Sampling
frequency (Hz)

Frequency
band for σ1

1 Male T CP 34 40 500 13–30
2 Female T TC 28 47 500 4–7
3 Male F CP 44 47 250 13–30
4 Male O SP 26 34 500 13–30

Note. For each patient, the frequency band was chosen by maximizing the distance
between ictal and nonictal generalized linear models (GLM) parameters (training
data only).
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for each channel, the available features have been combined into vec-
tors and classified via support vector machines (SVM) [21,23,25,29],
principal component analysis (PCA) [27,28], artificial neural networks
(ANN) [16,18–20,24,30–32], fuzzy logics [22], or pattern recognition
tools [17]. Finally, decisionsmade for different channels have been com-
bined or ranked to ultimately determinewhether a seizure has occurred
or not. As a variation to this paradigm, [26,33] merged features
extracted from different channels into one vector and applied the clas-
sification rule to this vector.

Although many of the aforementioned methods have sensitivity
well above 90%, results generally show lower specificity (i.e., higher
number of false positives) when applied to test data, and a compara-
tive study by Lee et al. [34] reported performance varying from
patient to patient. This may not be surprising considering that
(i) several parameters in these methods are patient specific and
tuned heuristically; and (ii) these methods do not explicitly min-
imize relevant detection performance criteria (e.g., delay or prob-
ability of false positives). The latter drawback reflects the important
fact that current detection paradigms develop algorithms first
which then define and limit the performances. We believe that per-
formance specifications should be stated up front in a cost function
to be minimized (e.g., delay length, false positive rate, etc.) which
then defines the algorithm.

We propose a novel computational framework for AOSD that in-
volves (a) constructing network-based statistics from multichannel
neural data to distinguish nonictal from ictal states; (b) modeling
the evolution of such statistics in nonictal and ictal states and their
transition probabilities; and (c) developing an optimal model-based
strategy that detects the transitions from nonictal to ictal states
by using sequential multichannel measurements. The combination
of (a) and (b) results in a dynamic detector, which, unlike a standard
classifier, evolves over time based on current and past measurements,
thus automatically adapting to brain dynamics.

In our formulation, AOSD is posed as a change-point detection
problem and solved by minimizing a cost function of the average
distance between actual and estimated seizure onset, the probability
of false positives and the probability of delayed detection. This for-
mulation is a variation of the “Quickest Detection” (QD) [35,36],
whose theory we extended to allow for different cost functions
and, more importantly, for dependent measurements, which is
more applicable to neural data [37].

We applied our framework to four subjectswith drug-resistant sei-
zures (168 hours [h] of continuous recordings from 26–44 iEEG elec-
trodes, 33 seizures), which resulted in 100% sensitivity on both
training and validation data, low false-positive rate (min: 0.16 false
positive/hour [FP/h]; max: 2.95 FP/h; mean: 1.39 FP/h), and an aver-
age detection delay of 9.6 seconds. Compared with a standard Bayes-
ian and a heuristic threshold detector (i.e., non-optimal policies for
which no explicit cost function is minimized), our approach showed
lower false-positive rates and higher sensitivity.

2. Methods

2.1. Clinical data

Four subjects with intractable epilepsy were surgically implanted
with subdural grid and strip electrodes (26–75 channels, Ad-Tech®
Medical Instrument Corp., Racine, WI, USA) for approximately
1 week before surgical resection of the focal region and monitored
by clinicians for seizures and interictal epileptic activity. Electrodes
are 4 mm diameter platinum contacts embedded in a silicone sheet
with 2.3 mm exposed. Data were digitized and stored using an
XLTEK® EMU128FS system (Natus Medical Incorporated, San Carlos,
CA, USA) with 250 to 500 Hz sampling frequency. Table 1 and Fig. 1
report patient-specific information, number of electrodes included
in this study, and electrode position.
Board-certified electroencephalographers (up to three) marked, by
consensus, the unequivocal electrographic onset (UEO) [38] of each sei-
zure and the period between seizure onset and termination. The time of
seizure onset was indicated by a variety of stereotypical electrographic
features, which could include, but were not limited to, the onset of fast
rhythmic activity, an isolated spike or spike–wave complex followed by
rhythmic activity, or an electrodecremental response. These features
were typically present in one to a few channels at ictal onset. At all
times, concurrent changes in the patient's behavior were sought from
the video segment of a video-EEG recording. UEOs were used as the
“gold standard” for evaluating the performance of the detection algo-
rithm. Electrode recordings (iEEG in the following) included in this
study were made available to the authors with the written consent of
the patients, in accordance with the protocol approved by the institu-
tional review boards at Brigham and Women's Hospital and Children's
Hospital, Boston,MA, USA. Recordings included in this study cover a pe-
riod of two consecutive days per patient (days with seizures).

2.2. Multichannel analysis

Recent studies have introduced schemes that analyze all the avail-
able electrode channels simultaneously [39–48]. In these schemes,
each electrode is treated as a node in a graph, and any two nodes
are considered connected (i.e., an edge exists between them) if the ac-
tivities at these sites are dependent. The connectivity (topology) of
the graph can then be described by a matrix. Statistics computed
from this matrix (which is referred to as “connectivity” or “adjacency”
matrix [49]) can show if the topology changes significantly from non-
ictal to ictal states or vice versa, and significant changes in these sta-
tistics can be used to detect a seizure onset.

