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Abstract

Exclusive electroproduction of B or K* meson on the nucleon can giveah pentaquark in the final state. This reaction
offers an opportunity to investigate the structure of pentaquark baryons at parton level. We discuss the generalized parton
distributions for theN — @7 transition and give the leading order amplitude for electroproduction in the Bjorken regime.
Different production channels contain complementary information about the distribution of partons in a pentaquark compared
with their distribution in the nucleon. Measurement of these processes may thus provide deeper insight into the very nature of
pentaquarks.
0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction

There is increasing experimental evidence [1,2] for the existence of a narrow baryon resénarnveigh
strangeness = +1, whose minimal quark content is:dds. Triggered by the prediction of its mass and width
in [3], the observation of this hadron promises to shed new light on our picture of baryons in QCD, with theoretical
approaches as different as the soliton picture [3,4], quark models [5], and lattice calculations [6], to cite only
a fraction of the literature. A fundamental question is how the structure of baryons manifests itself in terms of
the basic degrees of freedom in QCD, at the level of partons. This structure at short distances can be probed
in hard exclusive scattering processes, where it is encoded in generalized parton distributions [7] (see [8,9] for
recent reviews). In this Letter we introduce the transition GPDs from the nucleon t6thand investigate
electroproduction processes where they could be measured, hopefully already in existing experiments at DESY
and Jefferson Lab.

In the next section we give some basics of the processes we propose to study. We then define the generalizec
parton distributions for th&y — @ transition and discuss their physics content (throughout this Letter we Mrite
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for the nucleon an@ for the ® ). The scattering amplitudes and cross sections for different production channels
are given in Section 4. In Section 5 we evaluate the contribution from kaon exchangerhthianel to the
processes under study. Concluding remarks are given in Section 6.

2. Processes

We consider the electroproduction processes
ep — eK00, ep — K00, (1)

where the® subsequently decays inf°p or K +n. Note that the decai*° — K~z * of the K*(892) tags the
strangeness of the produced baryon. In contrast, the observatiakibéak s or K includes a background from
final states with & © and an excited ¥ state in the mass region of ttt&, unless the strangeness of the baryon

is tagged by the kaon in the decay magle> K *n. Apart from their different experimental aspects the channels
with K or K* production are quite distinct in their dynamics, as we will see in Section 4. We will also investigate
the channels

en—>eK~ 0, en—> eK*~ O 2)

accessible in scattering on nuclear targets. The reconstruction of the final state and of its kinematics is more
involved in this case because of the spectator nucleons in the target, but we will see in Section 4 that comparison
of the processes (1) and (2) may give valuable clues on the dynamics. We remark that the crossed process
K*™n — eTe~® could be analyzed along the lines of [10] at an intense kaon beam facility.

The kinematics of the* p or y*n subprocess is specified by the invariants

0%=—¢2, W2=(p+q)> t=(p—p)2 3

with four-momenta as given in Fig. 1. We are interested in the Bjorken limit of I@at fixedr and fixed scaling
variablexg = 02/(2pq).

According to the factorization theorem for meson production [11], the Bjorken limit implies factorization of the
y*p amplitude into a perturbatively calculable subprocess at quark level, the distribution amplitude (DA) of the
produced meson, and a generalized parton distribution (GPD) describing the transitiop food (see Fig. 1).

The dominant polarization of the photon and (if applicable) the produced meson is then longitudinal, and the
corresponding* p cross section scales likés /(dt) ~ Q8 at fixedxp andr, up to logarithmic corrections in
0?2 due to perturbative evolution.

We remark that pentaquarks with strangengss —2, like the &~ recently reported in [12], cannot be
produced from the nucleon by this leading-twist mechanism. We also note that @ thad isospinl = 2 as
proposed in [13] (but not favored by the experimental analyses in [2]), leading-twist electroproduction would be
isospin violating and hence tiny.

Y(q)

) K%g’)

K d

p(p) O(p’)

Fig. 1. One of the graphs for the* p — K@ amplitude in the Bjorken limit. The large blob denotes the GPD forthe © transition and
the small one the DA of the kaon.
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Fig. 2. Minimum invariant mass/ of K°k9 (lower curve) and o ®p (upper curve) in the procesp — ¢K°Kp at fixed invariant mass
1540 MeV of thek Op system.

