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SUMMARY
In a genome-wide survey on somatic copy-number alterations (SCNAs) of long noncoding RNA (lncRNA) in
2,394 tumor specimens from 12 cancer types, we found that about 21.8% of lncRNA genes were located in
regions with focal SCNAs. By integrating bioinformatics analyses of lncRNA SCNAs and expression with
functional screening assays, we identified an oncogene, focally amplified lncRNA on chromosome 1
(FAL1), whose copy number and expression are correlatedwith outcomes in ovarian cancer. FAL1 associates
with the epigenetic repressor BMI1 and regulates its stability in order to modulate the transcription of a num-
ber of genes including CDKN1A. The oncogenic activity of FAL1 is partially attributable to its repression of
p21. FAL1-specific siRNAs significantly inhibit tumor growth in vivo.
INTRODUCTION subset of SCNAs contributes to tumorigenesis. Systemic ana-
Cancer genomes are highly disorganized and harbor numerous

somatic copy-number alterations (SCNAs) (Beroukhim et al.,

2010; Zack et al., 2013). Although the majority of the copy num-

ber abnormalities are the consequence of genomic instability, a
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lyses using large-scale genomic profiles and genome-wide func-

tional screening have been successfully applied to identifying

cancer-driving SCNA loci that encode proteins (Beroukhim

et al., 2010; Zack et al., 2013). However, protein-coding

sequences occupy less than 2% of the human genome
RNA, only 2% carries protein-coding genes. In addition to
resent another important class of nonprotein regulators of
RNAs is limited. In the current study, we provide an in-depth
be an integrated approach of identifying lncRNA genes with
an oncogenic lncRNA. Our studies have elucidated the mo-
and provide proof-of-concept evidence for using FAL1 as a
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(International Human Genome Sequencing Consortium, 2004),

and many focal SCNAs in cancer have been mapped to ‘‘pro-

tein-coding gene desert’’ regions (Beroukhim et al., 2010; Zack

et al., 2013).

Recent advances in high-throughput sequencing technology

have revealed that the majority (�70%) of the human genome

is transcribed to RNA, generating many thousands of noncoding

transcripts (Derrien et al., 2012; Djebali et al., 2012). Long

noncoding RNAs (lncRNAs) are operationally defined as RNA

transcripts that are larger than 200 nt but do not appear to

have protein-coding potential (Batista and Chang, 2013; Gutt-

man and Rinn, 2012; Karreth and Pandolfi, 2013; Lee, 2012; Lie-

berman et al., 2013; Ørom and Shiekhattar, 2013; Prensner and

Chinnaiyan, 2011; Ulitsky and Bartel, 2013). Similar to protein-

coding transcripts, the transcription of lncRNAs is subject to

typical histone-modification-mediated regulation, and lncRNA

transcripts are processed by the canonical spliceosomemachin-

ery. Compared with their protein-coding counterparts, lncRNA

genes are composed of fewer exons, under weaker selective

constraints during evolution, and in relatively lower abundance.

In addition, the expression of lncRNAs is strikingly cell type and

tissue specific and, in many cases, even primate specific. To

date, most of the well-characterized lncRNAs have been discov-

ered serendipitously. The investigations on this small cohort of

lncRNAs have demonstrated that these noncoding transcripts

can serve as scaffolds or guides to regulate protein-protein or

protein-DNA interactions (Engreitz et al., 2013; Gupta et al.,

2010; Huarte et al., 2010; Jeon and Lee, 2011; Simon et al.,

2013; Tsai et al., 2010; Yang et al., 2011, 2013b), as decoys to

bind proteins (Di Ruscio et al., 2013; Hung et al., 2011; Tripathi

et al., 2010, 2013) or microRNAs (miRNAs) (Hansen et al.,

2013; Memczak et al., 2013; Poliseno et al., 2010; Tay et al.,

2011), and as enhancers to influence gene transcription, when

transcribed from the enhancer regions (enhancer RNA) (Kim

et al., 2010; Li et al., 2013; Wang et al., 2011) or their neighboring

loci (noncoding RNA activator) (Lai et al., 2013; Ørom et al.,

2010). The biological processes affected by lncRNAs include

cell proliferation (Hung et al., 2011; Tripathi et al., 2013), differen-

tiation (Guttman et al., 2009; Guttman et al., 2011; Kretz et al.,

2013; Loewer et al., 2010; Ulitsky et al., 2011), migration (Gupta

et al., 2010; Ling et al., 2013; Ørom et al., 2010; Yang et al.,

2013a), immune response (Carpenter et al., 2013; Gomez et al.,

2013), and apoptosis (Huarte et al., 2010), all of which have

been implicated in tumorigenesis. In addition to being higher de-

regulated in tumors (Du et al., 2013; Gupta et al., 2010; Prensner

et al., 2011), lncRNAs have been found to act as tumor suppres-

sors or oncogenes (Gupta et al., 2010; Ji et al., 2003; Ling et al.,

2013; Pasmant et al., 2007; Prensner et al., 2011, 2013; Yang

et al., 2013b; Yildirim et al., 2013). To characterize the landscape

of lncRNA gene SCNAs across cancers, we repurposed the SNP

microarray results from a total of 2,394 tumor specimens taken

from 12 cancer types (Beroukhim et al., 2010) and analyzed the

SCNAs of 13,870 lncRNA gene loci.