In order to capture potential linear dependencies between all of
the recording sites, we computed the connectivity matrix, A, as the
cross-power in a chosen frequency band (theta, alpha, etc.) between
the available iEEG channels. That is, for each pair of channels (i, j)
the corresponding element of the connectivity matrix, Aij, was

Aij ≜∫lb
ub
Pij ωð Þdω ð1Þ

where Pij(ω) is the cross-power spectral density of channels i and j
at frequency ω [50]. The frequency band [lb, ub] in (1) was patient
specific and chosen among theta (4–7 Hz), alpha (8–13 Hz), and
beta (14–30 Hz) bands (see Table 1 for the selection criteria) in our
data set. Finally, the matrix A was computed over a 5-second-long
sliding window (1-second [s] slide), resulting in a sequence of matrices
{A(k)}, one for each time second k.

2.2.1. Singular value decomposition
It has been reported that the brain enters a more organized,

lower-complexity state prior to a seizure [51,52]. As the brain be-
comes more organized and nodes become more connected, the rank
(number of linearly independent rows or columns) of the
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Fig. 1. Three-dimensional reconstructions of the brain for patients 1 (A), 2 (B), 3 (C), and 4 (D) with the electrode grids superimposed. Red-squared boxes denote the hand-anno-
tated seizure foci. In (A) to (D), yellow circles are electrodes visible in their proper location on the cortex; green circles are electrodes that would be visible where the underlying
cortex rendered properly; cyan circles are electrodes occluded by cortex (rendered or not) because they wrap around underneath or behind the temporal lobe. In patient 2, record-
ings from electrodes 1, 4, 6, 23, and 33–37 were not included in this study. In patient 3, recordings from electrode 34–64 were not included in this study. Electrodes not included in
this study showed neglegible modulation during the ictal periods.
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connectivity matrix drops. The singular value decomposition (SVD) of
a matrix highlights the rank of a matrix and also generates a weighted
set of vectors that span the range space and null space of the matrix
[53]. We therefore used SVD to measure the time-varying complexity
of the brain by tracking the rank and its associated subspaces as a
means to characterize nonictal versus ictal states.

The SVD of a generic m×n connectivity matrix A is defined as

ð2Þ

where U is an m×m unitary (UU*= I) matrix whose columns, ui, are
the eigenvectors of the matrix AA*, V is an n×n unitary matrix
whose columns, vi, are the eigenvectors of the matrix A*A, and * de-
notes the complex conjugate transpose operator. S is an m×n matrix
whose first r diagonal entries σ1≥σ2≥…≥σr are the nonzero singu-
lar values of A, with r being the rank of A [53]. The first r columns of
U span the column space of A and the first r rows of V span the row
space of A. When m=n and A is symmetric, the SVD reduces to the
conventional eigenvalue decomposition, where the singular values
are the square of the eigenvalues of A, U=V−1, and the columns of
U and V are the eigenvectors of A [53].
An example is shown in Fig. 2. Here, two three-node graphs are
analyzed. In Fig. 2A all the nodes have similar weak connections
(strength ≤1). The SVD of the corresponding connectivity matrix, A,
reveals that the matrix of this graph has full rank (three non-zeros
and comparable singular values). More physically, full rank here indi-
cates that the activity in the three nodes spans a three-dimensional
space, or has 3 degrees of freedom.

If one of the connections is strengthened, as is the case between
nodes 1 and 2 (Fig. 2B), one of the singular values of the corresponding
connectivity matrix, B, becomes small in comparison to the other two,
indicating that the rank of matrix has approximately dropped to 2.
This means that with the addition of one strong connection, the activ-
ity of the graph collapses to two dimensions and become more “or-
dered”. The singular vectors of graphs in Figs. 2A and B are plotted in
Fig. 2C and indicate that the dominant direction of the vectors has ro-
tated and the average amplification of the connectivity matrix
has increased when the strong connection is added. We investigate
the first (i.e., maximum) singular value, σ1(k), from each connectivity
matrix A(k) computed in (1) and apply QD on this statistic.

2.3. Quickest detection of seizure onsets

2.3.1. Hidden Markov model estimation
For any given patient, we assume that themaximum singular value

computed at each second (observations), zk≜σ1(k), k=1, 2, …, is
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Fig. 2. (A) Three nodes in a network are loosely connected and the correspondent connectivity matrix A is close to identity with full rank. (B) Two of three nodes are strongly con-
nected and the connectivity matrix B is close to losing rank. (C) Average direction and amplification of the first singular vectors corresponding to matrices A and B.
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generated by a hidden Markov model (HMM) [54]. At each stage
k≥0, the brain is in one of m states, that is, xk∈{0, 1, …, m−1},
which follows a Markov chain [54],

Pr xkþ1 ¼ jjxk ¼ i; xk−1;…; x0
� � ¼ Pr xkþ1 ¼ jjxk ¼ i

� �
≜pij;

∑
m−1

h¼1
pih ¼ 1

p0 þ p1 þ ⋯þ pm−1 ¼ 1;

ð3Þ

for all i, j=0,1,2,..., m−1, where p i≜Pr x0 ¼ ið Þ; i ¼ 0;1;…;m−1, is the
probability of starting in state i. For a fixed state i, the observations zk
are generated according to a known history-dependent probability law
qi(z|Hk)≜Pr(zk=z|xk= i, Hk), where Hk≜{z0, z1,…, zk−1} denotes the se-
quence of past observations. Note that the dependency of zk on previous
observations is introduced to account for temporal dependencies that
exist in neural data. The HMM is uniquely defined by the triple
P;Σ; qf g, with P≜ p0p1…pm−1

� �
;Σij≜pij, i, j=0, 1, …, m−1, and q≜

[q0…qm−1]. See Fig. 3A for a schematic of a m=2 state HMM. For our
QD framework, we fitted a m=2 state HMM on each patient, with state
x=0 and x=1 denoting the nonictal and ictal conditions, respectively
(Fig. 3B). The ictal state begins and ends with the unequivocal
ictal onset and offset determined by clinicians. Early ictal or preictal con-
ditions were subsumed in the nonictal state as they may not exist in all
patients.