The Bjorken limit implies a large invariant ma#é of the hadronic final state, so that the produced baryon and
meson are well separated in phase space. This provides a clean environment to stidggbeance, with a low
background obtained of course at the price of a lower cross section than for inclusive production. Largenough
in particular drives one away from kinematic reflections which could faerasonance signal, discussed in [14]
for the process at hand. To illustrate this we show in Fig. 2 the smallest kinematically possible invariant masses
of the K%k 0 and of thek®p system inep — KK %p with the K°p invariant mass fixed at . Here and in the
following we takemg = 1540 MeV in numerical evaluations (our results do not change significantly if we take
me = 1525 MeV ormg = 1555 MeV instead). We also remark that strong interactions (in particular resonance)
effects between th&© and thek °p system will have a faster power falloff tha®® in the y* p cross section at
fixed xz, providedQ? is large enough for the analysis of the factorization theorem to apply.

3. Thetransition GPDsand their physics

Let us take a closer look at the transition GPDs that occur in the processes we are interested in. For their
definition we introduce light-cone coordinates = (v° & v3)/+/2 and transverse components = (v1, v?) for
any four-vecton. The skewness variable= (p — p')*/(p + p/)* describes the loss of plus-momentum of the
incident nucleon and is connected with by
XB
~ 4
R (4)

in the Bjorken limit.

In the following we assume that th® has spinJ = 1/2 and isospin/ = 0. Different theoretical approaches
predict eithemo = 1 or ne = —1 for the intrinsic parity of the®, and we will give our discussion for the two
cases in parallel. The hadronic matrix elements that occur in the electroproduction processes (1) at leading-twist
accuracy are

1 fdz7 . p+.— -/ 1 1
Fy== | =P @)dl-= sl =
v 2[ 27 ¢ @ ( 21))/ S<2Z>|p>

1 (dz7 . p+.- (1 1
FAZEv/\?elXP-F“ <@|d(_éz)y+y5s<éz>|p)|z+:O,zT:O (5)

z+=0,zr =0
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with P = (p+ p’)/2, where here and in the following we do not explicitly label the hadron spin degrees of freedom.
We define the corresponding— © transition GPDs by

— 1 = N, + ~ ./ iU+a(p/ _P)oz
Fy = >pF _H(x, & Du(p)yulp)+ Ex, & Du(p )mu(m}
Fa= o Fex 6, 0@ vsu(p) + Eex, £, 0a () BL D ) )
2Pt T > 7 me +my i
for ne =1 and by
170 - ., - _ s =)t
Fy = >pT _H(X, £,0u(p")yTysu(p) + E(x, & 0i(p )mu(p)_,
Fa= 2 [ He g 0ahy ) + B, e TP =Py )
2P+ | 5o 7 me +my

for ne = —1. Notice that the tilde in our notation indicates the dependence on the spin of the hadrons, not on the
spin of the quarks. The scale dependence of the matrix elements is governed by the nonsinglet evolution equations
for GPDs [7,15], with the unpolarized evolution kernels far and the polarized ones fdf,. Isospin invariance
gives(@|a7as,f;|p) = —(Oluqsg|n), so that the transition GPDs far— © and those fop — © are equal up to a
global sign. For simplicity we writé”,, F4 andH, E, H, E without labels for the transitiop — ©.

The value ofx determines the partonic interpretation of the GPDs.&earx < 1 the proton emits as quark
and the® absorbs al quark, whereas for-1 < x < —¢ the proton emits @ and the® absorbs ai. The region
—& < x < £ describes emission of a@ pair by the proton. In all three cases sea quark degrees of freedom in the
proton are involved. The interpretation of GPDs becomes yet more explicit when the GPDs are expressed as the
overlap of light-cone wave functions for the proton and éheAs shown in Fig. 3, the proton must beanleast
a five-quark configuration far < |x| < 1 andat leasta seven-quark configuration ferf < x < &. We emphasize
however that all possible spectator configurations have to be summed over in the wave function overlap, including
Fock states with additional partons in the nucleon and in the pentaquark.

