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INTRODUCTION 

Jackson Type Theorems are obtained for approximation offE C”[-1, l] 
by polynomials pn E Z-, which are increasing on [l, co). The estimates 
obtained depend both on n-kW( f ik), n-l) and on the derivatives off at x = 1. 
For example it is shown that for each f o C2[-1, l] the degree of approxi- 
mation by polynomials pn E m,, increasing to the right of x = 1, E$( f), 
satisfies 

E,*(f) < D,T~-~w(~(~), n-l) + max ( 
-.f ‘(1) 0, n2 -3f “(1) 

1 ’ .yrI2 - 1) * 

This estimate of E,*(f) is of the best possible order in that the following 
negative result holds: If f ‘(1) < 0 then for each (Y > 0, 

-;- 
&z2+“E,*(f) = co. 

The motivation for the present work was the method of proof used in recent 
studies of uniform rational approximation to reciprocals of entire functions 
on [0, co) (see, e.g., Meinardus and Varga [5]). Indeed that method of proof 
may be combined with the polynomial preserving one to one correspondence 
between C[O, r] and CC-I, I] given by 

f(x) = a> where XE [--I, l] and x = (2y - ryr; 

and Corollary 1 of this paper; to yield results concerning uniform rational 
approximation on [0, co). Details appear in the preprint Beatson [l]. 

Results related to those of the present paper appear in Ling, Roulier, and 
Varga [3]. 
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THE RESULTS 

Notation. Throughout C, , CZ , C, ,... denote positive constants not 
depending on n orf, but possibly depending on k. 

Define 

E,*(f) =inf{Ilf-PII :PE=~,P’W 30on [I, +a)). 

where the norm I/ + I/ is the uniform norm on [- 1, I] and 7rIT, is the space of 
algebraic polynomials of degree not exceeding n. 

LEMMA 1. There exists a constant M such that for each f E C[- 1, I] and 
n = 1, 2, 3,... there exists pn E n, with 

PnU) = f(l); 

and 

p;(x) b 0, vx 3 1; 

llf - pn II d Mdf, n3. 

Remark. Hence E:(f) < Mw(f, n-l). 

Proof: Fixfand n. Definefoutside [-1, l] by 

f(x) = g&, ifx>l 
ifx<---1 

Let 

d(x) = (26)-l j-lf(x + t) dt with 6 = n-l. 

As is well known (see for example Cheney [2, pp. 143-144]), 4 is continuously 
differentiable with 

II 4’ II < n4.L n-l>, o(+‘, n-l) < nwu, n-l), and Ilf- d II < wcf, n-9. 

Using a theorem of Trigub [9], see also Teljakovskii [8]l and Malozemov [4], 
there exists a polynomial qn E 7rn with 

II 4 - 9, II G Cln-Q44’, n-l) and II 4’ - qi II < C2w($‘, n-l). 

1 [S] erroneously states the simultaneous approximation theorem as holding for all n. 
Nontrivial simultaneous approximation to f and its first k derivatives is possible only by 
algebraic polynomials of degree n > k. 
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Hence 

IV- 4, II d Q4.J n-l) and II 4; II < C,nw(f, n+). 

We perturb qn in order to obtain an approximation increasing to the right 
of x = 1. Denote by T, the m-th Chebyshev polynomial of the first kind. 
It is well known (see e.g. Rogosinski [7], Rivlin 16, pp. 92-931) that for 
n = 0, 1, 2,...; r, E 7rn and // r, II < 1 implies ] r$(x)l < T:‘(x) for all x > 1, 
j = 0,l ,.*., n. The inequality for j = 0 shows that if h,(x) is any indefinite 
integral of II qk 11 T,-, then 

Use the formula 

T,(x) ,m=O, 
Wnz 7x1 = T&)/4 ,m=l, 

Tm+,(x) 
2(m + 1) 

Tm-l(X) m > 2. 
-qrnql) ” 

obtained from the identity 2 cos n0 sin 0 = sin@ + 1)19 - sin(n - 1)0, to 
specify a particular indefinite integral operator, operating on the T,,, , with 
the desirable property that 

Thus 

II WmN G G(m + P, m = 0, 1, 2 ,... . 