Because we begin monitoring a patient in the nonictal state 0, we set
P ¼ 1 0½ �. We also assume that the state transition probability matrix is

Σ ¼ 1−ρ ρ
0 1

� �
ð4Þ

where ρ was estimated from training data via maximum likelihood esti-
mation [55]. The output probability law qx(z|Hk), x=0, 1 was computed
by combining generalized linearmodels (GLMs) [56] andmaximum like-
lihood estimation. Observationswere first quantized and mapped to in-
teger nonnegative numbers in order to have a discrete observation
domain, i.e., Q zk½ �ð Þ≜ nk with nk∈Zþ

0 , for all k. Then, we assumed that
the probability mass function of the sequence nk follows the Poisson
law,

qx zjHkð Þ≅ Pr nk ¼ Q z½ �ð ÞjHk; xð Þ≜ e−λx;k
λx;k

Q z½ �ð Þ

Q z½ �ð Þ! ð5Þ

where the instantaneous rate λx,k depends on the current state x,
stage k, and history Hk. Finally, we assumed λx,k is given by the GLM

log λx;k ¼ αx þ∑
L

j¼1
βx; jnk−j ð6Þ
whereΘx≜{αx, βx, 1,…, βx, L} is a vector of parameters to be fitted on the
data viamaximum likelihood estimation. The number L=15of past ob-
servations to be used in (6) determines the number of parameters in Θx

and was chosen byminimizing the Akaike's information criterion (AIC)
[57] over a set of candidatemodels. For each patient, the parameter vec-
tor Θx was estimated separately for state x=0 and x=1 on training
data. Such data included 3 h of continuous interictal recordings well
before seizure (min 3 h, max 12 h before the seizure) and 1 (patients
1–3) or 2 (patient 4) hand-annotated ictal periods.

2.3.2. HMM state evolution and QD policy
Because the state of a HMM is hidden, we introduce the Bayes-

ian information state variable πk≜Pr(xk=1|zk,Hk) [37,58] in order
to estimate how likely the transition from the nonictal to ictal
state is at each stage k. Note that πk is the a posteriori probability
of being in state 1 at stage k and depends on the observations up
to and including stage k. The evolution equation of πk is recursive
and given by

πkþ1 ¼ Lkþ1 πk þ 1−πkð Þp01½ �
1−πkð Þ 1−p01ð Þ þ Lkþ1 πk þ 1−πkð Þp01½ � ≜Φk πk; zkþ1;Hkþ1

� �
ð7Þ

with initial condition

π0 ¼ P x0 ¼ 1jz0ð Þ ¼ q1 z0ð Þ 1−p0
� �

q0 z0ð Þp0 þ q1 z0ð Þ 1−p0
� �

where qx(z0) is the probability of observing z0 in state x at time
k=0, p01=ρ because of (4), and

Lk ≜
q1 zkð jHkÞ
q0 zk ;Hkj Þð

is the likelihood ratio. See Appendix for details.
The Quickest Detection (QD) problem is an online decision problem,

where at each stage k we test the hypothesis H ≜ a seizure onset hasf
occurredg conditioned on the observations (Hk, zk). We introduce the de-
cision variable uk∈{0, 1}, where uk=0 (uk=1) denotes that the hypoth-
esisH is rejected (accepted) at stage k. In this way,

πkþ1 ¼ fk πk; zkþ1;Hkþ1;uk

� �
≜ Φk πk; zkþ1;Hkþ1

� �
uk ¼ 0

terminate& restart uk ¼ 1

�
ð8Þ

where the “terminate & restart” state implies thatwe restart the detection
algorithmafter a seizure has been detected.With this setup, the detection
problem boils down to deciding when to switch from uk=0 to uk=1 and
claiming that a seizure has occurred.
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We designed a decision strategy that minimizes the following cost
function, which weighs the average detection delay and the probabil-
ity of a false positive:

J 0 ≜ 1−γð ÞETjTQD b T
T−TQD

	 
þ γ ETjTQD N T
TQD−T
� �2n o

ð9Þ

where T and TQD denote the actual and estimated seizure onsets, re-
spectively. T is a random variable whose distribution is defined by
the HMM transition probabilities, i.e., P(T=k)=(1−ρ)k−1ρ. It is im-
portant to note that a time-varying HMM would determine that

P T ¼ kð Þ ¼ ∏
k−1

i¼1
1−p01 ið Þð Þp01 kð Þ.

ET|TQD b T
{∙} and ET|TQD N T

{∙} denote the expected value of the distance
between TQD and T in case of false positive (TQDbT) and delayed de-
tection (TQDNT), respectively. Finally, the parameter γ∈ [0,1] allows
one to trade off false-positive and delayed detection, while
the expected value ET {∙} accounts for the average temporal distance
between actual and estimated seizure onset. Note that the distance
TQD−T is squared in (9) for TQDNT as we intend to penalize more sit-
uations where TQDNNT, which account for very late detections.