E_,—x — _g_x x+§ x—t:'

—%—d s—— s d

-l1<x<§ E<x<l

£<x<&

Fig. 3. Wave function representation of the—~ ® GPDs in the different regions of. The blobs denote light-cone wave functions, and all
possible configurations of spectator partons have to be summed over. The overall transverse positiehiefthiéied relative to the proton
as explained in [17].
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As shown in [16], GPDs contain information about the spatial structure of hadrons. A Fourier transform converts
their dependence arinto the distribution of quarks or antiquarks in the plane transverse to their direction of motion
in the infinite momentum frame. This tells us about the transverse size of the hadrons in question. The wave function
overlap can also be formulated in this impact parameter representation, with wave functions specifying transverse
position and plus-momentum fraction of each parton. This has in fact been done in Fig. 3, and we refer to [17] for
a full discussion. We see in particular that ok |x| < 1 the transverse positions of all partons must match in the
proton and the, including the quark or antiquark taking part in the hard scattering—+o& x < & the transverse
positions of the spectator partons in the proton must match those @, théereas the andd are extracted from
the proton at the same transverse position (within an accuracy of ordesét by the factorization scale of the
hard scattering process). Note that small-size quark—antiquark pairs with net strangeness are not necessarily rare
in the proton, as is shown by the rather large kaon pole contribution ip the A transition (see the discussion
after (27) below). In summary, the — © transition GPDs probe the partonic structure of &herequiring the
plus-momenta and transverse positions of its partons to match with appropriate configurations in the nucleon. The
helicity and color structure of the parton configurations must match as well.

We recall that for elastic transitions like — p the analogs of the matrix elements (5) reduce to the usual
parton densities in the forward limit ¢gf = 0 ands = 0. One then ha¥{(x) = ¢(x), H(—x) = —g(x) and
H(x) = Ag(x), H(—x) = Ag(x) for x > 0, and the positivity of parton densities results in inequalities like
|H(x)+ H(—x)| < |H(x) — H(—x)| and|H (x)| < |H (x)|. One may expect that this hierarchy persists at least
in a limited region of nonzer§ and:. For the p — ® transition the situation is different. At given and ¢
the combinationgy (x) — Fy(—x) and F4(x) + Fa(—x) still give the sum of the configurations in Fig. 3 with
emission of a quark(< x < 1) and of an antiquark(< —x < 1), whereasy (x) + Fy (—x) andF4 (x) — Fa(—x)
give their difference. In the sameregionsFy still gives the sum and4 the difference of configurations with
positive and negative helicity of the emitted and the absorbed parton. There are however no positivity constraints
now, since thep — ® transition GPDs do not become densities in any limit. They rather describe the correlation
between wave functions @ and nucleon, which may be quite different. Knowledge of the relative size of the
GPD combinations just discussed would in turn translate into characteristic information about the wave functions
of the ® relative to those of the proton.

In the transition GPDs we have defined, theis treated as a stable hadron. The amplitude of a full process,
sayep — eK9KOp for definiteness, contains in addition a factor for the de€ay> K°p and a term for the
nonresonank °p continuum. An alternative description is to use matrix elements analogous to (5) directly for
the hadronic staték°p) of given invariant mass, including both resonance and continuum. The leading-twist
expression of the amplitude then contajns> K °p transition GPDs, which have complex phases describing the
strong interactions in th&%p system. In the partial wave relevant for tBeresonance, these phases will show a
strong variation in the invariark °p mass aroune:e .

4. Scattering amplitude and cross section

The scattering amplitude for longitudinal polarization of photon and meson at leading orda® iant ino;
readily follows from the general expressions for meson production given in [9]. One has

1
. 8mag fx dx
Ay*p_ﬂgo@ ZLE?Z[IK/m(FA(X,g,[)—FA(—X,&,[))
-1
1

d
+JK/7X : (FA<x,s,t>+FA<—x,s,r>)},
E—x—ie
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1

8 8ray fix

1

d
+JK*/7X : (Fv(x,é,l)+Fv(—x,$,l)):|, ®)
E—x—ie

-1

independently of the parity of th@. Our phase conventions for meson states are fixed by

(K°(g)[5(0)y"y5d (0)]0) = (K~ (¢")[5(0)y " y5u(0)|0) = —ig™ fk.
(K*(g'. €)|5(0)y"d(0)|0) = (K* (g, €)|5(0)y u(0)|0) = —ie m+ fi. )

where fx = 160 MeV, fx+ = (218+ 4) MeV [18], and¢’ is the polarization vector of th&*. This differs from
the convention in [9] by the factors efi on the r.h.s. In (8) we have integrals

