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Abstract

Exclusive electroproduction of aK or K∗ meson on the nucleon can give aΘ+ pentaquark in the final state. This reacti
offers an opportunity to investigate the structure of pentaquark baryons at parton level. We discuss the generaliz
distributions for theN → Θ+ transition and give the leading order amplitude for electroproduction in the Bjorken re
Different production channels contain complementary information about the distribution of partons in a pentaquark c
with their distribution in the nucleon. Measurement of these processes may thus provide deeper insight into the very
pentaquarks.
 2004 Elsevier B.V.

1. Introduction

There is increasing experimental evidence [1,2] for the existence of a narrow baryon resonanceΘ+ with
strangenessS = +1, whose minimal quark content isuudds̄. Triggered by the prediction of its mass and wid
in [3], the observation of this hadron promises to shed new light on our picture of baryons in QCD, with theo
approaches as different as the soliton picture [3,4], quark models [5], and lattice calculations [6], to ci
a fraction of the literature. A fundamental question is how the structure of baryons manifests itself in te
the basic degrees of freedom in QCD, at the level of partons. This structure at short distances can b
in hard exclusive scattering processes, where it is encoded in generalized parton distributions [7] (see
recent reviews). In this Letter we introduce the transition GPDs from the nucleon to theΘ+ and investigate
electroproduction processes where they could be measured, hopefully already in existing experiments
and Jefferson Lab.

In the next section we give some basics of the processes we propose to study. We then define the ge
parton distributions for theN → Θ transition and discuss their physics content (throughout this Letter we wrN
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for the nucleon andΘ for theΘ+). The scattering amplitudes and cross sections for different production cha
are given in Section 4. In Section 5 we evaluate the contribution from kaon exchange in thet-channel to the
processes under study. Concluding remarks are given in Section 6.

2. Processes

We consider the electroproduction processes

(1)ep → eK̄0Θ, ep → eK̄∗0Θ,

where theΘ subsequently decays intoK0p or K+n. Note that the decaȳK∗0 → K−π+ of theK∗(892) tags the
strangeness of the produced baryon. In contrast, the observation of aK̄0 asKS or KL includes a background from
final states with aK0 and an excited Σ+ state in the mass region of theΘ, unless the strangeness of the bary
is tagged by the kaon in the decay modeΘ → K+n. Apart from their different experimental aspects the chan
with K̄ or K̄∗ production are quite distinct in their dynamics, as we will see in Section 4. We will also inves
the channels

(2)en → eK−Θ, en → eK∗−Θ

accessible in scattering on nuclear targets. The reconstruction of the final state and of its kinematics
involved in this case because of the spectator nucleons in the target, but we will see in Section 4 that com
of the processes (1) and (2) may give valuable clues on the dynamics. We remark that the crossed
K+n → e+e−Θ could be analyzed along the lines of [10] at an intense kaon beam facility.

The kinematics of theγ ∗p or γ ∗n subprocess is specified by the invariants

(3)Q2 = −q2, W2 = (p + q)2, t = (p − p′)2,

with four-momenta as given in Fig. 1. We are interested in the Bjorken limit of largeQ2 at fixedt and fixed scaling
variablexB = Q2/(2pq).

According to the factorization theorem for meson production [11], the Bjorken limit implies factorization
γ ∗p amplitude into a perturbatively calculable subprocess at quark level, the distribution amplitude (DA)
produced meson, and a generalized parton distribution (GPD) describing the transition fromp to Θ (see Fig. 1).
The dominant polarization of the photon and (if applicable) the produced meson is then longitudinal, a
correspondingγ ∗p cross section scales likedσL/(dt) ∼ Q−6 at fixedxB andt , up to logarithmic corrections in
Q2 due to perturbative evolution.

We remark that pentaquarks with strangenessS = −2, like theΞ−− recently reported in [12], cannot b
produced from the nucleon by this leading-twist mechanism. We also note that if theΘ had isospinI = 2 as
proposed in [13] (but not favored by the experimental analyses in [2]), leading-twist electroproduction wo
isospin violating and hence tiny.