To construct our QD policy, we constructed the cost (9) as a func-
tion of the information state πk. To do so, we first defined a cost-per-
stage,Gk(πk, uk), that penalizes both rejectingH after the state transition
has occurred (i.e., delay, k≥T) and accepting H before the actual state
transition has occurred (i.e., false positive, kbT), and is 0 otherwise:

Gk πk; ukð Þ≜
γETjk NTk−Tg ∙ πk uk ¼0

1−γð ÞET jkbTT−kg ∙ 1−πkð Þ uk ¼1

0 otherwise

8<
:

Then, the decision deals with choosing the stage TQDN0 such that
the policy (u1=0, u2=0,…, uTQD−1=0, uTQD=1)minimizes the over-
all cost

J 0≜Ez0 ;…;zM
GM πMð Þ þ ∑

M−1

i¼0
Gi πi;uið Þ

" #
ð10Þ
where GM(πM) is the final stage cost for rejecting hypothesis H. M is
the horizon over which a seizure must be detected, and we set M
for each patient to be the value of the average inter-seizure interval.
It is fairly straightforward to show that (10) is equivalent to (9)
[59]. One can interpret the minimization of (10) with respect to the
variable uk given the evolution model (8), as an optimal feedback
control problemwhere uk is the control variable (Fig. 3C). As a control
problem, this formulation can be solved recursively via dynamic
programming [59], and leads to the optimal QD policy

TQD ¼ min 0bkbM πkNFk πk; zk;Hkð Þj gf

where Fk(πk,zk,Hk) is an adaptive threshold that depends on the cur-
rent observation, history, and information state variable. There is no
simple closed form expression for Fk(∙) which is computed recur-
sively and decreases over time non-monotonically as discussed
below. Details on the derivation of Fk(∙) can be obtained in [37].

2.3.3. Significance and performance tests
For each patient, we compared the QD policy with a classic Bayes-

ian estimator (BE) [58], which is widely used in the field of change-
point detection [35,58]. We also compared the QD policy versus
a threshold-based detector (HT), where the threshold is chosen heu-
ristically. The formula for the estimated seizure onset with each of
these predictors is

BE : TBE ≜min kN0 πkN0:5j gf

HT : THT ≜min kN0 zkNh
¯

��� on

where the threshold h¯ is fixed. In particular, we choseh¯ ≜ μz þ 3σ z,
where μz and σz are the mean and standard deviation (SD) of zk
over the 3-h nonictal training data, respectively.

For each detection policy, we measured the delay between each
estimated seizure onset time and the correspondent UEO, the number
of true positives (TP), false positives (FP), and false negatives (FN).
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Every detection was classified as TP or FP if an UEO occurred within
20 s from the detection time or not. This time was chosen to be com-
parable to [14]. Each UEO that was not detected was classified as FN.
Results are summarized in Tables 2 and Table 3.

3. Results

3.1. Multichannel analysis

The maximum singular value σ1 estimated at each stage k from
the connectivity matrix (1) is plotted in Fig. 4 (one ictal period per
patient). The sequence of σ1 had a consistent pattern across the pa-
tients, with large values in nonictal state (pre- and post-seizure).
The corresponding singular vector v1 shows a leading direction before
the seizure onset, which depends on both the specific patient and the
location of the foci. For example, components 8–10 in patient 1
(Fig. 4A) and 1–4 in patient 3 (Fig. 4C) correspond to the focal area
(Figs. 1A, C) and have significantly higher values than the other com-
ponents of v1 before the seizure.
Table 2
Performance analysis.

QD

Specificity SensitivityPatient h of

recordings

# of

seizures
FP FPR

(FP/h)

FN TP %

total

1 3 1 0 0 0 1 100

2 3 1 0 0 0 1 100

3 3 1 3 1 0 1 100

T
ra

in
in

g

4 3 2 0 0 0 2 100

1 37 1 6 0.16 0 1 100

2 44 2 7 0.16 0 2 100

3 44 3 130 2.95 0 3 100

V
a

li
d

a
ti

o
n

4 31 22 71 2.29 0 22 100

Note. FP, false positive; TP, true positive; FN, false negative; FPR, false positive rate.
During a seizure, however, σ1 rapidly increases compared with the
nonictal background activity in the previous minutes, reaches a local
maximum approximately half of the ictal period (gray boxes,
Figs. 4A–D), and then slowly decreases to smaller, nonictal values.
The change in the dynamics of σ1 was observed almost at the begin-
ning of the hand-annotated seizure onset while the return to
the nonictal condition was usually slower and may last longer than
the hand-annotated end time of the seizure. Interestingly, after
every seizure, σ1 decreased below the average value achieved before
the seizure and, then, increased to the preictal values with a long drift
(at least 2 hours, data not reported), which may be consistent with
the definition of a postictal state given in [51,52]. The stereotypical
dynamics of σ1 were associated with a sudden change in the direction
of the singular vector v1: the components with the largest values
during the nonictal period decreased during the seizure while the
remaining components increased. As a consequence, the distance be-
tween the largest and smallest components consistently decreased
during a seizure (more than 30%), indicating a rotation of v1 toward
a new direction which varies with the specific seizure.
HTBE

Specificity Sensitivity Specificity Sensitivity

FP FPR

(FP/h)

FN TP %

total

FP FPR

(FP/h)

FN TP %

total

0 0 0 1 100 8 2.67 0 1 100

0 0 0 1 100 8 2.67 0 1 100

3 1 0 1 100 8 2.67 1 0 0

0 0 0 2 100 0 0 0 2 100

6 0.16 0 1 100 42 1.14 0 1 100

11 0.25 0 2 100 13 0.30 0 2 100

320 7.27 0 3 100 75 1.71 3 0 0

138 4.45 0 22 100 277 8.94 0 22 100
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Fig. 5. (A–D) Maximum likelihood estimate of parameters Θx (black line) in (6) with
95% confidence bounds (gray background) for nonictal (A, C) and ictal (B, D) state.
(E) History-dependent estimate of the probability q0(zk|Hk) (black line) and q1(zk|Hk)
(gray dotted line) around a specific hand-annotated seizure (gray background). Plots
refer to patient 2. Probabilities in (E) refer to seizure s3 (validation data).