RESULTS

lncRNAs Exhibit Frequent SCNAs in Human Cancer
We analyzed the SNP arrays of a total of 2,394 tumor specimens

from 12 cancer types in the Tumorscape database created by
Ca
the Broad Institute (Beroukhim et al., 2010) (Table S1 and Fig-

ure S1A available online). The genomic locations of 13,870

lncRNAs (Table S2) were retrieved from an evidence-based

lncRNA annotation provide by the GENCODE Consortium (Der-

rien et al., 2012), and the SCNA frequency of each lncRNA-

containing locus was calculated. This revealed that the more

frequently a lncRNA has a copy-number gain in a given tumor

type, the less likely it would also have a high frequency of

copy-number loss in the same tumor type (Figure S1B). As a

result, when we define high-frequency gains or losses as alter-

ations that take place in more than 25% of specimens from a

given tumor type, few lncRNAs had both high-frequency gain

and loss in the same type of tumor. Across the 12 tumor types,

there were on average 12.0% and 7.6% of lncRNAs with high-

frequency (i.e., in >25% of tumors) gain and loss, respectively

(Figures 1A–1C; Table S3). Although small cell lung cancer had

the largest number of high-frequency lncRNASCNAs, myelopro-

liferative disorder had none (Figures 1B and 1C). Similar to the

overall genomic alteration profiles, lncRNA SCNA profiles were

cancer-type specific (Figure 1B; Figure S1A). Additionally, we

analyzed the SNP arrays using a second lncRNA annotation

generated by Cabili et al. (2011) (Table S2) and found the lncRNA

SCNA frequency and tumor-type specificity were similar to

that analyzed with GENCODE annotation (Figures S1C–S1E

and Table S3). To further validate these findings, we acquired

SNP arrays from The Cancer Genome Atlas (TCGA) project

and analyzed lncRNA SCNAs in breast cancer. The lncRNA

SCNA profiles in breast cancer samples from TCGA data sets

were almost identical to those from the Broad Institute database

(Figure S1F).

Two types of SCNAs are present in cancer genomes: those

confined to a small genomic region are termed focal alterations,

and those encompassing a large fragment, or even a whole

chromosomal arm, are referred as broad (arm-level) alterations.

Because focal alterations contain only a handful of genes

and often exhibit high-amplitude variation, analyses of these

alterations have led to the successful identification of cancer-

causing genes (Beroukhim et al., 2010; Du et al., 2013). To

screen for lncRNAs that may act as driver genes in tumorigen-

esis, we mapped lncRNA loci to 158 independent focal

genomic alteration peaks (76 gains and 82 losses) that have

been previously identified (Beroukhim et al., 2010). Totals of

1,064 and 1,953 lncRNAs were located in the regions with focal

gains and losses, respectively (Tables S4 and S5). Although

995 lncRNAs were located in focal SCNA regions where can-

cer-associated protein-coding genes reside, we identified

2,022 (14.6%) lncRNAs in focal alteration regions that contain

no known cancer-associated protein-coding genes (Tables S4

and S5). Importantly, within the top 20 most significant

focal alteration peaks (Beroukhim et al., 2010), we identified

56 lncRNAs in focal gain regions and 132 lncRNAs in focal

loss regions (Figure 1D). We reasoned that the lncRNAs that

demonstrate high-frequency genomic alterations and/or reside

in focal alteration loci are candidates for cancer-causing

lncRNAs.

lncRNAs Are Widely Expressed in Human Cancer Cells
Because lncRNAs exert their functions as RNAs, we reasoned

that the presence of RNA transcripts in cells should be a
ncer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc. 345



Figure 1. SCNAs of lncRNA in Cancers

(A) A genome-wide view of SCNAs in lncRNA-containing loci in cancers. Each track shows the frequency of lncRNA SCNAs in one cancer type. Red indicates

gain; blue indicates loss. The outer and inner tracks represent cancer types 1 and 12, respectively.

(B) Heatmap of SCNA frequencies of lncRNA genomic loci in cancers. Each row represents one lncRNA, ordered by genomic location. Left, frequency of gain

(red); right, frequency of loss (blue).

(C) Percentages of lncRNAs with significant copy-number alteration (>25% of specimens) in cancers.

(D) The lncRNAs and protein-coding genes in the top 20most significant focal gain (left) or loss (right) peaks across cancers. The numbers of protein-coding genes

(left) and lncRNAs (right) in each peak are indicated in parentheses. The independent focal genomic alteration peaks and the numbers of protein-coding genes in

each peak were previously identified by the Tumorscape Project (Beroukhim et al., 2010).

See also Figure S1 and Tables S1, S2, S3, S4, S5, S6, and S7.
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prerequisite for a lncRNA to be functional and that alterations in

the genomic loci harboring lncRNAs with no detectable RNA

transcripts are likely to be passenger events. We profiled 40

established cancer cell lines (across five cancer types) from

the NCI60 cell line panel (Table S6) using a custom 60-mer oligo-

nucleotide microarray with a total of 14,262 probes for 2,965

lncRNAs (an average of 5 probes for each lncRNA; Table S7),

which were initially identified using the GENCODE annotation

(Ørom et al., 2010). Probes for 11,081 protein-coding genes

were also included in our microarray as controls. Overall,

41.7% of the lncRNA and 82.9% of the protein-coding gene

probes were detected in 10 (25%) or more of the 40 cell lines;

23.8% of the lncRNA and 4.9% of the protein-coding gene

probes were not detected in any cell line (Figure S1G). Among

all the lncRNAs studied, about 17.8% were expressed in all 40

cancer cell lines. To validate the RNA expression results frommi-

croarray, we measured the RNA expression of 6 well-known

lncRNAs in these cancer cell lines by quantitative RT-PCR

(qRT-PCR) and found that there were strong correlations be-

tween the RNA expression measured by microarray and by

PCR (Figure S1H). These findings demonstrate that lncRNAs

are indeed widely expressed in cancers. Together, the cancer-

cell-specific RNA expression information and the lncRNAs

SCNA in multiple types of tumors can help us narrow down the

list of cancer-causing lncRNA candidates by eliminating

lncRNAs that do not express in cancer cells.
346 Cancer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc
Clinically GuidedGenetic Screening Identified FAL1 as a
Potential Oncogenic lncRNA
Next, we used the information obtained from the above genomic

and transcriptomic analyses to select oncogenic lncRNA candi-

dates for functional validation. The three criteria for candidate

selection were as follows: (1) the lncRNA copy-number gain is

observed in more than 25% of the samples in at least one type

of tumors, (2) the lncRNA is located in a focal amplicon, and (3)

the RNA expression of the candidate lncRNA is detected in

more than 50% of cancer cell lines. The functional readout for

the initial screening was in vitro clonogenicity. We hypothesized

that short hairpin RNAs (shRNAs) targeting true oncogenic

lncRNAs should greatly reduce the clonogenicity of cells, and

shRNAs targeting bystander lncRNAs will have no effect. To

minimize the possibility of observing off-target effects, we de-

signed two independent shRNAs for each lncRNA candidate.