Y,(X) = q,(x) + II q:, II W’,-, 3 4, 

is an algebraic polynomial of degree not exceeding n, increasing to the right 
of x = 1, with 

llf- Y, II < lb--- 4, II + II s; llll W,Jl G Q4f, n-‘1. 

Addition of [f(l) - yn(l)] to yn produces a polynomial pn E r, with: 
p:(x) > 0, Vx >, 1; pn( 1) = f(1); and Ilf - pn [I < 2C,w(f, n-l). This 
concludes the proof. 1 

THEOREM 1. For each k = 1, 2, 3 ,..., there exists a constant Dk , such that 
for each f E C”[--I, l] and n > k there exists a polynomial pn E rr,, with 

llf - pn II < O~~df(~), n-9; 

and 

P;(x) > tw, vx 3 1, 
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where t(x) is the Taylor polynomial 

t(x) = i [f’j’(l)(x - l)i/j!] 
f=O 

Proof. Given n (>I?), let p$ be the polynomial of degree n - k approxi- 
mating f’“) whose existence is guaranteed by Lemma 1. Define a polynomial 
Pn.k in =n by 

where for k = 1 the last term is understood to be J~p$(tJ dt, . Then 

p;‘,(l) =f’j’(l) , j = 0 k. ,***, 9 

and 

P:::“(x) 3 0, Vx>l; 

IIf - p:L (( d Mw(f(“), (n - k)-l) < C,u(f(“), n-l). 

Now consider (f - p&. This function has 

(f - pn ,)cr)(l) = 0, j = 0 k* ,***, , and IKf- pn.P II < C,4fck), n-9. 

By another application of Lemma 1, this time to [f(“-‘) - P$~)], followed 
by k - 1 indefinite integrations we can find a polynomial pn,k+-l in rr,, such 
that 

#k--l(l) = 0, j = O,..., k - 1 ; 

and 

P!%%-,(x) 2 0, vx> 1; 

II [f(“-l) - pzil)] - pLF& II < CIn-%O(f(“), n-l). 

Continue this process defining for i = 2,..., k in that order, a polynomial 
pn,k-i of degree not exceeding n such that 

pj$Jl) = 0, j = O,..., k - i; 

p$!;qX) > 0, Vx>l; 
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Then the polynomial 

Pn = i: P*.!(x) 
i=o 

belongs to rr, and 
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(1) 

llf - pn II d C,,7rQJ(f’“‘, n-7. 

It remains to show that the derivative of p,, satisfies the stated condition to 
the right of 1. Recall that 

pz,)Jl) =f(j)(l),j = O,..., k; andpE;l)(x) 3 0, vx > 1. 

Hence 

and 

[P%k - t](j)(1) = 0, j = O,..., k; 

[p,,k - t]‘“+l’ (x) =pE:” (4 b 0, VX>11; 

implying 

p;!,(x) > t(j)(x), j = 0, 1 ,..., k + 1, vx > 1. (2) 

Similarly for i = O,..., k - 1, 

P;,‘i(l) = 0, j = O,..., i; and p:;‘)(x) > 0; vx> 1; 

implies 

Pk.t(x) b 05 vx 3 1. (3) 

(I), (2) and (3) together imply 

P;(x) = i P;.,(x) 3 t’(x), vx> 1, 
i=O 

COROLLARY 1. Let Dk and t(x) = t(f, x) be dej?ned as in Theorem 1. 
Given f E Ck[- 1, 1] and n > k define E,(f) as the smallest non-negative 
number such that 

(t + 4f) T?J’W 2 0, vx > 1. 
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Then 

(a) G$(f) < Dkn-IC4P), n-l) + 4f). 