1

~ 1
I:fdz ! ¢(z)=62a2n, J= fdz % ¢(Z) 6202n+1, (10)
) z(1-2) = ) 1-2)

over the twist-two distribution amplitudes of eith&® or K*C. Our DAs are normalized tgfo dz¢(z) =1, and

z denotes the momentum fraction of theyuark in the kaon. Because of isospin invariakctand K ~ have the
same DA, as hav&*? andK*~. In (10) we have used the expansion of DAs on Gegenbauer polynomials,

$@)=62(1-2) Y anCy/ 222~ 1) (11)

n=0

with ag = 1 due to our normalization condition. Note that odd Gegenbauer coefficignts are nonzero due to

the breaking of flavor SU(3) symmetry. A recent estimate from QCD sum rules by Ball and Boglione [19] obtained
ak” = -0.18+0.09,aX” =0.16+0.10 andaf™™ = —0.4+ 0.2, aX™™ = 0.09+ 0.05 at a factorization scale

u =1 GeV. Note that the sign af; in both cases is such that thequark tends to carry less momentum than the
light antiquark, see the discussion in [19]. In contrast, Bolz et al. [20] estimr{iédo be of order+0.1 for the

kaon, using results of a calculation in the Nambu—Jona-Lasinio model.

Note that the combination of GPDs going willy corresponds to the difference of quark and antiquark
configurations in the sense of our discussion at the end of Section 3. In contrast, the combination going with
Ix+ corresponds to the sum of quark and antiquark contributions. Given our ignorance about the relative sign of
the transition GPDs at and—x we cannot readily say whether the terms witbr with J tend to dominate in the
amplitudes (8).

For a neutron target the scattering amplitudes read

8 o
Ay*n—)K*@:_ie Z;{ fQK|: /%_ FA(X E,1)+2F4(—x, &, [))

1

d
+JK/7X : (FA(x,s,o—2FA(—x,s,t>)},
E—x—ie
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1

d
{IK*/7)‘.(Fv<x,s,z>+2Fv<—x,s,t>)

. 8JTOls f](*
Ay*n—)K**@ = —le 27 Q

E—x—ie

1

d
+JK*/;(Fv(x,é,t)—2Fv(—X,$,l))j|, (12)
E—x—ie

-1

where we have used the isospin relations between the GPQsfer® andn — ® and between the DAs for
neutral and charged kaons. Due to the different factors for a photon couplidgatal © quarks, the proton
and neutron amplitudes involve different combinations of GPDg ahd —x. Information on the relative size
of these combinations can thus be obtained by comparing data for proton and neutron targets, given our at least
qualitative knowledge about the relative size of the integfad®d J over meson DAs. If, for example, one had
Fa(x,€,1) = Fo(—x, €, 1), the amplitude fors* p — K% would be dominated by the SU(3) breaking integral
Jx and hence be suppressed, whereas no such suppression would occur in the amplijige—foK ~—©.
Comparison ofK and K* production on a given target can in turn reveal the relative size between the matrix
elementsFy and Fy.

To leading accuracy in /102 and ine; the cross section fop*p for a longitudinal photon on transversely
polarized target is

ﬂ_647r2aemozsz f,?m £2
dt 729 06 1-—¢2

Sy + St sinﬁ), (13)

where we use Hand'’s convention [21] for the virtual photon flgxs the azimuthal angle between the hadronic
plane and the transverse target spin as defined in FigThk cross section for an unpolarized target is simply
obtained by omitting thg-dependent term. To have concise expression§goandSy we define

1

HE 1) =1ge /

-1

d
sy S HE 8D Hx6.0)

1

d
+JK(*)/g_ix.(H(-x’Svt)—i_H(_xagvt)) (14)

X —1l€
-1

Fig. 4. Definition of the azimuthal anglg between the hadronic plane and the transverse targetsgpin the target rest framesy is
perpendicular to the-axis, which points in the direction opposite to the virtual photon momentum.