In the initial clonogenic screening (Figure 2A), 37 lncRNA candi-

dates were screened, and we found that both shRNAs targeting

ENSG00000228126 (focally amplified lncRNA on chromosome 1

[FAL1]), a lncRNA in a focal amplicon on chromosome 1q21.2

(Figures S2A and S2B), significantly reduced the clonogenicity

of A2780 cells in a dose-dependent manner. Compared with

FAL1 shRNA1, shRNA2 was more efficient in knocking down

endogenous FAL1 expression (Figure 2B) and had a greater ef-

fect on inhibiting cell growth and colony formation (Figures 2A

and 2B). Similar results were also observed in MDA-MB-231
.



Figure 2. Identification and Validation of FAL1 as a Potential Oncogenic lncRNA

(A) Representative results from clonogenic shRNA screening for oncogenic lncRNAs in A2780 (in 24-well plates). (Bottom)Wells with colonies expressing controls

and FAL1 hairpins.

(B) Relative expression of FAL1 (left) and growth curve (right) of A2780 cells expressing control and FAL1 shRNAs.

(C) Growth curves of seven cancer cell lines transfected with control or FAL1 siRNAs. The FAL1 SCNA status of each cell line is indicated as a blue (gain) or gray

(normal) rectangle, and the relative FAL1 expression in parental cells is indicated by the intensities of the pink rectangles.

(D). Soft-agar assay with cells expressing control and FAL1 shRNAs (in 6-well plates).

(E) In vivo xenograft tumor growth curves of A2780 and MDA-MB-231 cells expressing control and FAL1 shRNAs.

(F) Schematic diagram of the experimental design of testing the oncogenic potential of FAL1.

(G) The expression of Myc or Ras in HOSE cells transduced with FAL1 alone or in combination with Myc or Ras.

(H and I) The representative result of soft-agar assay (H) and the corresponding quantification (I) on control cells and cells expressing FAL1 alone or in combination

with Myc or Ras.

Error bars indicate SD. *p < 0.05. See also Figure S2.
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and HCT116 cells. Next, we validated the oncogenicity of FAL1

in seven more cell lines that have a wide range of FAL1 expres-

sion and various status of FAL1 SCNA. With the exception of

SKOV3 cells, which have normal copy number and low RNA
Ca
expression of FAL1, all other cell lines were more or less depen-

dent on the expression of FAL1 for their growth (Figure 2C). Soft-

agar assays further demonstrated that the expression of FAL1

shRNAs significantly inhibited the anchorage-independent
ncer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc. 347
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growth of cancer cells (Figure 2D). Next, we demonstrated that

the expression of FAL1 shRNAs significantly suppressed the

growth of subcutaneous tumors formed by A2780 or MDA-

MB-231 cells in nude mice (Figure 2E).

We examined if FAL1 expression is sufficient to promote trans-

formation. We forced the expression of full-length FAL1 cDNA

(Figures S2C and S2D) in two independent batches of primary

human ovarian surface epithelial (HOSE) cells and further trans-

duced these FAL1-modified cells with Myc or Ras and their cor-

responding controls (Figures 2F and 2G). The oncogenicity of

FAL1 alone or in combination with Myc or Ras was evaluated

in soft-agar assays. Although control HOSE cells form no colony

in soft agar, cells expressing FAL1 were able to form some col-

onies, although compared with those formed with Myc or Ras

cells, the FAL1 colonies were smaller and in fewer numbers (Fig-

ures 2F and 2G). Intriguingly, HOSE cells expressing FAL1 in

combination with Myc (or Ras) formed significantly more col-

onies than their single-gene expressing counterparts (Figures

2H and 2I; Figure S2E–S2Q). In aggregate, by integrating

genomic and transcriptomic analysis with functional screening,

we have successfully identified FAL1 as a potential oncogenic

lncRNA.

Interestingly, FAL1 amplicon also contains a known protein-

coding oncogene,MCL1 (Beroukhim et al., 2010). We compared

the mRNA levels of MCL1 and five other genes within the FAL1

locus in control and FAL1 shRNA expressing A2780 cells and

found that knocking down FAL1 did not affect the expression

of any of these neighboring genes (Figure S2R). This finding sug-

gests that FAL1 does not control the transcription of its neigh-

boring genes; as such, the function of FAL1 is likely independent

to regulation ofMCL1 expression. It has been documented that a

cluster of oncogenic lncRNAs, including PCAT-1, CCAT2, and

CARLo-5, coamplify with MYC; yet they promote tumor growth

via Myc-independent mechanisms (Kim et al., 2014; Ling et al.,

2013; Prensner et al., 2011).

