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Kashin-Beck disease (KBD) is an endemic chronic osteochondral disease, which has a high prevalence
and morbidity in the Eastern Siberia of Russia, and in the broad diagonal, northern-east to southern-west
belt in China and North Korea. In 1990's, it was estimated that in China 1e3 million people had some
degree of symptoms of the disease, although even higher estimates have been presented. In China, the
extensive prevalence peaked in the late 1950's, but since then, in contrast to the global trend of the
osteoarthritis (OA), the number of cases has been dramatically falling. Up to 2013, there are 0.64 millions
patients with the KBD and 1.16 millions at risk in 377 counties of 13 provinces or autonomous regions.
This is obviously thanks to the preventive efforts carried out, which include providing millions of people
with dietary supplements and clean water, as well as relocation of whole villages in China. However,
relatively little is known about the molecular mechanisms behind the cartilage damage, the genetic and
the environmental risk factors, and the rationale of the preventive effects. During the last decade, new
data on a cellular and molecular level has begun to accumulate, which hopefully will uncover the
grounds of the disease.

© 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

The Kashin-Beck disease (KBD) includes multiple symptoms in
the growth and the articular cartilages. It has been known since the
sixteenth century, but the first one to describe the disease was I. M.
Yurensky in 1849. Some years later (1859e1868), a doctor Nikolai
Kashin also investigated the disease, and named it as the Urov
disease according to the area where it was abundant. In 1906, a
doctor Eugene Beck described his medical cases in a monograph
Osteoarthritis Deformans Endemica. Later, the disease became
known as the KBD. The research efforts on the KBD originated from
Russia, then Japanese had an intense period of a research, and
finally the research focus has gradually moved to China. Recently,
an international collaboration has increased the awareness of the
KBD also outside of Asia1.
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In 2013, there were 0.64 millions patients with the KBD and
1.16 millions at risk in 377 counties of 13 provinces or autonomous
regions2. The major feature of the KBD is a short stature [Fig. 1(A)
and (B)]. In contrast to the OA, the clinical symptoms, such as the
deformed joints in the fingers and the feet start to appear already
at the age 5 years, or even earlier [Fig. 1(C)e(H)]. The patients also
suffer from the misshapen legs and OA changes3. The short stature
is caused by several focal necroses in the growth plates [Fig. 1(J)
and (K)], which are not present in the normal growth plate
[Fig. 1(I)]. In contrast to the normal cartilage [Fig. 1(L)], the
chondrocyte clusters, the necrotic areas and the compressed
nuclei become more and more abundant as the disease progresses
[Fig. 1(M) and (N)]. The disease not only damages the cartilage, but
can also harm the cardiac and the skeletal muscle, the bone
marrow, the blood vessel walls, the stomach, the endocrine glands
and the peripheral nerves. Disturbances in the cartilage meta-
bolism, the lipid peroxidation, and sulfur and selenium meta-
bolism can also be present3,4.

More than 50 environmental risk factors have been proposed
for the KBD during the past 150 years, including a biogeo-
chemical hypothesis, a cereal contamination by the fungal my-
cotoxins and the high contents of the humic acids in the drinking
td. All rights reserved.
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Fig. 1. Two KBD children aged 7 (A) and 15 (B) years old manifested the deformed joints in the limbs, had especially a knee varus deformity and the shortened humeri and the
stature. The flexion of the terminal finger joints or the deformed fingers (CeE) was mostly occurring first in the children. The radiographic findings in the right hand of the KBD
patients aged 13 (F), and 45 (G), and the feet of 9 years old one (H), respectively. In the growth plate cartilage of the KBD children, the large chondronecrotic areas without cells were
typically observed in the deep zone of the cartilage (arrows in J and K). Such findings were not seen in the control cartilage (I). The chondrocyte size was significantly reduced in the
KBD (J), but the cell membranes were intact. The nuclei were dissolved, broken and compressed, and associated with a red staining in the chondrocyte cytoplasm (K), and the
cellular fibrillated areas (arrowhead) appeared. In contrast to the control cartilage (L), the chondrocyte clusters and the foci of chondronecrosis, the compressed nucleus and the
incomplete cell membrane appeared in the upper and the middle zone in the articular cartilage of the KBD adults (M, N). Hematoxylineeosin staining, 100 � 20.