Fig. 1. One of the graphs for theγ ∗p → K̄0Θ amplitude in the Bjorken limit. The large blob denotes the GPD for thep → Θ transition and
the small one the DA of the kaon.
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Fig. 2. Minimum invariant massM of K̄0K0 (lower curve) and ofK̄0p (upper curve) in the processep → eK̄0K0p at fixed invariant mass
1540 MeV of theK0p system.

The Bjorken limit implies a large invariant massW of the hadronic final state, so that the produced baryon
meson are well separated in phase space. This provides a clean environment to study theΘ resonance, with a low
background obtained of course at the price of a lower cross section than for inclusive production. Large enW

in particular drives one away from kinematic reflections which could fake aΘ resonance signal, discussed in [1
for the process at hand. To illustrate this we show in Fig. 2 the smallest kinematically possible invariant
of the K̄0K0 and of theK̄0p system inep → K̄0K0p with theK0p invariant mass fixed atmΘ . Here and in the
following we takemΘ = 1540 MeV in numerical evaluations (our results do not change significantly if we
mΘ = 1525 MeV ormΘ = 1555 MeV instead). We also remark that strong interactions (in particular reson
effects between thēK0 and theK0p system will have a faster power falloff thanQ−6 in theγ ∗p cross section a
fixedxB , providedQ2 is large enough for the analysis of the factorization theorem to apply.

3. The transition GPDs and their physics

Let us take a closer look at the transition GPDs that occur in the processes we are interested in. F
definition we introduce light-cone coordinatesv± = (v0 ± v3)/

√
2 and transverse componentsvT = (v1, v2) for

any four-vectorv. The skewness variableξ = (p − p′)+/(p + p′)+ describes the loss of plus-momentum of
incident nucleon and is connected withxB by

(4)ξ ≈ xB

2− xB

in the Bjorken limit.
In the following we assume that theΘ has spinJ = 1/2 and isospinI = 0. Different theoretical approache

predict eitherηΘ = 1 or ηΘ = −1 for the intrinsic parity of theΘ, and we will give our discussion for the tw
cases in parallel. The hadronic matrix elements that occur in the electroproduction processes (1) at lead
accuracy are

FV = 1

2

∫
dz−

2π
eixP

+z−〈Θ|d̄
(

−1

2
z

)
γ+s

(
1

2
z

)
|p〉∣∣

z+=0, zT =0,

(5)FA = 1

2

∫
dz−

2π
eixP

+z−〈Θ|d̄
(

−1

2
z

)
γ+γ5s

(
1

2
z

)
|p〉∣∣

z+=0, zT =0
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with P = (p+p′)/2, where here and in the following we do not explicitly label the hadron spin degrees of fre
We define the correspondingp → Θ transition GPDs by

FV = 1

2P+

[
H(x, ξ, t)ū(p′)γ+u(p) + E(x, ξ, t)ū(p′) iσ

+α(p′ − p)α

mΘ + mN

u(p)

]
,

(6)FA = 1

2P+

[
H̃ (x, ξ, t)ū(p′)γ+γ5u(p) + Ẽ(x, ξ, t)ū(p′)γ5(p

′ − p)+

mΘ + mN

u(p)

]

for ηΘ = 1 and by

FV = 1

2P+

[
H̃ (x, ξ, t)ū(p′)γ+γ5u(p) + Ẽ(x, ξ, t)ū(p′)γ5(p

′ − p)+

mΘ + mN

u(p)

]
,

(7)FA = 1

2P+

[
H(x, ξ, t)ū(p′)γ+u(p) + E(x, ξ, t)ū(p′) iσ

+α(p′ − p)α

mΘ + mN

u(p)

]

for ηΘ = −1. Notice that the tilde in our notation indicates the dependence on the spin of the hadrons, no
spin of the quarks. The scale dependence of the matrix elements is governed by the nonsinglet evolution e
for GPDs [7,15], with the unpolarized evolution kernels forFV and the polarized ones forFA. Isospin invariance
gives〈Θ|d̄αsβ |p〉 = −〈Θ|ūαsβ |n〉, so that the transition GPDs forn → Θ and those forp → Θ are equal up to a
global sign. For simplicity we writeFV , FA andH , E, H̃ , Ẽ without labels for the transitionp → Θ.