Expression and SCNA of FAL1 Are Associated with
Clinical Outcomes in Patients with Ovarian Cancer
An in-depth investigation of the SNP arrays revealed that the fre-

quency of FAL1 copy-number gain was remarkably high (49.7%)

in epithelial tumors but much lower in neural (<19%) and hema-

tologic (<6%) tumors (Figure 3A). Importantly, FAL1 gene resides

at a significant focal amplicon (Q < 0.25) on chromosome 1q21.2

in epithelial cancers (Figures 3A and 3B). To confirm these obser-

vations, we measured the copy number of FAL1 in 99 cancer cell

lines using quantitative PCR and observed FAL1 copy-number

gain in 46% of the cell lines (Figure 3C; Table S8). We then ex-

tracted the FAL1 RNA expression data from the aforementioned

custom RNA array containing 40 cancer cell lines and found a

significant and positive correlation between the genomic copy

number and RNA expression of FAL1 (R = 0.472, p = 0.002; Fig-

ure 3D). It is also worth noting that several cell lines without FAL1

amplification express high-level FAL1 RNA. This observation

suggests that FAL1 RNA overexpression may be a common

phenomenon in cancer cells and that mechanisms other than

genomic amplification are present to cause FAL1 RNA overex-

pression in cancer (Figure 3D).

To evaluate the clinical significance of FAL1 in cancer,

we characterized its expression and cellular location by in situ
348 Cancer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc
hybridization (ISH) using a FAL1-specific probe in a cohort of

ovarian cancer specimens (n = 181, including 53 early-stage

cases and 128 late-stage cases; Table S9). A FAL1-positive

signal was detected in more than 93% of the specimens.

Although 31.6% of the samples exhibited a strong signal,

37.5% and 23.9% had intermediate and weak signals, respec-

tively (Figure 3E). FAL1-positive samples also exhibited a nu-

clear-enriched staining pattern, with a weak signal in cytoplasm.

Similar staining patterns were also observed in cancer cell lines.

We also characterized subcellular localization of FAL1 by cell

fractionation followed by qRT-PCR and observed the majority

of FAL1 RNA in the nuclear (Figure S3). Next, we measured

FAL1 RNA expression and genomic copy number using qPCR

in ovarian tumors and found that both the FAL1 RNA expression

and genomic copy number in late-stage tumors were signifi-

cantly higher than those in early-stage tumors (Figures 3F and

3G). Consistent with the observation from cell lines, there was

a strong and positive correlation between FAL1 RNA expression

and its genomic copy number in the ovarian tumor specimens

(R = 0.577, p < 0.001; Figure 3H). After stratifying the 128 late-

stage ovarian cancer patients with FAL1 RNA expression (cutoff,

median expression) or gene amplification status, we found that

both higher expression of FAL1 RNA and genomic gain of

FAL1 gene were significantly associated with decreased survival

in patients (p < 0.0001 and p = 0.03, respectively; Figure 3I).

Taken together, these clinical findings demonstrated that gene

amplification and RNA overexpression of FAL1 occur frequently

in epithelial cancer and are both associated with tumor progres-

sion in ovarian cancer.

FAL1 Associates with BMI1 Protein and Regulates
Its Stability
To explore the molecular mechanisms underlying the oncogenic

activity of FAL1, we sought to use RNA pull-down assay to iden-

tify proteins associatedwith FAL1. Briefly, biotinylated full-length

FAL1 or antisense transcript (negative control) synthesized by

in vitro transcription was incubated with the nuclear lysate

from A2780 cells, and coprecipitating proteins were isolated

with streptavidin-agarose beads (Figure 4A). The RNA-associ-

ating proteins were resolved on SDS-PAGE gel, and the bands

specific to FAL1 were identified. BMI1, a 37 kD core subunit of

the polycomb repressive complex 1 (PRC1) (Schuettengruber

et al., 2007), was initially identified as a protein that was present

only in FAL1-associated samples. To validate the association

between BMI1 and FAL1, we subjected the lncRNA-pull-down

protein samples to western blot with BMI1 antibody. A strong

signal was observed in proteins pulled down with FAL1 RNA

but not in samples bound with either antisense FAL1 or an unre-

lated fragment of HOTAIR (Figure 4B). To further confirm the

interaction between FAL1 and BMI1, we performed an RNA-

immunoprecipitation (RNA-IP) assay, in which the RNA-BMI1

complex was immunoprecipitated using a BMI1 antibody. The

amount of FAL1 RNA in the coprecipitate was then measured

by qRT-PCR. Comparedwith the immunoglobulin G (IgG)-bound

sample, the BMI1-antibody-bound complex had a significant in-

crease in the amount of FAL1RNA (Figures 4C and 4D). As nega-

tive controls, we also quantified the levels of two unrelated

lncRNAs, ENST00000457448 and HOTAIR, in the complexes

coprecipitated by IgG or the BMI1 antibody. No significant
.



Figure 3. Characterization of FAL1 Copy Number and RNA Expression in Cancers

(A) SCNAs of FAL1 locus in cancers. Focal amplicons were identified by GISTIC analysis (Tumorscape).

(B) Copy-number profiles of chromosome 1q from breast and ovarian tumor specimens. Each sample is represented with a vertical line, and the positions of FAL1

are noted with black horizontal lines. Red indicates gain; blue indicates loss.

(C) Copy numbers of FAL1 in cancer cell lines (n = 99) were measured by qPCR.

(D) A correlation between FAL1 gene copy number and RNA expression was observed in 40 cell lines.

(E) FAL1 expression visualized by ISH in ovarian cancer.

(F) FAL1 expression levels in early- and late-stage ovarian cancer specimens.

(G) Copy number of FAL1 in the same cohort.

(H) A correlation between FAL1 copy number and expression was observed in ovarian cancer specimens.

(I) Survival curves of late-stage ovarian cancer patients with high and low FAL1 RNA expression (top) or different genomic SCNA status (bottom).

See also Figure S3 and Tables S8 and S9.
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Figure 4. FAL1 Associates with the BMI1 Protein and Regulates Its Stability

(A) A schematic representation of RNA pull-down.

(B) Western blot of BMI1 expression in 5% input and protein complexes pulled down by FAL1, antisense control, or unrelated control HOTAIR fragment from

nuclear extracts.

(C) A schematic representation of an RNA immunoprecipitation assay.