X. Guo et al. / Osteoarthritis and Cartilage 22 (2014) 1774e1783 1775
water3,4. Currently, the selenium deficiency and the cereal
contamination are regarded as the major environmental risk
factors, and a multifactorial model considering the interactions
of the multiple environmental and genetic factors has been
developed for the KBD. Although the actual mechanism of the
disease is still unknown, the recent data collected at a cellular
and molecular level has provided important new findings, which
hopefully can guide the research to find the cause of the disease.
It is typical for the KBD prevalent areas that not all the villages,
all the families or everybody in the family suffer from the KBD5.
It has also been observed that upon an exposure to the same
environmental risk factors of the endemic areas, the inhabitants
can acquire different types of the endemic diseases, and totally
different target organs.
Symptoms of the KBD in the cartilage

The epiphyseal growth plate and the articular cartilage are the
most commonly affected anatomical sites in the KBD patients.
Microscopically, the degenerative changes in the KBD cartilage are
characterized by the chondronecroses in the multiple foci of the
deep zone of the cartilage [Fig. 1(J) and (K)]. The focal chon-
dronecroses and an impaired endochondral ossification mostly
result in a secondary chronic osteoarthropathy. In the fetal and the
juvenile cartilage, most of the KBD changes are located at the zones
of the maturing and the hypertrophic cartilage. The necrotic fields
can extend to the transitional region between the proliferative and
the hypertrophic zones of the growth plate cartilage and, in the
advanced KBD, even to all zones of the cartilage6. Before the overt
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degenerative changes appear in the cartilage extracellular matrix,
the chondrocyte necrosis can be visualized under the electron
microscope7. The chondronecrosis of the growth plate can result in
a disturbed endochondral ossification, and even induce the early
closure of the epiphyseal growth plate, which will lead to the
growth retardation, such as the short fingers, the short limbs, the
retarded growth and a disability in the advanced stages3.

Since the growth plate cartilage is the growth center of the bone,
the developmental deformities of the KBD patients are most likely a
result of an impaired chondrocyte differentiation and the endo-
chondral ossification. The younger the symptoms arise, the more
serious malformations develop. Additionally, the chondronecrosis
of the articular cartilage can induce a scar formation, bony en-
largements, osteophytes, loose bodies and a narrowed joint space
in the KBD patients3. The electron microscopic analyses have
confirmed the chondrocyte necrosis and revealed a reduction in the
collagen fibril diameter, and a loss of the fibril banding patterns in
the cartilage matrix of the KBD patients7. The KBD chondrocytes
display the swollen mitochondria and a decreased density of the
mitochondrial matrix compared to the normal ones [Fig. 2(A) and
(B)]. The distended cisternae and a ribosomal detachment from the
membrane are present in the swollen endoplasmic reticulum after
a cell injury [Fig. 2(C) and (D)]. These endoplasmic reticulum events
may coincide in an apoptosis and a necrosis. Besides the distended
Golgi apparatus there can be more secretory vacuoles in the KBD
chondrocytes [Fig. 2(E) and (F)].

Besides the classical deep zone chondronecrotic changes, the
chondrocyte dedifferentiation and an abnormal type X collagen,
Parathyroid hormone related protein (PTHrP), transforming growth
factor-b (TGF-b), basic fibroblast growth factor (bFGF) and vascular
endothelial growth factor (VEGF) staining patterns have been
discovered in the KBD cartilage8, which suggests that the endo-
chondral ossification and the terminal differentiation disorders of
the chondrocytes may be involved in the pathogenesis of the KBD.
The degenerative and the hypertrophic changes have also been
noticed in the KBD chondrocyte cultures9. The excessive apoptosis
and the abnormal expression of the apoptosis regulating factors,
such as Bcl-2, Bax, Fas and inducible NO synthase (iNOS)10 are
consistent findings with the increased serum levels of NO and the
iNOS in the KBD patients11.