1 Our convention fog differs from the one in [8,22], withisin 8)here= —(sinB)g],[22]
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and analogous expressiofis, £ for the other GPDs. Faje = 1 we have

(me —my)?— 2 ( m(-)—mN) e
~ =2 N g€ —— |26 Re(EH),
Fp—— 5 € — $+m@+mN & R(E™H)

_ /1_527”0_[25 IM(E*H) (15)
me +my

for K production and
26(m2 —m3) +1 me
S = (1— 2 H2_< C) N + 2)52_( +7>2 R E*H
v=(21-&)H| (me T m)2 £ )I€] & ora— £ Re(E™H),
Sy = Vi 2 IME*H) (16)

m() +m

Sy =(1-&)IHP +

for K* production. Ifng = —1 then (15) describek* production and (16) describés production. We see that

one cannot determine the parity of thefrom the leading twist cross section (13) without knowledge about the
dependence of, £, H, £ ont or £. The same holds for scattering on a neutron target, where one has to replace
H(—x,&,t) with —2H (—x, &, t) in (14) and likewise change the expressions for the other GPDs, as follows from
(8) and (12).

There is theoretical and phenomenological evidence that higher-order correctiensimd in /O can be
substantial in meson electroproduction at moderate valu@2 péee [8,9] for a discussion and references. Ebdr
production one can in particular expect an important contribution from transverse polarization of the photon and
the meson, in analogy to what has been measured for exclusive electroproductjgh Afminimum requirement
for the applicability of a leading-twist description is th@f should be large compared ter andm% or mi*
which directly enter in the kinematics of the hard scattering process and should be negligible there. In kinematic
relations, the squared baryon masm%@ andmé typically occur as corrections to terms of si#?, although a
complete analysis of target mass corrections in exclusive processes has not been performed yet.

There are arguments [8,9,22] that theoretical uncertainties from some of the corrections just discussed cancel
at least partially in suitable ratios of cross sections. At the level of the leading order formulae (8) and (12) we
see, for instance, that the scale uncertainty rcancels in the ratio of cross sections on a proton and a neutron
target, and that the dependence on the meson structure comes only via thie Fatiither processes to compare
with are given byep — eK9Xt, ep — eK+ X0, ep — eKT A or their analogs for vector kaons or a neutron
target, with the production of either ground state or excited hyperons. Such channels may also be useful for cross
checks of experimental resolution and energy calibration. Their amplitudes are given as in (8) with an appropriate
replacement of matrix elemenky or Fy listed in Table 1. We have used isospin invariance to replace the transition
GPDs from the neutron with those from the proton. Isospin invariance further gjves+ = \/EFIHEO.

Table 1
Combinations of transition GPDs multiplyingandJ in the hard scattering formula (8) and its analogs for the listed channels
1 J
y*p— K% Fpoo(x) = Fpoo(—x) Fpoo() + Fpoo(—x)
y*p— KOET Fypoxt(¥) = Fpy gt (=) —[Fp g+ () +Fy st (—0)]
y*p—> K+ 0 —[2F, , 5o() + F,_, so(=x)] ZFPHEO(X) p%zo( x)
yip—>KTtA _[ZFp—>A(X) + Fpa(=x)] ZF p—A(X) — 1J—>A( x)
yin— K~ —[Fpo(x) +2F, 0 (—x)] —[Fpso ) —2F, 59 (—x)]
yin—> Kt ¥~ 2F, s+ () + Fy_ 5+ (—x) —[2F %2+(X) Fy st (=2)]
050

y'n—K°¥ —[F, , 50() = F,_, so(=x)] F, L y0()+F,  so(=x)

y*n — KOA Fp*)/\(x) p~>A( X)

[F17~>A(x) + FpﬁA(*x)]
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For transitions within the ground state baryon octet, SU(3) flavor symmetry relates the transition GPDs to the
flavor diagonal ones far, d ands quarks in the proton [22],

1
F,,Mzﬁ(Fs +F,,—2F:, ), F,

d
p—p p—p p—p Fy - F ) 17

-0 = ﬁ( p=p = Tp=p

One may expect these relations to hold reasonably well, except for the distribétjomsere SU(3) symmetry

is strongly broken by the difference between pion and kaon mass in the respective pole contributions (see the
following section). In the approximation of SU(3) symmetry, compariso® gfroduction with the corresponding
hyperon channels would thus compare Me> © transition GPDs with the GPDs of the nucleon itself.