(D) Results from RNA-IP and subsequent qRT-PCR assays. (Top) Relative quantification of FAL1, HOTAIR, and ENST00000457448 in RNA-protein complexes

immunoprecipitated with IgG or BMI1 antibodies from nuclear extracts. (Bottom) Representative western blot of BMI1 in the corresponding samples.

(E) Deletion mapping of BMI1-binding domain in FAL1. (Left) The schematic diagram of full-length and deleted fragments of FAL1; (right top) in vitro transcribed

full-length and deleted fragments of FAL1 showing correct sizes; (right bottom) western blot of BMI1 in protein samples pulled down by different FAL1 fragments.

(F) Expression of FAL1 and BMI1 in A2780 (left) and MCF-7 (right) cells expressing shRNAs targeting these two genes.

(G) The expression of Ring1A, Ring1B, and ubiqintination of H2AK119 in A2780 (left) and MCF7 (right) cells expressing control and FAL1 shRNAs.

(H) The levels of BMI1, Ring1A, and Ring1B in the cytoplasmic fraction, the soluble nuclear fraction, the chromatin-bound insoluble nuclear fraction of A2780 cells

expressing control and FAL1 shRNAs. Tubulin and H3 were used as cytoplasmic and chromatin-bound loading controls, respectively.

(I) The expression levels of BMI1, Ring1A, and Ring1B in control and FAL1 knockdown cells treated with CHX.

(J) Western blot (left) and quantification (right) of BMI1 expression in control and FAL1 knockdown cells treated with vehicle control or MG132.

(K) Western blot of BMI1-associated ubiquitination in control and FAL1 knockdown cells treated with MG132.

Error bars indicate SD. *p < 0.05. See also Figure S4.
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enrichment of either RNA was observed in the BMI1 complex

(Figure 4D). Furthermore, using a series of deletion-mapping an-

alyses, we identified a 116 nt region in the middle of the FAL1

transcript (nt 296–411) as a major BMI1-binding domain, which

is both required and sufficient for FAL1-BMI1 association (Fig-

ure 4E). Taken together, these results demonstrate that BMI1

is a FAL1-associated protein.

Next, we explored themolecular consequences of FAL1-BMI1

association. Although downregulation of BMI1 mRNA expres-

sion via BMI1 shRNAs had no effect on FAL1 RNA levels, ex-

pressing FAL1 shRNAs significantly reduced the protein level,

but not the mRNA level, of BMI1 (Figure 4F). The level of two

other PRC1 core proteins, Ring1A and Ring1B, were similar in

control and FAL1-knockdown cells, and the level of ubH2AK119

was much lower in FAL1-knockdown cells than in control cells

(Figure 4G). Although we detected a weak signal of Ring1B in

the FAL1-protein complex from lncRNA pull-down assay, the

signal of BMI1 in FAL1-protein complex was much stronger

than that of Ring1B, and FAL1-mediated pull-down significantly

enriched BMI1 but not Ring1B protein (Figure S4A). This obser-

vation suggests that the FAL1-BMI1 association may help spe-

cifically stabilize BMI1 protein. Additionally, we fractionated con-

trol and FAL1-knockdown cells and analyzed the protein levels

of BMI1, Ring1A, and Ring1B in the cytoplasm, the soluble nu-

clear fraction, and the insoluble, chromatin-bound fraction. As

shown in Figure 4H, there was a marked decrease of chro-

matic-bound BMI1, Ring1A, and Ring1B proteins in FAL1-

knockdown cells than in controls. Concomitantly, there was a

slight increase of these three PRC1 proteins in the soluble nu-

clear fraction in FAL1-knockdown cells than in control cells (Fig-

ure 4H). To further explore the mechanism of FAL1-mediated

BMI1 regulation, we treated A2780 cells with cycloheximide

(CHX) and analyzed the stabilities of BMI1, Ring1A and Ring1B

in response to FAL1 downregulation. Although the half-lives of

Ring1A and Ring1B were not significantly affected by FAL1

knockdown, the half-life of BMI1 was much shorter in FAL1

knockdown cells than in controls (Figure 4I). The half-life of

MDM2, a protein unrelated to PRC1 complex, was not affected

by FAL1 knockdown, suggesting that FAL1 shRNA expressions

does not affect protein half-lives globally (Figure S4B). In agree-

ment with this observation, whenMG132was added into the cul-

turemedium to inhibit proteasome degradation, the endogenous

BMI1 protein expression in FAL1 knockdown cells was signifi-

cantly increased and reached a level that was comparable to

that in control cells (Figure 4J), and higher BMI ubiquitination

levels were also observed in FAL1 knockdown cells treated

with MG132 (Figure 4K). In aggregate, these observations sug-

gested that FAL1 expression is important in regulating BMI1 pro-

tein stability.

FAL1 overexpression led to higher expression of BMI1 protein

in HOSE cells (Figure S4C). Consistently, compared with control

cells, FAL1-overexpressing cells had higher level of H2AK119

ubiquitination (Figure S4C). Further analysis on different subcel-

lular fractions revealed that FAL1-expressing cells had higher

BMI1 expression in all different fractions than control cells (Fig-

ure S4D). Interestingly, in response to FAL1 overexpresion, there

were also slight increases of Ring1A and Ring1B protein in the

whole-cell lysates and in different subcellular fractions. How-

ever, the changes in Ring1A/B were to a much lesser extent
Ca
than that in BMI1 (Figure S4C). Together, these findings suggest

that the primary function of FAL1 is to stabilize BMI1, and BMI1

stabilization, we reason, may further stabilize the whole PRC1

complex, therefore causing increases in the levels of other

PRC1 core proteins.