The value ofx determines the partonic interpretation of the GPDs. Forξ < x < 1 the proton emits ans quark
and theΘ absorbs ad quark, whereas for−1< x < −ξ the proton emits ād and theΘ absorbs an̄s. The region
−ξ < x < ξ describes emission of ansd̄ pair by the proton. In all three cases sea quark degrees of freedom
proton are involved. The interpretation of GPDs becomes yet more explicit when the GPDs are expresse
overlap of light-cone wave functions for the proton and theΘ. As shown in Fig. 3, the proton must be inat least
a five-quark configuration forξ < |x| < 1 andat leasta seven-quark configuration for−ξ < x < ξ . We emphasize
however that all possible spectator configurations have to be summed over in the wave function overlap, i
Fock states with additional partons in the nucleon and in the pentaquark.

Fig. 3. Wave function representation of thep → Θ GPDs in the different regions ofx. The blobs denote light-cone wave functions, and
possible configurations of spectator partons have to be summed over. The overall transverse position of theΘ is shifted relative to the proton
as explained in [17].
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As shown in [16], GPDs contain information about the spatial structure of hadrons. A Fourier transform c
their dependence ont into the distribution of quarks or antiquarks in the plane transverse to their direction of m
in the infinite momentum frame. This tells us about the transverse size of the hadrons in question. The wave
overlap can also be formulated in this impact parameter representation, with wave functions specifying tra
position and plus-momentum fraction of each parton. This has in fact been done in Fig. 3, and we refer to
a full discussion. We see in particular that forξ < |x| < 1 the transverse positions of all partons must match in
proton and theΘ, including the quark or antiquark taking part in the hard scattering. For−ξ < x < ξ the transverse
positions of the spectator partons in the proton must match those in theΘ, whereas thes andd̄ are extracted from
the proton at the same transverse position (within an accuracy of order 1/Q set by the factorization scale of th
hard scattering process). Note that small-size quark–antiquark pairs with net strangeness are not neces
in the proton, as is shown by the rather large kaon pole contribution in thep → Λ transition (see the discussio
after (27) below). In summary, thep → Θ transition GPDs probe the partonic structure of theΘ, requiring the
plus-momenta and transverse positions of its partons to match with appropriate configurations in the nucl
helicity and color structure of the parton configurations must match as well.

We recall that for elastic transitions likep → p the analogs of the matrix elements (5) reduce to the u
parton densities in the forward limit ofξ = 0 and t = 0. One then hasH(x) = q(x), H(−x) = −q̄(x) and
H̃ (x) = /q(x), H̃ (−x) = /q̄(x) for x > 0, and the positivity of parton densities results in inequalities
|H(x) + H(−x)| � |H(x) − H(−x)| and |H̃ (x)| � |H(x)|. One may expect that this hierarchy persists at le
in a limited region of nonzeroξ and t . For thep → Θ transition the situation is different. At givenξ and t

the combinationsFV (x) − FV (−x) andFA(x) + FA(−x) still give the sum of the configurations in Fig. 3 wi
emission of a quark (ξ < x < 1) and of an antiquark (ξ < −x < 1), whereasFV (x)+FV (−x) andFA(x)−FA(−x)

give their difference. In the samex regionsFV still gives the sum andFA the difference of configurations wit
positive and negative helicity of the emitted and the absorbed parton. There are however no positivity co
now, since thep → Θ transition GPDs do not become densities in any limit. They rather describe the corre
between wave functions ofΘ and nucleon, which may be quite different. Knowledge of the relative size o
GPD combinations just discussed would in turn translate into characteristic information about the wave fu
of theΘ relative to those of the proton.

In the transition GPDs we have defined, theΘ is treated as a stable hadron. The amplitude of a full proc
say ep → eK̄0K0p for definiteness, contains in addition a factor for the decayΘ → K0p and a term for the
nonresonantK0p continuum. An alternative description is to use matrix elements analogous to (5) direc
the hadronic state|K0p〉 of given invariant mass, including both resonance and continuum. The leading
expression of the amplitude then containsp → K0p transition GPDs, which have complex phases describing
strong interactions in theK0p system. In the partial wave relevant for theΘ resonance, these phases will show
strong variation in the invariantK0p mass aroundmΘ .