The proteoglycan metabolism is affected by the KBD, since a
decreased content of the proteoglycans can be found in the deep
Fig. 2. The ultrastructure of the KBD and the normal chondrocyte shown in the transmiss
chondria (A) compared to the normal one (B), and had the distended endoplasmic reticulu
drocytes has the distended Golgi apparatus (E) in contrast to normal ones (F).
zone of the cartilage, particularly in the necrotic areas12. The
aggrecanase-generated epitopes are present in the KBD cartilage,
and also an increased serum content of CD44 and its immuno-
staining in the KBD cartilage13. The potential markers of the joint
damage, i.e., cartilage oligomeric matrix protein (COMP) and type II
collagen telopeptides, are also increased in the serum14. The urine
concentrations of the unsaturated glycosaminoglycan di-
saccharides and the pyridinoline cross-links of the collagens also
correlated with the grade of the KBD15. The serum levels of the
catabolic cytokines interleukin-1b and a tumor necrosis factor-a
were high both in the normal and the KBD children in the KBD
regions13, suggesting that some yet unidentified factors may pro-
tect certain people from the disease. The markers of an autoim-
mune and an inflammatory response were also elevated in the KBD
patients16.

Correlation of the soil trace element contents with the KBD

The selenium is well known to associate with the human health
and the disease. The incidence of the KBD overlaps strikingly with a
Chinese map of the soil poor in the selenium17. In the 1970's, the
Chinese researchers discovered that a low environmental content
of the selenium resulted in a nutritional selenium deficiency of the
population via a food chain in the KBD prevalent areas. In human,
there are 25 genes encoding the selenoproteins18, many of which
are involved in the redox reactions and the lipid peroxidation of the
body, and protect against the oxidative and nitrosative stresses.
Thus, it is not surprising that the low blood selenium content in the
KBD patients correlates also positively with the glutathione
peroxidase enzyme levels. A selenocysteine is the twentyfirst
amino acid, which is needed for the function of the selenopro-
teins19. A targeted deletion of tRNA gene for the selenocysteine
(Trsp) in the osteo-chondroprogenitor cells causes many features
similar to the KBD, suggesting its importance for the cartilage19.
However, a generalized knockout of the Trsp has a lethal effect at an
embryonic stage20 and, thus, it is still not knownwhether this gene
is involved in the development of the human KBD.

The selenium supplements have been considered a potential
way to balance the selenium content of the body. A Chinese
intervention study showed that the KBD incidence in 9343 normal
children with dietary selenium supplementation (0.45%) was
significantly lower than that of 2963 normal children who did not
ion electron microscopic images. The KBD chondrocytes displayed the swollen mito-
m with detached ribosomomes (C) compared to the normal cells (D). The KBD chon-
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have the selenium supplement in the KBD areas (1.9%)21. For 2197
KBD patients, the repair rate of the metaphysis pathological
changes and the aggravating rate got to 64.8% and 2.8% in the
selenium supplement group, in contrast to 19.9% and 11.3% in the
non-selenium supplement group, respectively21. Still, the selenium
supplement cannot fully prevent the incidence of the KBD, which
can also decline without any change in the environmental sele-
nium state. Thus, the role of the selenium in the KBD is still
uncertain.

Additionally, a concomitant shortage of the iodine usually ex-
ists in the KBD area besides the low selenium in the soil. In some
KBD areas, the selenium and the iodine deficiency coexist in the
soil, the grain and the water, and the low levels of the selenium
and the iodine can be measured in the children living in Tibet22.
However, the low selenium, the low iodine or the low selenium
together with the low iodine in the rat food, followed for two
generations, failed to generate the characteristic chondrocyte ne-
crosis typical for the human KBD23. Although the other elements,
such as the fluorine and the zinc, have been considered to asso-
ciate with the KBD, their contribution has not been further veri-
fied. Therefore, it inclines one to think that the selenium
deficiency is one of the important environmental risk factors for
the onset of the KBD.

Some other elements in an overdose, such as the thallium and
the silicon, are also able to cause the deep zone chondrocyte ne-
crosis in the experimental animals, but there is no significant dif-
ference in the thallium contents in the hair of the children living in
the KBD endemic areas and in the non-endemic ones24e26.