Table 3
Detection delay on validation data.

Delay (s)Patient Seizure Duration

(s)
QD BE HT

1 s1 101 15 14 12

s2 180 37 35 10

s3 428 25 31 192
mean 31 33 14.5

s2 74 13 –5 na
s3 38 –7 –10 na
s4 36 21 17 na

mean 9 0.67 na
mean abs. value 13.67 10.67 na

3

median 13 –5 na
s3 97 1 –1 –2

s4 46 14 12 2

s5 45 –7 –10 –11

s6 60 –4 –7 –8

s7 16 9 7 0

s8 37 –8 –11 –11

s9 35 10 7 6

s10 33 20 5 4

s11 41 9 –1 4

s12 38 11 9 4

s13 38 12 7 5

s14 31 14 11 6

s15 30 12 9 5

s16 94 –4 –14 –15

s17 55 1 –1 –2 

s18 21 7 0 –1 

s19 51 6 –1 –1

s20 29 3 0 0

s21 49 8 3 –1

s22 45 13 11 8

s23 50 23 20 2

4

s24 25 15 12 7

mean 7.5 3.05 0.045

mean abs. value 9.59 7.23 4.77

median 9 4 1

standard deviation 8.32 8.56 6.30

mean 9.6 5.32 1.68

mean abs. value 11.75 9.68 5.84

median 10.5 6 2
TOT

standard deviation 10.5 11.78 7.55

Note. Positive and negative values denote delay and anticipation, respectively.
aMean of the absolute values of delays and anticipations.
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Modulo a scaling factor, the dynamics of σ1 and v1 were similar
in patients 1, 2, and 4 (Figs. 4A, B, D), independently of the type/or-
igin of the seizure and the connectivity matrix (σ1 and v1 were
computed from connectivity matrices of cross-power in different
frequency bands, see Table 1). These dynamics were less clear in
patient 3, where σ1 showed slow oscillations independently of the
seizure occurrence (Fig. 4C, top). However, at the seizure onset,
the value of σ1 first decreased, then rapidly rose to a local maxi-
mum, and finally drifted toward the baseline value, as did occur
in the other patients. This indicates that, modulo a scaling factor,
the same dynamics occurred in patient 3 as well as patients 1, 2,
and 4. Interestingly, in Fig. 4C (top), σ1 achieves a peak value
~50 s after termination of the seizure. However, this peak is shorter
than the pattern during the previous seizure, is not followed by a
recovery phase, and is not associated with a rotation of v1. The lead-
ing components of v1, indeed, do not change when this second peak
occurs and are the same as in the preictal phase (Fig. 4C, bottom).
These facts indicate that, although the absolute value of σ1 may
be higher after the seizure, the specific pattern is different from
the ictal one.

Overall, the clear modulation of σ1 at the seizure onset and its
specific pattern during the ictal state may capture the overall
change in complexity of the brain. This is possible because σ1 ex-
ploits information recorded from multiple sites simultaneously
and combines linear dependencies between all the possible pairs
of electrodes in the beta (patients 1, 3, 4) and theta (patient 2) fre-
quency bands.

3.2. HMM estimation

Figs. 3B and 5 show results for the HMM estimation. Although the
mean value and the variance of σ1 were different in the ictal versus
nonictal states, the sampling probability distribution functions had
some overlap (Fig. 3B), which means that several of the same values
of σ1 were likely to be achieved in both ictal and nonictal states.

In order to better characterize the distribution of σ1 in each
state, we introduced a history-dependent representation of the
probability distribution of σ1 (Fig. 5). At each stage k, the model
(5)–(6) modulates the probability that the observation σ1(k) has
been emitted while in the ictal or nonictal state based on the values
of σ1 in the last 15 s. The dynamics of the instantaneous rate λx,k are
captured by parameters Θx in (5) and (6), as Θx were estimated
from actual observations in both states. Parameters in Figs. 5A–D indi-
cate that the transition from nonictal to ictal state is characterized by
(i) a significant increase in parameter αx (Figs. 5A, B), which is a scal-
ing factor and accounts for the average value of σ1 in state x, and (ii)
larger 95% confidence bounds for parameters βx, j (Figs. 5C, D),
which accounts for larger differences between consecutive observa-
tions of σ1.

The different model parameters Θx resulted in distinct functions
q0, q1, which (i) varied the probability of any given observation σ1

at each stage k depending on the past observations, and (ii) had oppo-
site dynamics in the ictal and nonictal states (Fig. 5E). In particular,
for the computed sequence of σ1 in each patient, q1(∙) was consistent-
ly larger than q0(∙) during the ictal periods, but decreased during the
nonictal periods and was almost zero during the postictal phase,
while q0(∙) was generally high (and almost always larger than q1(∙))
during the nonictal periods. In each patient, q0 and q1 were almost
zero after every seizure independently of the model parameters,
thus suggesting that the postictal period is characterized by a resetting
of the brain activity, as argued in [51,52].
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3.3. Quickest detection policy

Tables 2 and 3 and Figs. 6 and 7 report the results for the QD pol-
icy versus the Bayesian estimator (BE) and the heuristic threshold-
based detector (HT) described under Methods.