4. Scattering amplitude and cross section

The scattering amplitude for longitudinal polarization of photon and meson at leading order in 1/Q and inαs

readily follows from the general expressions for meson production given in [9]. One has

Aγ ∗p→K̄0Θ = ie
8παs

27

fK

Q

[
IK

1∫
−1

dx

ξ − x − iε

(
FA(x, ξ, t) − FA(−x, ξ, t)

)

+ JK

1∫
−1

dx

ξ − x − iε

(
FA(x, ξ, t) + FA(−x, ξ, t)

)]
,



M. Diehl et al. / Physics Letters B 584 (2004) 58–70 63

o
tained
e
the

ark
ing with
sign of
(8)

Aγ ∗p→K̄∗0Θ = ie
8παs

27

fK∗

Q

[
IK∗

1∫
−1

dx

ξ − x − iε

(
FV (x, ξ, t) − FV (−x, ξ, t)

)

+ JK∗

1∫
−1

dx

ξ − x − iε

(
FV (x, ξ, t) + FV (−x, ξ, t)

)]
,

independently of the parity of theΘ. Our phase conventions for meson states are fixed by

〈
K̄0(q ′)

∣∣s̄(0)γ µγ5d(0)|0〉 = 〈
K−(q ′)

∣∣s̄(0)γ µγ5u(0)|0〉 = −iq ′µfK,

(9)
〈
K̄∗0(q ′, ε′)

∣∣s̄(0)γ µd(0)|0〉 = 〈
K∗−(q ′, ε′)

∣∣s̄(0)γ µu(0)|0〉 = −iε′µmK∗fK∗,

wherefK = 160 MeV,fK∗ = (218± 4) MeV [18], andε′ is the polarization vector of theK∗. This differs from
the convention in [9] by the factors of−i on the r.h.s. In (8) we have integrals

(10)I =
1∫

0

dz
1

z(1− z)
φ(z) = 6

∞∑
n=0

a2n, J =
1∫

0

dz
2z − 1

z(1− z)
φ(z) = 6

∞∑
n=0

a2n+1,

over the twist-two distribution amplitudes of eitherK̄0 or K̄∗0. Our DAs are normalized to
∫ 1

0 dzφ(z) = 1, and
z denotes the momentum fraction of thes-quark in the kaon. Because of isospin invarianceK̄0 andK− have the
same DA, as havēK∗0 andK∗−. In (10) we have used the expansion of DAs on Gegenbauer polynomials,

(11)φ(z) = 6z(1− z)

∞∑
n=0

anC
3/2
n (2z − 1)

with a0 = 1 due to our normalization condition. Note that odd Gegenbauer coefficientsa2n+1 are nonzero due t
the breaking of flavor SU(3) symmetry. A recent estimate from QCD sum rules by Ball and Boglione [19] ob
aK−

1 = −0.18± 0.09, aK−
2 = 0.16± 0.10 andaK∗−

1 = −0.4 ± 0.2, aK∗−
2 = 0.09± 0.05 at a factorization scal

µ = 1 GeV. Note that the sign ofa1 in both cases is such that thes-quark tends to carry less momentum than
light antiquark, see the discussion in [19]. In contrast, Bolz et al. [20] estimatedaK−

1 to be of order+0.1 for the
kaon, using results of a calculation in the Nambu–Jona-Lasinio model.

Note that the combination of GPDs going withIK corresponds to the difference of quark and antiqu
configurations in the sense of our discussion at the end of Section 3. In contrast, the combination go
IK∗ corresponds to the sum of quark and antiquark contributions. Given our ignorance about the relative
the transition GPDs atx and−x we cannot readily say whether the terms withI or with J tend to dominate in the
amplitudes (8).