Toxins as a risk factor for KBD

Since the environmental selenium deficiency is not the sole
predictor of the KBD, the onset of the disease likely has some
additional epidemiologic characteristics. It has been observed that
the dietary fungal toxin contaminations correlate with the risk of
the KBD4. For instance, the toxic effects of a T-2 toxin have been
reported27. The T-2 toxin also promoted an increased degradation
of the cartilage proteoglycans, which could be partly prevented by
the selenium supplementation28. In ATDC5 chondrogenic cells, the
T-2 toxin activated the catabolism via a reactive oxygen species
(ROS)/NF-kB/hypoxia inducible factor(HIF)-2a pathway27. Another
mycotoxin, butenolide, increased the cytotoxicity via a disturbed
antioxidant balance29.

The studies of the KBD have been complicated due to the lack
of a good animal disease model, which would have exactly the
similar microscopic symptoms as the human KBD. To verify the
environmental pathogenic hypothesis of the KBD, the grain and
the water from the KBD prevalent areas have been used to feed
animals, in order to obtain similar pathological changes as
observed in the human KBD. A feeding of rhesus monkeys with the
grain and the water from the KBD areas for 14 months displayed
the chondrocyte necrosis similar to the human KBD30. The feeding
of mini-pigs with a low selenium fodder for 30 days, and then
with a fungal toxin fodder for more than 3 months, interfered with
the normal metabolism of the cartilage, and the necrosis appeared
in the deep layer of the articular cartilage, but not in the epiph-
yseal growth plate cartilage31. Similar results were obtained in the
rat experiments using the T-2 toxin combined with a low selenium
diet32. However, the low selenium in combination with the T-2 or
moniliformin toxins were reported to retard the growth in the
rats33. Also the bone and the metaphyseal plate of Wistar rats fed
with the T-2 toxin and the KBD-affected diet had the KBD-type
abnormalities34. The decreasing antioxidant levels were also
observed by the T-2 toxin treatment under the selenium defi-
ciency conditions35.
Genetic involvement with the KBD

It is known that the KBD mostly attacks the local farmers, and
the immigrating populations from the non-endemic areas are
affected, too. In a study of 4938 nuclear families with the KBD pa-
tients, the KBD families were divided into four categories based on
the parental phenotypes: (1) the father affected and the mother
not; (2) the mother affected but the father not; (3) the both parents
affected; (4) none of the parents affected. The family aggregation
was observed in the first offspring generation at the KBD areas with
the middle (10e20%) and the high population prevalence (more
than 20%), but not in the low prevalence areas (less than 10%). The
family aggregation of the KBD appeared in the families with the
both parents, and either the father suffering from the KBD, but not
in the families with the mother or neither of the parents suffering
from the KBD (Fig. 3). This data has been compiled from our pre-
vious study36. The KBD family aggregationwas observed in the first
offspring generation, and depended on the types of the KBD areas
and the KBD status of the parents.

It has also been shown that the parents and the siblings of the
KBD have a 3e4 times higher risk of the KBD than the random non-
related individuals. The segregation ratio and the heritability of the
KBD within the siblings were 0.06% and 28.6%, respectively, esti-
mated from 10,823 inhabitants living in 14 villages of Linyou
county, Shaanxi province, China. This result indicates an obvious
familial aggregation of the KBD, and the genetic factors account for
more than 25% of the risk of KBD. In this context, it has to be
realized that it is possible that the KBD development may require
mutations in more than one gene. A generalized linear mixed
model and a fitted logistic regression model applied to 185 KBD
nuclear families and 193 KBD extended families for fitting the ge-
netic variance components model revealed that the KBD family
aggregation was mainly attributed to the common environmental
risk factors and the relatedness of the offsprings and the offspring-
parents37. These included the common external environmental
factors; the family-shared environmental effects and the additive
genetic effects37. These findings of the KBD genetics support the
individual variation of the susceptibility to the KBD, and suggest
that the environmentegenome interaction plays an important role
in the pathogenesis of the KBD.