The QD policy was derived by penalizing the probability of false
positives more than the delay (i.e., γb0.5 in the cost function (9)).
In this way, QD guaranteed 100% sensitivity (i.e., all the seizures
were correctly detected) on both training and validation data
(Table 2) and delays were generally small (average across patients:
9.6±10.5 s, mean±SD). Detection occurred earlier than the UEO
(anticipation) in 5 of 28 seizures on validation data (Table 3), with
a lag ranging from 4 to 7 s. The number of false positives, instead, var-
ied with the patient (Table 2) and determined an average FPR value of
1.39±1.45 FP/h across four patients.

A comparison between QD, BE, and HT indicates that the non-optimal
policies BE and HT can achieve shorter delays, but the number of
false positives rapidly increases,whichmaymake thesemethods unsuita-
ble for clinical application.While the average delaywas 5.32±11.78 s and
1.68±7.55 s for BE andHT, respectively, the FPRwas 3.0±3.46 and 3.0±
3.99 FP/h, respectively. Also, the performance of theHTwas influenced by
the noise in the sequence of σ1 values, resulting in 0% sensitivity in one
patient (i.e., no seizure was correctly detected) and an average value of
82.5% across the whole population.

These results depend on the performance goals imposed by the
cost (9). By increasing the penalty for detection delay in (9) (i.e.,
A B

Fig. 6. QD on validation data. The electrographic onset (dashed vertical black line), the corre
patients 1 (A) and 2 (B). For patient 2, two QD estimations are computed for different valu
(patient 1) and s3 (patient 2), respectively. In (B) (bottom plot) the horizontal dashed blac
increasing γ), the QD was able to reduce the delay to the values
achieved via BE (16 s, Fig. 6B, black dash-dot line), while keeping a
lower number of FPs (7 vs. 11). By decreasing γ, instead, we achieved
higher robustness to early modulations of πk, which can be due to
abrupt spikes in the sequence of σ1, and were able to decrease the
number of FPs and detect a seizure with less anticipation than the
other methods (Figs. 7A, B).

A sensitivity analysis of the QD policy to variations in the parame-
ter γ is reported in Fig. 8. The policy was implemented for several
values of γ in [0, 1], and for each value, the average delay and FPR
per patient were estimated on the validation data. Results indicate
that delays are quite insensitive to modulations in γ in patients 1
and 2, and low FPR values (b0.17 FP/h) can be achieved while keep-
ing the delay to the minimum value. However, in patient 4, delays
were generally small (b10 seconds) for FPRs below 2 FP/h, and fur-
ther reductions in delay rapidly increase the FPR. Finally, perfor-
mances for patient 3 was similar to that for BE and HT in terms of
FPRs, presumably because of the less significant modulation of σ1 in
the ictal versus nonictal state (Fig. 4).

4. Discussion

In this study, we propose a multichannel statistic that measures
linear dependencies among all recorded sites of the epileptic brain
simultaneously by combining power spectrum analysis and matrix
theory. This statistic (the maximum singular value σ1 of the cross-
spondent QD estimation (circles), and threshold Fk (gray and dash-dot black lines) for
es of parameter γ (black circle γ=0.52; gray circle γ=0.01). Plots refer to seizures s1
k line denotes the threshold for the BE detector.



A B

Fig. 7. QD on validation data. The electrographic onset (dashed vertical black line), the correspondent QD estimation (circles), and threshold Fk (gray and dash-dot black lines) for
patients 3 (A) and 4 (B). For each patient, two QD estimations are computed (gray and dash-dot black) for different values of parameter γ. Plots refer to seizures s3 (patient 3) and s3
(patient 4), respectively. In (A) and (B) (bottom plot) the horizontal dashed black line denotes the threshold for the BE detector.
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power-based connectivity matrix) summarizes the change in topology
that occurs in the brain network at the seizure onset and shows signif-
icantly different dynamics in ictal versus nonictal periods.

Using this statistic, we developed a computational framework for
the AOSD. This framework combines Bayesian estimation (we use
the a posteriori probability πk) with optimal control (we minimize
the cost function J 0 in (10)) and provides a threshold-based detec-
tion policy, where the threshold varies with time based on the dy-
namics of σ1 and πk.
A
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4.1. Multichannel versus single-channel statistics

Several statistics, both single channel andmultichannel, have been
computed from iEEG signals in the last 20 years to capture changes
occurring in the brain network at seizure onset [6–33]. Although
these statistics show some modulation between different nonictal
and ictal states, they have a few drawbacks: (i) The statistics are usu-
ally computed on single channels [6–9,11,28,30–33] or a small subset
of channels [10,29] from the focal area, which means that the foci
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les 2 and Table 3.
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must be known a priori with reasonable accuracy (i.e., localization
and detection are correlated problems). This is less stringent with
the multichannel statistics, where the only requirement is that
the electrode grid is large enough to include the focal areas. (ii) The
nonlinear multichannel statistics usually outperform linear sin-
gle-channel and two-channel measures [60], but require larger
amounts of data and computation. (iii) The modulation of these sta-
tistics around the seizure onset may vary with the subject or during
the sleep/wake cycle [61], resulting in less predictable patterns.

These limitations can be (at least) in part addressed by increasing
the number of combined channels and computing simple measures
off of large enough matrices (on the order of hundreds of channels).
Such a combination can provide more information about the brain
network (albeit still incomplete) and exploits both spatial and tem-
poral features, while the computation of the maximum singular
value σ1 captures the overall degree of (linear) dependency among
different brain sites and the sampled network topology. These dy-
namics were similar in all the patients in our data set, with clear dif-
ferences during ictal and nonictal periods (Fig. 4) and a postictal
resetting pattern that may last several minutes to a few hours.