For a neutron target the scattering amplitudes read

Aγ ∗n→K−Θ = −ie
8παs

27

fK

Q

[
IK

1∫
−1

dx

ξ − x − iε

(
FA(x, ξ, t) + 2FA(−x, ξ, t)

)

+ JK

1∫
−1

dx

ξ − x − iε

(
FA(x, ξ, t) − 2FA(−x, ξ, t)

)]
,
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Aγ ∗n→K∗−Θ = −ie
8παs

27

fK∗

Q

[
IK∗

1∫
−1

dx

ξ − x − iε

(
FV (x, ξ, t) + 2FV (−x, ξ, t)

)

+ JK∗

1∫
−1

dx

ξ − x − iε

(
FV (x, ξ, t) − 2FV (−x, ξ, t)

)]
,

where we have used the isospin relations between the GPDs forp → Θ andn → Θ and between the DAs fo
neutral and charged kaons. Due to the different factors for a photon coupling tod and u quarks, the proton
and neutron amplitudes involve different combinations of GPDs atx and −x. Information on the relative siz
of these combinations can thus be obtained by comparing data for proton and neutron targets, given ou
qualitative knowledge about the relative size of the integralsI andJ over meson DAs. If, for example, one ha
FA(x, ξ, t) ≈ FA(−x, ξ, t), the amplitude forγ ∗p → K̄0Θ would be dominated by the SU(3) breaking integ
JK and hence be suppressed, whereas no such suppression would occur in the amplitude forγ ∗n → K−Θ.
Comparison ofK andK∗ production on a given target can in turn reveal the relative size between the m
elementsFA andFV .

To leading accuracy in 1/Q2 and inαs the cross section forγ ∗p for a longitudinal photon on transverse
polarized target is

(13)
dσL

dt
= 64π2αemα

2
s

729

f 2
K(∗)
Q6

ξ2

1− ξ2
(SU + ST sinβ),

where we use Hand’s convention [21] for the virtual photon flux.β is the azimuthal angle between the hadro
plane and the transverse target spin as defined in Fig. 4.1 The cross section for an unpolarized target is sim
obtained by omitting theβ-dependent term. To have concise expressions forSU andST we define

H(ξ, t) = IK(∗)

1∫
−1

dx

ξ − x − iε

(
H(x, ξ, t) − H(−x, ξ, t)

)

(14)+ JK(∗)

1∫
−1

dx

ξ − x − iε

(
H(x, ξ, t)+ H(−x, ξ, t)

)

Fig. 4. Definition of the azimuthal angleβ between the hadronic plane and the transverse target spinsT in the target rest frame.sT is
perpendicular to thez-axis, which points in the direction opposite to the virtual photon momentum.

1 Our convention forβ differs from the one in [8,22], with(sinβ)here= −(sinβ)[8],[22] .
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and analogous expressionsE , H̃, Ẽ for the other GPDs. ForηΘ = 1 we have

SU = (
1− ξ2)|H̃|2 + (mΘ − mN)2 − t

(mΘ + mN)2
ξ2|Ẽ |2 −

(
ξ + mΘ − mN

mΘ + mN

)
2ξ Re(Ẽ∗H̃),

(15)ST = −
√

1− ξ2

√
t0 − t

mΘ + mN

2ξ Im(Ẽ∗H̃)

for K production and

SU = (
1− ξ2)|H|2 −

(
2ξ(m2

Θ − m2
N) + t

(mΘ + mN)2
+ ξ2

)
|E |2 −

(
ξ + mΘ − mN

mΘ + mN

)
2ξ Re(E∗H),

(16)ST =
√

1− ξ2

√
t0 − t

mΘ + mN

2 Im(E∗H)

for K∗ production. IfηΘ = −1 then (15) describesK∗ production and (16) describesK production. We see tha
one cannot determine the parity of theΘ from the leading twist cross section (13) without knowledge abou
dependence ofH, E , H̃, Ẽ on t or ξ . The same holds for scattering on a neutron target, where one has to r
H(−x, ξ, t) with −2H(−x, ξ, t) in (14) and likewise change the expressions for the other GPDs, as follows
(8) and (12).