FAL1 Regulates the Transcription of a Large
Set of Genes
BMI1 is part of the PRC1 complex, a well-characterized chro-

matin-modifying complex that represses the transcription of a

wide range of genes (Schuettengruber et al., 2007). Given that

FAL1 can bind to and stabilize BMI1 and that FAL1 expression

alteration changed the level of H2AK119 ubiquitination, we

reasoned that FAL1 expression alteration may influence BMI1

activity, which in turn can lead to genome-wide alterations in

transcription. To test this hypothesis, we analyzed the RNA

expression profiles of A2780 cells expressing shRNAs targeting

either FAL1 or BMI1. Two independent shRNA hairpins were

used for each target gene to avoid off-target effects. The tran-

scription of 732 genes (represented by 1,015 probes) was upre-

gulated by the expression of both BMI1 shRNAs in A2780 cells.

In support of our hypothesis, we found that knocking down FAL1

induced transcriptional alterations in a wide range of genes,

including 887 genes (represented by 1,019 probes) whose

expression was upregulated by both FAL1 shRNAs (Figure 5A).

Intriguingly, the expression of 641 of the 1,019 FAL1-induced

probes (62.9%) was also increased by at least one of the BMI1

shRNAs, with 285 (28%) probes induced by both BMI1 shRNAs

(Figure 5A). Only 59 (5.8%) probes were upregulated by FAL1

knockdown but downregulated by the expression of at least

one BMI1 shRNA; within these 59 probes, only four (0.4%)

were downregulated by both BMI1 shRNAs (Figure 5A). The

high degree of similarity between FAL1- and BMI1-mediated

transcriptional repression strongly indicates a functional interac-

tion between FAL1 andBMI1, and the 285 probeswhose expres-

sions was upregulated by all four hairpins (Figure 5A) may be a

common set of target genes shared by FAL1 and BMI1.

To explore the functional processes that are affected by FAL1-

mediated transcriptional regulation, we performed gene onto-

logy (GO) analysis on the 887 genes that were upregulated by

the knockdown of FAL1. The most significantly overrepresented

biological processes included pathways involved in cell prolifer-

ation, death, and survival, as well as cellular movement and pro-

tein degradation (Figure 5B; Table S10). For example, genes

involved in cell-cycle arrest and apoptosis, such as CDKN1A,

FAS, BTG2, TP53I3, FBXW7, and CYFIP2, were found to be

significantly upregulated by both FAL1 and BMI1 knockdown

in the above array studies. The increased expression of these

six target genes was further validated by qRT-PCR (Figures 5A

and 5C). Given that the PRC1 complex regulates gene transcrip-

tion by binding to promoter regions andmodifying chromatin, we

examined whether FAL1 knockdown affected BMI1 occupancy

of the promoter regions in these target genes. The effect of

FAL1 knockdown on the occupancy of BMI1 or ubiquitination

levels of H2AK119 in the target gene promoters was evaluated

using a chromatin immunoprecipitation (ChIP) assay followed

by qPCR. Among the six target genes tested, BMI1 occupancy

and ubiquitinated H2AK119 were validated in the promoter

regions of five genes, and knocking down FAL1 significantly
ncer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc. 351



Figure 5. FAL1 Regulates the Transcription of a Large Number of Genes

(A) Expression heatmap of transcripts whose expressions were upregulated by the transduction of both FAL1 shRNAs. Expression profiles of the 1,019 probes in

cells with FAL1 knockdown (left) and with BMI1 knockdown (right) are shown. The genes were ranked according to the magnitude of the fold change within the

FAL1 group. Red and green indicate up- and downregulation, respectively.

(B) The top 20 biological processes affected by FAL1 downregulation by GO.

(C) qRT-PCR validation of six genes that were upregulated by the knockdown of FAL1 and BMI1 in the microarray.

(D) The occupancy of BMI1 in the promoter regions of the above six genes was measured by BMI1 ChIP assay followed by qPCR in cells expressing control and

FAL1 shRNA. ND, not detected.

(E) PRC1 complex activity in cells expressing control and FAL1 shRNAs. The ubiquitination of H2AK119 on the promoters of its target genes were measured by

ubH2AK119 ChIP assays followed by qPCR.

Error bars indicate SD. *p < 0.05; **p < 0.01. See also Table S10.
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reduced the occupancy of BMI1 and ubiquitination levels of

H2AK119 on the promoter regions of these genes (Figures 5D

and 5E). These findings demonstrate that FAL1 is important in

regulating gene transcription, presumably in part by regulating

the association between BMI1 and the promoter regions of its

target genes.
352 Cancer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc
FAL1 Regulates Cell-Cycle Progression and
Senescence via the Suppression of p21 Expression
Among the common targets of FAL1 and BMI1, CDKN1A is of

particular interest because of its remarkable expression fold

change upon FAL1 knockdown (Figure 5A) and its significant

contribution to tumorigenesis. Furthermore, in ovarian tumor
.



Figure 6. FAL1 Regulates Cell-Cycle Progression and Senescence via the Suppression of p21 Expression

(A) The correlation between FAL1 expression and p21 levels in ovarian cancer samples.

(B) Western blot of p21 and BMI1 in cells expressing control, FAL1 and BMI1 shRNAs.

(C) Cell-cycle profiles of cells expressing control and FAL1 shRNAs.

(D) b-Galactosidase staining of cells expressing control and FAL1 shRNAs.

(E) Cell-cycle profiles of A2780 cells expressing control and FAL1 shRNAs with and without CDKN1A shRNAs.

(F) b-Galactosidase staining of A2780 cells expressing control and FAL1 shRNAs with and without CDKN1A shRNAs.

(G) p21 protein expression of in A2780 control and FAL1 knockdown cells expressing control and CDKN1A shRNAs.