These results positively affected the dynamics of the Bayesian a
posteriori probability of an ictal state (πk). This probability evolves re-
cursively with (7) and is used as a marker of the actual brain condi-
tion in the QD policy. Depending on the evolution of the maximum
singular value, this probability clearly separates the ictal and nonictal
periods, contributing to the success of the QD policy (Fig. 5). As indi-
cated in Figs. 6 and 7, this a posteriori probability selectively increases
at the seizure onset and remains high during the ictal period, before
finally decreasing to zero. πk rises to 1 (i.e., its maximum value)
quickly at the seizure onset and usually has minor modulations out-
side the ictal period (Figs. 6 and 7). For this reason, the detection
delay with QD is comparable to that achieved via BE, although the
FPR is significantly lower in each patient with QD. The FPR is larger
in BE because of the occurrence of abrupt spikes in the sequence of
πk that trigger false positives. These abrupt spikes in πk may be caused
by fluctuations or noise in the measure of the maximum singular
value σ1. In this case, an adaptive threshold allows increasing the per-
formance by selectively avoiding these peaks (see below).

4.2. Quickest detection policy

The proposed QD policy combines several well-known topics in
abrupt change-point detection theory (e.g., quickest detection
[35,36], bayesian estimation with loss function [58], dynamic pro-
gramming [59], HMM [54]), generalizes the framework to the case
of history-dependent sequential observations (whichmay be relevant
for neural data and iEEG recordings [37], etc.), generalizes the frame-
work to the case of history-dependent sequential observations
(which may be relevant for neural data and iEEG recordings [37]),
and results in an adaptive, unsupervised, threshold-based detection
strategy that can potentially be implemented online.

Differently from current AOSD paradigms, our QD policy con-
structs the threshold by explicitly minimizing a cost function of the
desired detection performance goals. Many current detectors track
the modulation of a statistic computed from iEEG recordings over
time, and then set a threshold on the statistic to estimate the ictal
onset time [6,10–15]. The choice of the threshold is supervised and
usually dependent on the fluctuations of the statistic, the specific pa-
tient, or the electrode position, andmay require long training sessions
to be more accurate. In our approach, instead, an unsupervised adap-
tive threshold falls out of the methodology and adapts according to
the cost function, the model of the multichannel statistic (HMM),
and current and past measurements.

More recent detection schemes that exploit classifiers (e.g., [16–
33]), based on either ANN, SVM, or PCA, also generate unsupervised
criteria that separate the feature space (statistic space) into dominant
ictal and nonictal regions. Although optimization methods are used
for separating ictal and nonictal data, the clustering procedure ex-
ploits the distance (in a specific high-dimensional geometric feature
space) between the data, but does not encompass penalties for specif-
ic performance goals (e.g., minimize FPR).

In summary, the detection approaches proposed thus far follow a
“bottom-up” flow, i.e., they determine criteria that most likely separate
ictal and nonictal data, and then apply such criteria on sequential neural
measurements and evaluate detection performance. Our QD policy, in-
stead, follows a “top-down” approach, i.e., it requires a cost function
that explicitly accounts for different performance goals (e.g., low proba-
bility of false positives, low distance between actual and detected seizure
onset time, lowprobability of late detection, etc.) and thendefines the de-
tection strategy to minimize the cost function. Depending on the specific
application (e.g., online detection of a clinical seizure, offline investigation
of the electrographic onset of a known clinical seizure, etc.), theQD canbe
tuned to achieve a specific goal and reach the required level of sensitivity
and specificity (Fig. 8).

Our QD policy also exploits a model-based control approach to sei-
zure detection. Here, the QD formulation was derived for a two-state
HMM representation of brain activity in ictal versus nonictal state.
HMMs have been successfully used in several fields in statistics and
engineering (for an overview, see [54]), and recently introduced
for modeling neural data in sensitive tasks and neural prosthetics
(e.g., [62,63]). In the case of seizure detection, the transition from
a nonictal to an ictal state can be suitably treated as a hidden state transi-
tion, where the hidden state is the actual brain condition, which is un-
known and partially sampled with electrodes. According to this
interpretation, an epileptic brain can sequentially transition into mN2
states, depending on the actual physiological conditions (e.g., the patient
is awakeor sleeping), the typeof epilepsy, or the typeof seizure occurring.
The number of HMM states is generally patient specific and may vary
with the available data. However, the framework outlined in (1)–(10) is
general and can be extended to the case of HMMs with mN2 states
(e.g., imagine a separate m-state HMM for the nonictal periods and an
n-state HMM for the ictal periods).

It is interesting that for AOSD, a minimal HMM with two states ap-
pears to be enough and led to low FPRs (b0.2 FP/h) in two of the four pa-
tients in our data set. Thismay stem from the clear patterned dynamics of
the maximum singular values in ictal versus nonictal periods, which is
captured by the GLM structure in (5) and (6) (Fig. 5). GLM andmaximum
likelihoodmethods have beenwidely used before in the analysis and sim-
ulation of neuronal spike train analysis for several types of neural disor-
ders [55,64,65] and provide a flexible framework for both stationary
and nonstationary analyses. In our case, the GLM parameters are able to
accurately capture changes that occur in the maximum singular value as
soon as the seizure starts, and require a minimal set of training data to
be estimated (only one seizure and 3 hours of nonictal data) in both
conditions.