There is theoretical and phenomenological evidence that higher-order corrections inαs and in 1/Q can be
substantial in meson electroproduction at moderate values ofQ2, see [8,9] for a discussion and references. ForK∗
production one can in particular expect an important contribution from transverse polarization of the pho
the meson, in analogy to what has been measured for exclusive electroproduction of aρ0. A minimum requiremen
for the applicability of a leading-twist description is thatQ2 should be large compared to−t andm2

K or m2
K∗ ,

which directly enter in the kinematics of the hard scattering process and should be negligible there. In ki
relations, the squared baryon massesm2

N andm2
Θ typically occur as corrections to terms of sizeW2, although a

complete analysis of target mass corrections in exclusive processes has not been performed yet.
There are arguments [8,9,22] that theoretical uncertainties from some of the corrections just discusse

at least partially in suitable ratios of cross sections. At the level of the leading order formulae (8) and (
see, for instance, that the scale uncertainty inαs cancels in the ratio of cross sections on a proton and a ne
target, and that the dependence on the meson structure comes only via the ratioJ/I . Other processes to compa
with are given byep → eK0Σ+, ep → eK+Σ0, ep → eK+Λ or their analogs for vector kaons or a neutr
target, with the production of either ground state or excited hyperons. Such channels may also be useful
checks of experimental resolution and energy calibration. Their amplitudes are given as in (8) with an app
replacement of matrix elementsFV orFA listed in Table 1. We have used isospin invariance to replace the tran
GPDs from the neutron with those from the proton. Isospin invariance further givesFp→Σ+ = √

2Fp→Σ0.

Table 1
Combinations of transition GPDs multiplyingI andJ in the hard scattering formula (8) and its analogs for the listed channels

I J

γ ∗p → K̄0Θ Fp→Θ(x) −Fp→Θ(−x) Fp→Θ(x) + Fp→Θ(−x)

γ ∗p → K0Σ+ Fp→Σ+ (x) − Fp→Σ+(−x) −[Fp→Σ+(x) + Fp→Σ+ (−x)]
γ ∗p → K+Σ0 −[2Fp→Σ0(x) + Fp→Σ0(−x)] 2Fp→Σ0(x)− Fp→Σ0(−x)

γ ∗p → K+Λ −[2Fp→Λ(x) + Fp→Λ(−x)] 2Fp→Λ(x) − Fp→Λ(−x)

γ ∗n → K−Θ −[Fp→Θ(x) + 2Fp→Θ(−x)] −[Fp→Θ(x) − 2Fp→Θ(−x)]
γ ∗n → K+Σ− 2Fp→Σ+ (x) + Fp→Σ+ (−x) −[2Fp→Σ+ (x)− Fp→Σ+ (−x)]
γ ∗n → K0Σ0 −[F

p→Σ0(x) − F
p→Σ0(−x)] F

p→Σ0(x)+ F
p→Σ0(−x)

γ ∗n → K0Λ Fp→Λ(x) −Fp→Λ(−x) −[Fp→Λ(x) + Fp→Λ(−x)]
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For transitions within the ground state baryon octet, SU(3) flavor symmetry relates the transition GPD
flavor diagonal ones foru, d ands quarks in the proton [22],

(17)Fp→Λ = 1√
6

(
Fs
p→p + Fd

p→p − 2Fu
p→p

)
, Fp→Σ0 = 1√

2

(
F s
p→p −Fd

p→p

)
.

One may expect these relations to hold reasonably well, except for the distributionsẼ, where SU(3) symmetr
is strongly broken by the difference between pion and kaon mass in the respective pole contributions
following section). In the approximation of SU(3) symmetry, comparison ofΘ production with the correspondin
hyperon channels would thus compare theN → Θ transition GPDs with the GPDs of the nucleon itself.

5. Kaon pole contributions

In analogy to the well-known pion exchange contribution to the elastic nucleon GPDs, the axial vector
elementsFA for the transition between nonstrange and strange baryons receive a contribution from kaon e
in the t-channel, as shown in Fig. 5. It can be expressed in terms of the kaon distribution amplitude a
appropriate baryon–kaon coupling ift = m2

K . This is of course outside the physical region for our electroproduc
processes, where the contribution from the kaon pole is expected to be less and less dominant for incre−t .
With this caveat in mind we will now discuss the kaon pole contribution to theN → Θ GPDs, as this can be don
without a particular dynamical model for theΘ.