Error bars indicate SD. *p < 0.05. See also Figure S5.
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specimens, we detected a significant negative correlation be-

tween FAL1RNA levels and the expression of p21 in both protein

and RNA levels (Figure 6A; Figure S5). It was consistent with our

finding that CDKN1A mRNA was elevated upon FAL1 knock-

down and strongly suggests that FAL1 can negatively regulate

p21 protein expression in tumors. In support of the role of

FAL1 in the repression of p21 expression, p21 protein was signif-

icantly increased in both A2780 and MCF-7 cell lines expressing

FAL1 shRNA (Figure 6B). Because CDKN1A is a common target

of FAL1 and BMI1, the expression of p21 was also induced by

BMI1 knockdown (Figure 6B). In combination with our earlier re-

sults from ChIP assays (Figures 5D and 5E), these findings

strongly suggest that FAL1 may modulate the transcription of

CDKN1A by regulating BMI1 abundance and occupancy on

CDKN1A’s promoter.

Next, we examined if knocking down FAL1 leads to the same

two phenotypes often seen in cells with p21 overexpression:
Ca
cell-cycle arrest and senescence. Using a BrdU incorporation

assay, we found that knocking down FAL1 expression by

shRNAs significantly induced G0/G1 arrest in both A2780 and

MCF7 cell lines (Figure 6C). This is in agreement with our previ-

ous observation that FAL1 knockdown significantly blocked

cell proliferation (Figure 2). In addition, we observed that the

expression of FAL1 shRNAs remarkably increased the number

of the cells with typical senescence morphology. We also

measured the b-galactosidase activity in cancer cells expressing

control or FAL1 shRNAs and found that the percentage of

b-galactosidase-positive cancer cells was significantly higher

in FAL1 knockdown cells than in controls (Figure 6D). Finally,

we found that knocking down p21 expression significantly

rescued the cell cycle and senescence phenotypes that were

induced by the expression of FAL1 shRNAs (Figures 6E–6G).

Together, these results demonstrate that FAL1 exerts its function

at least in part via regulating p21 expression.
ncer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc. 353



Figure 7. Reduction of FAL1 Expression by siRNA Delivery Inhibits Orthotopic Ovarian Tumor Growth in Vivo

(A) Illustration of the FAL1 siRNA treatment timeline. Arrows indicate different events (dark blue, cell injection; light blue, bioluminescent imaging; red, siRNA

treatment; yellow, tissue harvesting).

(B) Bioluminescent quantification of tumor growth of FAL1 and control siRNA-treatedmice. The first treatment is indicated by the red arrow. The x axis represents

the six rounds of optical imaging measurements.

(C) Representative bioluminescent images of animals receiving control (top) and FAL1 (bottom) siRNAs during the five rounds of treatments.

(D) Images of tumor nodes collected from animals receiving control (top) and FAL1 (bottom) siRNA 3 days after the last treatment.

(E and F) The RNA expression of FAL1 (E) and protein expression of p21 (F) in A2780 tumors.

(G) Cell proliferation in A2780 tumors. (Left) Ki67 staining; (right) quantification of the proliferation rate.

(H) The level of cleaved caspase3 in A2780 tumors.

Error bars indicate SD. *p < 0.05; **p < 0.01.
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Reducing the Expression of FAL1 by Small Interfering
RNA Delivery Inhibits Orthotopic Ovarian Tumor
Growth In Vivo
We next evaluated the therapeutic potential of small interfering

RNA (siRNA) that specifically targets FAL1 using an orthotopic

mouse model for late-stage ovarian cancer. Briefly, luciferase-

expressing A2780 cells were injected into the peritoneal cavity

of female nude mice. Two weeks after cell injection, mice were

randomly assigned to one of two groups to receiving either

FAL1 siRNA or control siRNA via intraperitoneal injection. Biolu-

minescent imaging was used tomonitor the tumor burden before

each round of siRNA injection (Figure 7A). Although there was a

significant increase in the intensity of luminescence in the control

siRNA-treated animals over the course of the injections, the lumi-

nescence signals in the FAL1 siRNA-treated mice decreased

significantly (Figures 7B and 7C). Consistently, the tumor nodes

from mice treated with FAL1 siRNA were much smaller and

weighed significantly less than those from the control group (Fig-

ure 7D). Consistent with in vitro observation, the p21 expression

in FAL1 siRNA-treated tumors was higher than that in control-

treated tumors (Figures 7E and 7F). Furthermore, we found

that FAL1 siRNA-treated tumors had fewer Ki67-positive cells

andmore apoptosis than controls (Figures 7G and 7H). These re-

sults not only confirm the oncogenic activity of FAL1 in vivo but
354 Cancer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc
also suggest that targeting FAL1 may represent an approach in

cancer treatment.

DISCUSSION

Before the discovery of noncoding RNAs, searches for cancer

drivers were focused on protein-coding genes that resided in

recurrent alterations in cancer genomes. However, many of

these recurrent alterations were found to either be in ‘‘gene

desert’’ regions or to contain no known cancer-causing pro-

tein-coding genes (Beroukhim et al., 2010; Zack et al., 2013).

Furthermore, although over 30% of the genome is affected by

SCNAs, only 2% of the human genome encodes proteins. These

findings, in combination with the recent revelation that about

70%of the human genome is transcribed into RNA, strongly sug-

gest that noncoding RNAs in SCNAs play significant roles in

tumor development. However, large-scale functional character-

ization of lncRNA SCNAs is still lacking (Du et al., 2013). Here, we

demonstrated that lncRNA SCNAs are common in cancer ge-

nomes; our findings also provide a plausible molecular mecha-

nism underlying the deregulation of cancer-associated lncRNA

expression in cancers.

Recent advances in high-throughput biotechnologies have led

to the exponential growth of high-resolution SCNA profiles of
.



Figure 8. A Proposed Model of the Functional Consequence of FAL1 Amplification in Tumorigenesis
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specimens from various types of cancer. However, because

cancer genomes are highly unstable, many cancer-associated

alterations are not the causes but instead the consequence of

tumorigenesis. The main challenge is to identify the cancer-

driving SCNAs, which, once targeted by therapeutic agents,

can suppress or eliminate tumor growth. Analyses of genome-

wide profiles using various bioinformatics approaches can reveal

associations between SCNAs and different types of cancer but

cannot distinguish ‘‘causal’’ from ‘‘bystander’’ genetic alter-

ations. Genome-wide functional screening approaches have

been used with some success in identifying cancer-driving

events; however, this approach can be time and labor intensive

and, more important, susceptible to false-positive discovery.