We are aware, however, that in the remaining two patients the
FPR was quite high (N2 FP/h). In this case, it is possible that the train-
ing data was not enough for modeling additional (slower) rhythms
in themaximum singular value during the interictal state. Such addi-
tional dynamics presumably depend on the location of the focal re-
gion, which is not temporal in Patient 3-4, and the specific type of
seizures. Indeed, while Patient 1 and 2 had distinct and large com-
plex partial and tonic-clonic seizures, respectively, Patient 3-4 had
short complex partial seizures with minor clinical evidence and sim-
ple partial seizures, respectively (Table 1). Another possible reason
could be the spectral selectivity of ourmodel, i.e., the fact thatwe consider
only one frequency band per patient. Finally, a possible reason could be
the limited number of states in our HMM, which could not be enough
for these patients. These reasons led to a lack ofmodel accuracy in patient
3 and 4, which presumably caused an increased fluctuation of the state
variable πk with frequent erroneous peaks and ultimately decreased the
QD performance. Better results could be achieved by improving the
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HMM–GLMmodel frameworkwith further information about the type of
epilepsy and patient behavior.

Another aspect of the QD results in Tables 2 and 3 that needs to
be addressed is the excessive detection delay (N10 s) for a few sei-
zures, which would not be useful for clinical application. Also, we
note that the delay with QD was longer than with the HT and BE de-
tector for several seizures, although the FPR was significantly lower.

The results of QD versus those of BE and HT are a consequence of
the specific cost function that we defined, which penalizes the prob-
ability of false positives and very late detections more severely than
detection delays in the order of 10–20 s. Our choice was motivated
by the limited duration of the available recordings (less than 2 days
per patient) and definitively resulted in a conservative policy, i.e.,
the threshold Fk(∙)≫0, and, therefore, a seizure was detected only
when the state variable πk≫0 (Figs. 6B, 7).

The issue of excessive delay may also be due to the spectral selec-
tivity of the adopted connectivity. This can be a limitation as the sei-
zures are characterized by several features (e.g., fast rhythmic
activity, electrodecremental activity, isolated spikes, etc.), which
may occur across multiple frequency bands. In this case, observations
in a single frequency band would lead the multichannel statistic to
late modulation and therefore a delayed detection.

A possible solution to this issue could be combining multichannel
statistics across several frequency bands by combining maximum sin-
gular values of connectivity matrices computed in different frequency
bands. Another solution to be explored is the use of nonlinear func-
tions of the detection delay TQD−T in the cost function (9). In the cur-
rent formulation, the penalty for delay in (9) grows quadratically
with delay. We could allow this penalty to grow exponentially in
delay (e(TQD−T) ), and as long as the function is a non-decreasing func-
tion of the delay, the QD method will hold.

Future work entails validating our preliminary findings on larger
data sets and reducing the detection delays so that they may be ac-
tionable for clinical intervention. We will also make direct compari-
sons with current AOSD approaches on the same set of statistics so
that we may understand the degree of performance improvement
we achieve with the QD methodology.
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Appendix. Recursion of πk

Let us find the recursion equation for πk as a function of πk−1 in a
m=2 HMM. We start with stage 0:

π0 ¼ Pr x0 ¼ 1jz0ð Þ ¼ Pr x0 ¼ 1; z0ð Þ=Pr z0ð Þ

¼ p1q1 z0ð Þ= p1q1 z0ð Þ þ 1−p1
� �

q0 z0ð Þ� �
:

π1 ¼ PrðT≤1 jz0; z1Þ ¼ Pr T≤1; z0; z1ð Þ=Pr z0; z1ð Þ

¼ Pr T≤0; z0; z1 or T ¼ 1; z0; z1ð Þ=Pr z0; z1ð Þ

¼ Pr T ≤ 0; z0; z1ð Þ þ Pr T ¼ 1; z0; z1ð Þ
Pr z0; z1ð Þ

¼ Pr z0; z1ð jT≤0ÞPr T≤0ð Þ þ Pr z0; z1ð jT ¼ 1ÞPr T ¼ 1ð Þ
Pr z0; z1ð Þ
¼ Pr z1jT≤0; z0ð ÞPr z0jT≤0ð Þ=Prðz1 z0j Þ

þPr z1ð jT ¼ 1; z0ÞPr z0ð jT ¼ 1ÞPr T ¼ 1ð Þ=Pr z1 z0j Þð

¼ Pr T≤0jz0ð ÞPr z1jz0; T≤0ð Þ þ Pr T ¼ 1jz0ð ÞPr z1jz0; T ¼ 1ð Þ
Pr z1 z0j ÞPr z0ð Þð

¼ π0q1 z1 z0j Þ þ 1−π0ð Þp01q1 z1ð jz0ð Þ
π0q1 z1jz0ð Þ þ 1−π0ð Þp01q1 z1 z0j Þ þ 1−π0ð Þ 1−p01ð Þq0 z1jz0ð Þ:ð

Define the likelihood ratio

L1≜
q1 z1jz0ð Þ
q0ðz1 z0j Þ ;

then

π1 ¼ ½L1 π�0 þ 1−π0ð Þp01
� �

L1 π0 þ 1−π0ð Þp01½ � þ 1−π0ð Þ 1−p01ð Þ

Similarly, it is straightforward to show that for

Lk≜
q1 zkð jHkÞ
q0ðzk Hkj Þ ;

where Hk={z0, z1, …, zk−1}, then

πk ¼
½Lk½π�k−1 þ 1−πk−1ð Þp01�

Lk πk−1 þ 1−πk−1ð Þp01½ � þ 1−πk−1ð Þ 1−p01ð Þ≜Φ πk−1; zk;Hkð Þ:
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