We recall at this point that the minimal kinematically allowed value of−t at givenξ ,

(18)−t0 = 2ξ2(m2
Θ + m2

N) + 2ξ(m2
Θ − m2

N)

1− ξ2
,

is not so small in typical kinematics of fixed target experiments. This is shown in Fig. 6, where we have repξ
with xB using the relation (4) valid in Bjorken kinematics. We also show the corresponding values of−t0 for the
transition from the nucleon to a ground stateΣ or Λ.

We define theΘNK coupling through

(19)L= igΘNKKd(Θ̄γ5p) − igΘNKKu(Θ̄γ5n) + c.c.

if ηΘ = 1, and through

(20)L= igΘNKKd(Θ̄p) − igΘNKKu(Θ̄n) + c.c.

if ηΘ = −1. HereKd denotes the field that creates āK0 and Ku the one creating aK−. The factor ofi in
(20) is dictated by time reversal invariance, since we choose the phase of theΘ field such that it has the sam
transformation under time reversal as the nucleon field. Then the GPDs defined in (7) are real valued. Th
definitions can be rewritten in terms of the vector or axial vector current using the free Dirac equation forΘ

and the nucleon fields. Using the method of [23] we obtain kaon pole contributions

ξẼpole= gΘNKfK(mΘ +mN)

m2
K − t

1

2
φ

(
x + ξ

2ξ

)
,

Fig. 5. Kaon pole contribution to then → Θ transition GPDs in the region−ξ < x < ξ .
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Fig. 6. Minimum kinematically allowed value of−t at givenxB for the transitionsN → Θ , N → Σ , N → Λ, see (4) and (18).

(21)H̃pole= Hpole= Epole= 0

for ηΘ = 1 and

Epole= −Hpole= gΘNKfK(mΘ + mN)

m2
K − t

1

2
φ

(
x + ξ

2ξ

)
,

(22)H̃pole= Ẽpole= 0

for ηΘ = −1, where it is understood thatx is limited to the region between−ξ andξ , and whereφ is the same kaon
distribution amplitude we have encountered earlier. At the level of the amplitudes (8) and (12) forK production
one finds

Apole
γ ∗p→K̄0Θ

= ieū(p′)γ5u(p)
gΘNK

m2
K − t

QFK̄0

(
Q2),

(23)Apole
γ ∗n→K−Θ

= −ieū(p′)γ5u(p)
gΘNK

m2
K − t

QFK−
(
Q2)

for ηΘ = 1, whereas forηΘ = −1 one simply has to replacēu(p′)γ5u(p) with ū(p′)u(p) in both relations. Here

FK̄0

(
Q2) = −2παs

9

f 2
K

Q2

4

3
IKJK,

(24)FK−
(
Q2) = −2παs

9

f 2
K

Q2

(
I2
K − 2

3
IKJK + J 2

K

)

are the elastic kaon form factors at leading accuracy in 1/Q2 andαs . We note that the relations (23) remain va
beyond this approximation, which in analogy to the pion form factor we expect to receive important corr
at moderateQ2, see [9] for references. The form factors are normalized asFK−(0) = −1 and FK̄0(0) = 0, and at
nonzerot the neutral kaon form factor is only nonzero thanks to flavor SU(3) breaking. The contribution
squared kaon pole amplitude to theγ ∗p → K̄0Θ or γ ∗n → K−Θ cross section finally reads

(25)
dσL

dt

∣∣∣∣
pole

= αem
F 2
K(Q2)

Q2

x2
B

4(1− xB)
g2
ΘNK

(mΘ − ηΘmN)2 − t

(m2
K − t)2

,
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Fig. 7. The kaon pole factorG(t) defined in (27) and evaluated for<Θ = 10 MeV andηΘ = 1, and the analogous factors for the transitio
p → Σ0 andp → Λ. The same factors appear in the kaon pole contributions top → Θ , n → Σ0 andn → Λ.

whereFK is the appropriate form factor for thēK0 or theK−. Of course, the pole contribution (23) also appe
in the cross section via its interference with the nonpole parts of the amplitude, which we cannot estimat
point.