The genome analyses of KBD patients

It is well documented that most diseases are associated with the
individual's genetic make-up, the environmental agents and the
complex interaction between the genetic and the environmental
factors. Subtle differences in the individual genetic make-up can
cause the people to respond differently to the same environmental
exposure. A number of the OA susceptibility genes are known
today38. To address the role of the genetic factors in the develop-
ment of the KBD, a number of the short tandem repeat (STR) units
on the chromosomes 2, 11 and 12 have been analyzed39. Eleven of
63 STRs correlated with the risk of the KBD (Fig. 4), as compiled
from previous publications40e43. Three of the identified STRs were
located at the chromosomal region 12q24.31-q24.33, at the prox-
imity of the region 12q24.33 associated with the hand OA44. Single
nucleotide polymorphism (SNP) analyses have indicated that the
polymorphisms in growth differentiation factor 5 (GDF-5)45, dou-
ble von Willebrand factor A (DVWA) and interleukin-1b46, gluta-
thione peroxidase 1 and 447,48, TNF-a and Fas49, and selenoprotein
P50 genes have associations with the KBD. Some of these genes have
been shown to be associated also with the OA, such as GDF-5 and
DVWA38. In the Tibetan population, the genetic variants of HLA-
DRB1 gene were associated with the KBD51. Whole-exome
sequencing also identified HLA-DR1, but also CD2AP, gene to be



Fig. 3. The prevalence in the first offspring generation of the KBD families depended on the clinical phenotype of parents' status and the types of the KBD areas. In the same KBD
area, the first offspring generation from the families whose both parents were the KBD patients (A) displayed a higher prevalence of the disease than the ones from families with a
single parent suffering from the KBD (B, C); and higher than the one from families with a non-KBD history (D).

Fig. 4. An analysis of the allele frequencies of 63 STR loci in the chromosomes 2, 11 and 12. * There were significant differences in the allele frequencies between the KBD patients
and the normal residents living in the KBD areas, marked with *.
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among the susceptibility genes for the KBD52. A genome-wide copy
number variation study identified ABI3BP gene a novel suscepti-
bility gene for the KBD53.

The gene expression profiling

To understand the mechanism underlying the necrosis, the
dedifferentiation and the apoptosis of the chondrocytes in the KBD
cartilage, the gene expression profiles of the KBD, the OA and the
normal controls were compared using a human whole genome
microarray chip54. In the cultured articular chondrocytes, 55 up-
regulated and 24 down-regulated genes were identified in the
KBD vs the normal donors. These 79 genes participate in various
cellular processes, mainly including the metabolism, the apoptosis,
the proliferation and the matrix degradation54. Recently, nuclear
magnetic resonance-based metabolomics analysis confirmed the
metabolism alterations in the glucose, lactate and citrate in the sera
of the KBD patients55. Additionally, 83 up-regulated and 14 down-
regulated genes were identified in the peripheral blood mono-
nuclear cells of the KBD, which were involved in the metabolism,
the apoptosis, the adaptive immune defense, the cytoskeleton, the
cell movement and the extracellular matrix56. The above gene
expression profiles of the KBD cartilage and the peripheral blood
mononuclear cells suggest that the chondrocyte metabolism and
the apoptosis contribute greatly to the cartilage lesions of the KBD.
A recent finding suggests that the c-Jun N-terminal kinase (JNK)
and the p38 signal transduction pathways may be involved in
apoptotic events by phosphorylating activating transcription factor
2 (ATF2)57.

Because many individual genes have distinctive functions in
various cellular processes, the knowledge of the individual genes,
which are differently expressed, is usually inadequate for the un-
derstanding the pathogenesis of the KBD. To reveal the mechanism
behind the disease, a gene set expression analysis (GSEA) was



Fig. 5. The relationship between the hair selenium content and the KBD prevalence
with the X-ray positive rate in the children aged 7e12 years old in the Shaanxi
province of China. The rate of the X-ray positive for the KBD decreased, while the
selenium content increased in the hair during years 1990e1999.
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applied to analyze the gene expression profile data of the KBD
cartilage vs the healthy cartilage. This analysis found that the
apoptosis-, hypoxia- and mitochondria-related pathways were
significantly up-regulated in the KBD patients compared to the
healthy controls58,59. For instance, the pathways related to various
types of the intracellular stress, including the growth factor with-
drawal, the DNA damage, the unfolding stresses in the endoplasmic
reticulum, and the death receptor stimulation were affected by the
disease, in addition to the adaptive immunity-associated gene ex-
pressions in the peripheral blood mononuclear cells60. Nine
mycotoxin-related genes were also differentially expressed in the
KBD samples compared with the normal ones61.