5. Kaon pole contributions

In analogy to the well-known pion exchange contribution to the elastic nucleon GPDs, the axial vector matrix
elementsF, for the transition between nonstrange and strange baryons receive a contribution from kaon exchange
in the t-channel, as shown in Fig. 5. It can be expressed in terms of the kaon distribution amplitude and the
appropriate baryon—kaon coupling = m% This is of course outside the physical region for our electroproduction
processes, where the contribution from the kaon pole is expected to be less and less dominant for inereasing
With this caveat in mind we will now discuss the kaon pole contribution tathe ® GPDs, as this can be done
without a particular dynamical model for thte.

We recall at this point that the minimal kinematically allowed value-ofat giveng,

_28%(mZ +m}) +25(mZ, — m})
= 1 g2 ,
is not so small in typical kinematics of fixed target experiments. This is shown in Fig. 6, where we have réplaced
with xp using the relation (4) valid in Bjorken kinematics. We also show the corresponding valueg fafr the
transition from the nucleon to a ground staieor A.

We define the® NK coupling through

(18)

L=igonk Ka(Oysp) —igonk Ku(Oysn) + C.C. (19)
if ne =1, and through

L=igonk Ka(Op) —igonk Ku(On) +C.C. (20)
if no = —1. Here K, denotes the field that createsk® and K, the one creating & —. The factor ofi in

(20) is dictated by time reversal invariance, since we choose the phase @f fie&d such that it has the same
transformation under time reversal as the nucleon field. Then the GPDs defined in (7) are real valued. The above
definitions can be rewritten in terms of the vector or axial vector current using the free Dirac equationdor the

and the nucleon fields. Using the method of [23] we obtain kaon pole contributions

~ goNk fk(me +mpy) 1 (X+E>
Epole = = ,

4
.'[ _ b other
- - (K + contributions
n e —@——

Fig. 5. Kaon pole contribution to the— @ transition GPDs in the regioré < x <&.
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0.8
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06 | - N — A

05|
04|
03 | e
02 | e
01| L
0

~ 1, [GeV?]

025 0.3

Fig. 6. Minimum kinematically allowed value of: at givenxpg for the transitionsV — ®, N - X, N — A, see (4) and (18).

[:[pole= Hpo|e= Epo|e= 0 (21)

for ne =1 and

gonNk fxk(me +mpy) 1 <x+$>
Enole= —Hpole= = )
pole pole m%—t 2¢ 2%

I:Ipole = Epole =0 (22)

for ne = —1, where it is understood thatis limited to the region betweené andé, and wherep is the same kaon
distribution amplitude we have encountered earlier. At the level of the amplitudes (8) and (X )pfaduction
one finds

pole = 8ONK B 2
Ay*p—>l?0(~) =ieu(p )ysu(p)m% _; QFg (Q )’
| .- &
A k-0 = el (P ysu(p) "3 O Fi-(07) (23)
2 —

for ne = 1, whereas fong = —1 one simply has to replace p’) ysu(p) with & (p")u(p) in both relations. Here

2nag f2 4
2
Fgo(Q) =~ 9 - Q’<2§IKJK,
21 f2 2
Fy-(0%) =— : s Q_K2<I’2< — 3Kk + J,%) (24)

are the elastic kaon form factors at leading accuracy il?landa,. We note that the relations (23) remain valid
beyond this approximation, which in analogy to the pion form factor we expect to receive important corrections
at moderate)?, see [9] for references. The form factors are normalizefi;as(0) = —1 and F;0(0) =0, and at
nonzerot the neutral kaon form factor is only nonzero thanks to flavor SU(3) breaking. The contribution of the
squared kaon pole amplitude to thép — K%® or y*n — K~ @ cross section finally reads

do| _  FRO»  xj 2 (mo —nemy)®—1
oLl e 2
dt lpole | 02 4Q—xp) oMK (m% —1)?

: (25)
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100 .
—— yn->K 0
,Y* p— K+ZO
80 T e * +
YpoK'A
T 60}/
‘gl P T
& 40 '
20 p
0 L 1 L L
0 0.2 0.4 0.6 0.8 1

—t[GeV?]