For kinematical reasonsΘ → K0p andΘ → K+n are the only strong decays of theΘ, so that its total width
<Θ translates to a good accuracy into a value ofg2

ΘNK ,

(26)<Θ = g2
ΘNK

4π
k
(mΘ − ηΘmN)2 − m2

K

m2
Θ

,

wherek ≈ 268 MeV is the momentum of the decay nucleon in theΘ rest frame. Taking an indicative value
<Θ = 10 MeV we obtaing2

ΘNK/(4π) = 0.77 for ηΘ = 1 andg2
ΘNK/(4π) = 0.015 for ηΘ = −1. The squared

couplings corresponding to different values of<Θ are readily obtained by simple rescaling.
To be insensitive to the theoretical uncertainties in evaluating the kaon form factors, we compare in the fo

the kaon pole contributions to different baryon transitions. In Fig. 7 we show the factor

(27)G(t) = g2
ΘNK

(mΘ − ηΘmN)2 − t

(m2
K − t)2

appearing in the pole contribution (25) to theγ ∗n → K−Θ cross section, as well as its analogs for
pole contributions toγ ∗p → K+Σ0 and toγ ∗p → K+Λ. Due to isospin invariance the corresponding fac
for γ ∗n → K+Σ− is twice as large as forγ ∗p → K+Σ0. Following [24] we takeg2

ΣNK/(4π) = 1.2 and
g2
ΛNK/(4π) = 14 for the couplings between the proton and the neutral hyperons. As an indication o

uncertainties one may compare these values with those given in [25], namelyg2
ΣNK/(4π) = 1.6 andg2

ΛNK/(4π) =
10.6. We remark that according to the estimates of [24], the overall cross section forγ ∗p → K+Λ is comparable
in size to the one forγ ∗p → π+n in kinematics where both processes receive substantial contributions fro
kaon or pion pole.

Note that the much smaller coupling for a negative-parityΘ is partially compensated in the kaon po
contribution to the cross section by a larger kinematic factor in the numerator of (25). The ratio of the
G(t) for ηΘ = −1 and forηΘ = 1 is shown in Fig. 8. Given the presence of contributions not due to the kaon
it is not clear whether one could use the measured size andt-dependence of the cross section to infer on the pa
of theΘ.

The factorsG(t) shown in Fig. 7 also describe the neutral kaon pole contributions inγ ∗p → K̄0Θ, γ ∗n →
K0Σ0 and γ ∗n → K0Λ. Compared with the respective charged kaon pole contributions inγ ∗n → K−Θ,
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Fig. 8. Ratio of the kaon pole cross sections (25) for the casesηΘ = −1 andηΘ = 1 at given<Θ .

γ ∗p → K+Σ0 and γ ∗p → K+Λ, they are significantly suppressed by a factor(FK̄0/FK−)2 at cross section
level. This factor is about 0.03 if we take the leading-order expressions (24) of the form factors together w
estimates of [19] for the Gegenbauer coefficientsa1 anda2 in the kaon DA, given below (11).

6. Conclusions

We have investigated exclusive electroproduction of aΘ+ pentaquark on the nucleon at largeQ2, largeW2 and
small t . Such a process provides a rather clean environment to study the structure of pentaquark at par
in the form of well defined hadronic matrix elements of quark vector or axial vector currents. In parton lan
these matrix elements describe how well parton configurations in theΘ match with appropriate configurations
the nucleon (see Fig. 3). Their dependence ont gives information about the size of the pentaquark. Channels
production of pseudoscalar or vector kaons and with a proton or neutron target carry complementary info
The transition to theΘ requires sea quark degrees of freedom in the nucleon, and we hope that the
approaches including such degrees of freedom will be able to evaluate the matrix elements given in (5). Ca
for this may, for instance, be the chiral quark–soliton model or lattice QCD, both of which have been u
calculate the corresponding matrix elements for elastic nucleon transitions, see [26,27].

In order to obtain observably large cross sections one may be required to go to rather modest values ofQ2, where
the leading approximation in powers of 1/Q2 and ofαs on which we based our analysis receives consider
corrections. The associated theoretical uncertainties should be alleviated by comparingΘ production to the
production ofΣ or Λ hyperons as reference channels. In any case, even a qualitative picture of the
magnitude and relative size of the different hadronic matrix elements accessible in the processes we propo
give information about the structure of pentaquarks well beyond the little we presently know about these in
members of the QCD spectrum.
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