To address the pathogenetic differences between the KBD and
the OA, the gene expression profile comparison of the articular
chondrocytes identified 195 up-regulated and 38 down-regulated
genes in the KBD, such as CSGALNACT, PIM2, EFNA1, SMAD-9,
STK11, AQP, T-cell factor/LEF, PTN, APCDD and CAV62. These 233
differently expressed genes were linked to the cartilage meta-
bolism, the ion channel proteins and the apoptosis. The immuno-
histochemical and the protein analyses confirmed the reduced
contents of the CSGALNACT, but also the link protein Hapln-1, in
both the KBD and the OA cartilages63. In line, the proteoglycan
synthesis-associated enzyme contents were shown to be lower in
the KBD cartilage, while proteoglycan catabolism-associated ones
were higher64. Additionally, the GSEA analysis of the KBD cartilage
vs the OA cartilage found that the apoptosis- and the NO-related
pathways were significantly up-regulated in the KBD cartilage,
while the ROS and the VEGF-A-related pathways were significantly
up-regulated in the OA cartilages65. These results are consistent
with the excessive chondrocyte apoptosis, the abnormal expression
of Bcl-2, Bax, Fas, iNOS in the KBD cartilage, and the increased levels
of NO and iNOS in the KBD patients' serum11. Especially the Myc-
mediated apoptosis signaling pathway became apparent in
further pathway analyses66. These results also support the idea that
the ROS-induced cartilage damages play an important role in the
pathogenesis of the OA, while the NO-mediated chondrocyte
apoptosis contributes greatly to the development of the KBD. A
recent study also indicated a relation of oxidative stress with the
pathomechanism of the KBD67.

Further studies have been conducted to understand the roles of
mitochondria-mediated caspase activation and the apoptosis in the
KBD cartilage damages. The reduced activities of the complexes II,
III, IV and V, and an increasedmitochondrial mass were observed in
the KBD articular chondrocytes compared with the healthy chon-
drocytes68. The cultured KBD chondrocytes had reduced cellular
ATP levels and a higher proportion of cells with de-energized
mitochondria, and involved a mitochondrial cytochrome c release
and an activation of caspases 9 and 3. The percentage of the
apoptosis-positive chondrocytes from the KBD patient group was
larger than that of the healthy controls68. These findings suggest
that the dysfunction of the mitochondria and the mitochondria-
mediated cell death contributed to the pathophysiology of the KBD.

The proteomic analyses of KBD samples

There is a need of biomarkers useful in the screening KBD-
affected people from the normal healthy ones. Use of a surface-
enhanced laser desorption ionization mass spectrometry (SELDI/
TOF-MS) analytics found eleven protein peaks, which were differ-
entially expressed in the KBD patients69. A protein peak with m/z
15,886 was significantly lower, while the protein peaks with m/z
2952 and 3400were significantly higher in the KBD patients than in
the normal controls. Additionally, 13 differentially expressed pro-
tein peaks were identified between the KBD patients and the OA
patients. A classification tree screening identified three potential
protein biomarkers at 5336, 6880 and 4155 m/z, the sensitivity and
specificity of which were 86.4% and 88.9% for distinguishing the
KBD samples from the normal controls.