@I 0 < 4f) d maxj=l....,k max[O, -f(j)(l)/d,J whereforj = l,..., n, 

* 
dn,j 1 Tz’(l)l n2 (n” 

- 
1) 

... 
= = (9 

- 
(j 

- 
1)2) 1 .3 . ..(2j- 1) * 

(c) If for some 6’ > 0, t’(x) > 0 for all x in the interval (1, cash 0) 
then in addition 

Vn > k. 

Proof of (a). Let p,(x) be the polynomial approximation to f whose 
existence is guaranteed by Theorem 1. Then by choice of en(f) the polynomial 
pn(x) + en(f) T,(x) provides the estimate (a). 

Proof of(b). Define S,(f) = maxj=l,...,K max[O, -f(j)(l)/dn,i]. Then for 
all n > k 

t’“+l’(x) + an(f) T;+“(x) = S,(f) iy+l)(x) 3 0, Qx 2 1, 

and 

F’(l) + S,Jf) T;‘(l) > 0, Vj = I,..., k. 

It follows that 

[t + &z(f) TnlW 2 0, vx > 1, 

and hence that en(f) < S,(f). 

Proof of(c). For x > 1, m = 1, 2, 3 ,..., T,(x) = cash rn$ and T;(x) = 
m sinh(m+)/sinh 4, where 4 is the positive solution of x = cash (6. Hence 

G(x) k sinh(k+) k evW) -- 
T;(x) n sinh(n# ’ 2n sinh(n$) ’ vlj > 0. 

Also 

d 
[ 

expV4 ] _ 
d+ sinh(n4) - 

exp(k$)[k sinh(n$) - n cosh(n$)l ( o 
[sinh( 5 
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for all 4 > 0 and n > k, so that 

G(x) < & eytk@ 
2% 0 Tpj ’ 

.- 
2n smh(n8) ’ Vn > k. (4) 

(4) and the extremal property of the first derivative of a Chebyshev polynomial 
(see previous discussion, Rivlin [6, pp. 92-931, or Rogosinski [7]) imply 

k exp(k0) 
’ ” ’ ” ’ % 

.- 
sinh(n8) * (5) 

(5) and the hypothesis that t’(x) > 0 for all x in the interval (1, cash e), 
imply 

t’(x) + I/ t 11 A- exp(ke) 2n sinh(n8) . Cd4 3 0, x > 1. 

i.e., 

E (f) <,,tllk-@L la 1 2n sinh(n0) 

In the particular case of functions f E C2[-1, I] part (b) of Corollary 1 
reduces to the estimate 

E;(f) < D2n-2w(f(2), n-l) + max ( 
-f’(l) -3f”(l) 

0, n2-, n2(n2- 1) 1 * 

This estimate of E,*(f) is of the best possible order in that the following 
negative result holds: 

7 Iff’(1) < 0 then for each OL > 0, @m n2+“E,*(f) = co. 

The negative result is a trivial corollary to the following lemma 

LEMMA 2. Let f be a function defined on [- 1, 11, 1 > a > 0, C > 0, and 
{ pn E ~,}~=p=-1 be a sequence of polynomials with Ij f - p,, /I < Cn-2--or, 
n = 1, 2, 3 ,... . Then f E C1[-1, l] and \\f’ -pA Ij < DCn-“, n = 1, 2, 3 ,..., 
where D depends only on 01. 

Proof. The proof is via Bernstein’s well known argument. Let d(n) = 
Cn-2-E. The Markov inequality and the Weierstrass M test imply the series 
C,“=, ( pi2L+1 - ph2k) converges uniformly having norm not exceeding 

2 kzo [(n2k+1)2 d(n2k)] = n-m 8c f rk 
( 1 

with r = (l/2)“. 
k=O 

Hence well known theorems about the uniform convergence of series implyf’ 
exists and that [f’ - p,!J = Cz=‘=, ( pL2k+l - pL2k). This completes the proof. 
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