Here, we aimed to identify oncogenic lncRNAs using an inte-

grated strategy. The bioinformatics analyses we conducted

serve as a powerful clinical filter to eliminate lncRNAs that are

less likely to be oncogenes because of the lack of RNA expres-

sion or genetic alterations in cancer; consequently, only a sub-

group of genes with high oncogenic potential was selected for

downstream functional validation. The small size of the candi-

date gene pool, in return, allowed us to use multiple hairpins

for functional validation.

We revealed that FAL1 can interact with the PRC1 core

protein, BMI1, and that FAL1 exerts its oncogenic function at

least in part via suppressing of p21 expression (Figure 8). Previ-

ous studies have suggested that a large number of lncRNAs are

associated with chromatin-modifying complexes such as PRC2

(Khalil et al., 2009). For example, HOTAIR (Tsai et al., 2010) and

ANRIL (Kotake et al., 2011; Yap et al., 2010), two well-character-

ized oncogenic lncRNAs, both interact with PRC complexes to

regulate gene transcription. Specifically, HOTAIR, which is

known for its role in promoting tumor metastasis (Gupta et al.,

2010), binds to EZH2/PRC2 and LSD1 to coordinate their func-

tion in epigenetically regulating gene expression (Tsai et al.,

2010), while ANRIL interacts with CBX7/PRC1 (Yap et al.,

2010) and SUZ12/PRC2 (Kotake et al., 2011) to repress the tran-

scription of the tumor suppressor INK4A/INK4B. In addition, the

tumor suppressor lncRNA Xist can regulate gene expression by

tethering PRC2 to the X chromosome (Jeon and Lee, 2011). In

combination with these findings, the functional interaction be-

tween FAL1 and BMI1 that we characterized in this study further

emphasizes the centrality of lncRNA in the regulation of gene

expression and suggests that interaction with chromatic modi-

fying complexes may be an important mechanism by which

lncRNAs exert their functions.

Because a large percentage of the human genome encodes

noncoding RNAs, and lncRNAs are highly deregulated in cancer,

it is believed that lncRNAs represent a class of cancer bio-

markers and therapeutic targets whose potential has not been
Ca
fully explored. Several studies have described specific lncRNAs

as cancer biomarkers. The most prominent example is PCA3, a

lncRNA highly expressed in prostate cancer (Lee et al., 2011).

Therapies designed to target cancer-driving lncRNAs are also

under intensive investigation. To this end, rapid advances in

oligonucleotide and nanoparticle technology create realistic

optimism for delivering siRNA-based therapeutics to regulate

lncRNA levels in vivo. Our findings warrant further investigation

about the potential of FAL1 as an informative biomarker and a

therapeutic target for patients with cancer.

EXPERIMENTAL PROCEDURES

Patient Specimens

Ovarian cancer specimens were collected at the University of Turin. Speci-

mens were acquired and processed under procedures approved by the

University of Pennsylvania and University of Turin institutional review boards.

SNP Data Retrieval and Analysis

The raw data from SNP microarrays were downloaded from the Tumorscape

database created by the Broad Institute. CEL files were extracted using the Af-

fymetrix Genotype software and analyzed using the Partek Genomics Suite

software package. The 158 independent focal genomic alteration peaks and

the numbers of protein-coding genes in each peak were previously identified

by the Tumorscape Project based on 3,131 cancer specimens of 26 histolog-

ical types (Beroukhim et al., 2010). Please see Supplemental Experimental

Procedures for a discussion of detailed procedures.

shRNA Screening and Lentiviral Transduction

Lentiviral vector (pLKO.1) and packaging vectors were transfected into 293T

cells. The medium was changed 8 hr after transfection, and the medium con-

taining lentivirus was collected 48 hr later. Cancer cells were infected with

lentivirus in the presence of 8 mg/ml polybrene.

RNA Isolation and qRT-PCR

Total RNA was extracted using TRIzol Reagent (Invitrogen) and reverse tran-

scribed using the High Capacity RNA-to-cDNA Kit (Applied Biosystems).

cDNA was quantified by an ABI ViiA 7 System (Applied Biosystems).

RNA Pull-Down Assay

The FAL1 cDNA was cloned into pBluescript II vector. Biotin-labeled RNAs

were transcribed in vitro and purified. Cell nuclei were harvested and resus-

pended in freshly prepared polysome lysis buffer. Biotinylated RNA (10

pmol) was mixed with 200 mg of nuclear lysate and thenmixed with prewashed

streptavidin-agarose beads for 1 hr. The beads were washed with ice-cold

NT2 buffer five times and then boiled with 2x Laemmli loading buffer.

Xenograft Model In Vivo

Six- to eight-week-old female nude mice were used for the xenograft experi-

ments. Cancer cells were trypsinized and harvested in PBS, and a total volume

of 0.1 ml PBS was injected subcutaneously into the flanks or intraperitoneally

into the peritoneal cavity. The jetPEI reagent (Polyplus Transfection) was used

to deliver the siRNAs in vivo. The animal study protocol was reviewed and
ncer Cell 26, 344–357, September 8, 2014 ª2014 Elsevier Inc. 355
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approved by the Institutional Animal Care andUse Committee of the University

of Pennsylvania.

Statistical Analysis

Results are expressed as mean ± SD, and p < 0.05 indicates significance. The

survival curves were constructed according to the Kaplan-Meier method and

compared with the log-rank test.

ACCESSION NUMBER

Themicroarray data are accessible in the Gene Expression Omnibus database

under accession number GSE52210.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and ten tables and can be found with this article online at http://

dx.doi.org/10.1016/j.ccr.2014.07.009.
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