A proteomic analysis comparing the protein profiles in the
chondrocytes cultured from the KBD patients and the normal
controls in vitro identified 27 differentially expressed proteins by a
matrix-assisted laser desorption ionization time-of-flight tandem
mass spectrometry70. These included 10 up-regulated and 17
down-regulated protein spots, representing 16 proteins. The en-
zymes involved in the carbohydratemetabolism (phosphoglycerate
kinase 1, phosphoglycerate mutase 1, enolase and UTP-glucose-1-
phosphate uridylyltransferase), as well as prolyl 4-hydroxylase,
manganese superoxide dismutase and protein disulfide-isomerase
were at lower levels in the chondrocytes obtained from the KBD
cartilage. On the other hand, heat shock protein beta-1, peroxir-
edoxin 1, actin, cofilin-1, calponin and proto-oncogene C-crk were
more abundant in the KBD chondrocytes70. This information sup-
ports the presence of an abnormal biosynthesis, the metabolism,
the subcellular localization and the molecular functions of the
differentially expressed proteins in the KBD chondrocytes. These
findings hopefully help to develop novel clinical methods for the
early diagnosis of the KBD.
The preventive measures against the KBD

The incidence of the KBD has greatly declined from the eastern
to the western parts of China. For instance, the damage incidence
on the hand radiographs in the children aged 7e12 years was 44.8%
in 1990, but only 0.3% in 2010 at Cuimu town of Linyou county of
the Shaanxi province. The greatly declined prevalence is mainly
attributed to the implementation of comprehensive preventing
measures of the KBD, including the selenium supplement in the
salts71,72, and the improved nutrition, water and living environ-
ment of the KBD areas. The effect of the selenium supplement has
increased the selenium contents in the hair samples in the KBD
area, with a simultaneous decrease in the prevalence of the KBD
(Fig. 5)73. It is anticipated that the continuation of these preventing
measures may help to eliminate the KBD cartilage damages in the
children in the near future, which is in contrast to the difficult
prevention of the OA globally. Although the KBD among the chil-
dren is today under control and has almost disappeared, the adult
KBD is still a serious problem due to its high incidence in China
during the last century. At present, there are no effective clinical
measures to repair the cartilage damages or defects of the KBD, due
to the poor self-renewal ability of the cartilage. Tissue engineering



Fig. 6. The scheme of the environmental risk factors, the pathophysiological processes and the cartilage damage linked to the development of the KBD.
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and gene therapy approaches have not yet been applied to the
treatment of the KBD cartilage damages.

With an arthroplasty, the damaged articular cartilage can be
completely removed and replaced by artificial joints, which im-
proves the joint function and reduces the pain of the KBD patients.
However, the KBD patients live in poor remote mountainous and
rural areas, and cannot afford the high cost of the arthroplasty.
Attempts to releave the pain and the symptoms have included, for
instance, meloxicam, hyaluronan, chondroitin sulfate and glucos-
amine treatments74e76. The knee joints of 1380 adult KBD patients
were injected with sodium hyaluronate intra-articularly in Shaanxi
province over the period from year 2003 to 201074. The subsequent
clinical evaluation by the The Western Ontario and McMaster
Universities Arthritis Index (WOMAC) and the Lequesne grading
showed significant improvement of the knee joint dysfunction, the
joint pain and the morning stiffness in the KBD. After 6 months of
the intra-articular sodium hyaluronan injections, the efficiency rate
was 93.6%, in contrast to the C-vitamin control group74. A recent 1-
year follow-up revealed an improvement in the symptoms for at
least 52 weeks77. A meta-analysis study also supported intra-
articular hyaluronan treatment to be safe and efficient for the
KBD78.

Conclusions

In summary, the KBD is a complex endemic osteoarthropathy
closely related to the environmental low selenium nutritional sta-
tus and the environment-responsive genes and proteins (Fig. 6).
The lesions of the articular cartilage and the growth plate cartilage
in the KBD mainly include the focal chondronecroses of the carti-
lage deep zone, the chondrocyte dedifferentiation and the exces-
sive apoptosis, which result in the enlarged, deformed and
shortened joints in the extremities. Researchers have identified a
set of abnormally expressed genes, proteins and pathways in the
KBD, mainly involved in the cartilage structure, the cartilage
metabolism, the ion channels, the oxidative stress, the mitochon-
drial function and the apoptosis. The identified abnormally
expressed genes, proteins and pathways provide a new insight for
the understanding the pathogenesis of the KBD. Through the
improved nutritional diets, the living environment and the drink-
ing water in the KBD areas, the children's KBD has been effectively
prevented.
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