Fig. 7. The kaon pole facto® (r) defined in (27) and evaluated fdyy = 10 MeV andng = 1, and the analogous factors for the transitions
p— ¥%andp — A. The same factors appear in the kaon pole contributiopste @, n — X0 andn — A.

where Fx is the appropriate form factor for th€° or the K —. Of course, the pole contribution (23) also appears
in the cross section via its interference with the nonpole parts of the amplitude, which we cannot estimate at this
point.
For kinematical reason® — K%p and® — K*tn are the only strong decays of th® so that its total width
I'p translates to a good accuracy into a valug@, K

2 2 2
:g@NKk(m@—n@mm —mg (26)

4r mé ’
wherek ~ 268 MeV is the momentum of the decay nucleon in éheest frame. Taking an indicative value of
o =10 MeV we obtaingg)NK/(4n) =077 forng =1 andgéNK/(4n) = 0.015 forng = —1. The squared
couplings corresponding to different valued@f are readily obtained by simple rescaling.

To be insensitive to the theoretical uncertainties in evaluating the kaon form factors, we compare in the following
the kaon pole contributions to different baryon transitions. In Fig. 7 we show the factor

e

(me — Zemzv)z —1 27)

(mK - t)z
appearing in the pole contribution (25) to thén — K~ ©® cross section, as well as its analogs for the
pole contributions toy*p — K+t X9 and toy*p — KT A. Due to isospin invariance the corresponding factor
for y*n — KX~ is twice as large as fop*p — K+x0. Following [24] we takegZ, /(47r) = 1.2 and
giNK/(4n) = 14 for the couplings between the proton and the neutral hyperons. As an indication of their
uncertainties one may compare these values with those given in [25], ngfg}@)(y/mn) =16 andgﬁNK/(4n) =
10.6. We remark that according to the estimates of [24], the overall cross sectipifior- K+ A is comparable
in size to the one fop*p — 7 Tn in kinematics where both processes receive substantial contributions from the
kaon or pion pole.

Note that the much smaller coupling for a negative-paétyis partially compensated in the kaon pole
contribution to the cross section by a larger kinematic factor in the numerator of (25). The ratio of the factors
G(t) for ne = —1 and forne = 1 is shown in Fig. 8. Given the presence of contributions not due to the kaon pole
it is not clear whether one could use the measured size-degendence of the cross section to infer on the parity
of the®.

The factorsG (t) shown in Fig. 7 also describe the neutral kaon pole contributions in— K°0, y*n —

K°x0 and y*n — K%A. Compared with the respective charged kaon pole contributions*in— K~6,

G(t)=gnk
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Fig. 8. Ratio of the kaon pole cross sections (25) for the cages —1 andng =1 at givenl'g .

y*p — KT¥%andy*p — KT A, they are significantly suppressed by a fadto/Fx-)? at cross section
level. This factor is about 0.03 if we take the leading-order expressions (24) of the form factors together with the
estimates of [19] for the Gegenbauer coefficientaindas in the kaon DA, given below (11).

6. Conclusions

We have investigated exclusive electroproduction éfapentaquark on the nucleon at largé, largeW? and
small¢. Such a process provides a rather clean environment to study the structure of pentaquark at parton level,
in the form of well defined hadronic matrix elements of quark vector or axial vector currents. In parton language,
these matrix elements describe how well parton configurations i@theatch with appropriate configurations in
the nucleon (see Fig. 3). Their dependence gives information about the size of the pentaquark. Channels with
production of pseudoscalar or vector kaons and with a proton or neutron target carry complementary information.
The transition to the® requires sea quark degrees of freedom in the nucleon, and we hope that theoretical
approaches including such degrees of freedom will be able to evaluate the matrix elements given in (5). Candidates
for this may, for instance, be the chiral quark—soliton model or lattice QCD, both of which have been used to
calculate the corresponding matrix elements for elastic nucleon transitions, see [26,27].

In order to obtain observably large cross sections one may be required to go to rather modest @duesefe
the leading approximation in powers of @% and of«, on which we based our analysis receives considerable
corrections. The associated theoretical uncertainties should be alleviated by compaprgduction to the
production of ¥ or A hyperons as reference channels. In any case, even a qualitative picture of the overall
magnitude and relative size of the different hadronic matrix elements accessible in the processes we propose would
give information about the structure of pentaquarks well beyond the little we presently know about these intriguing
members of the QCD spectrum.
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