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Operation and Maintenance (O&M) costs are estimated to account for 14%e30% of total Offshore Wind
Farm (OWF) project lifecycle expenditure according to a range of studies. In this respect, identifying
factors affecting operational costs and availability are vital for wind farm operators to achieve the most
profitable decisions. Many OWFs are built in stages and the important factors may not be consistent for
the different phases. To address this issue, three OWF case studies are defined to represent two phases
and a complete project. An initial qualitative screening sensitivity analysis was conducted to identify the
most important factors of O&M affecting operating cost and availability. The study concluded that the
important factors for total O&M cost were access and repair costs along with failure rates for both minor
and major repairs. For time-based availability, the important factors identified were those related to the
length of time conducting the maintenance tasks, i.e. the operation duration and the working day length.
It was found that the two stages had similar results, but these were different compared to the complete
project. In this case, the results provide valuable information to OWF operators during the project
development and decision making process.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Offshore wind is a burgeoning industry for electrical generation
in Europe. The rapid growth of turbine size, capacity, increased
number of turbines within projects, coupled with working in dy-
namic offshore environments, leads to challenges through the
ansfer Vessel; EE, Elementary
l Evaluations; OWF, Offshore
sensitivity analysis index; s,
taff costs; l, Perturbed point;
rm case; k, Number of input
mber of replications; x, Set of

for Offshore Renewable En-
ty of Edinburgh, The King's

), iraklis.lazakis@strath.ac.uk
uchi), l.Johanning@exeter.ac.

r Ltd. This is an open access article
project lifecycle. Operation andMaintenance (O&M) is estimated to
account for 14%e30% of total offshore wind farm (OWF) project
lifecycle costs [1,2]. Identifying factors affecting operational
expenditure and availability are vital for an operator to tackle main
issues and reduce cost. However, some elements are uncertain and
difficult to predict, such as meteorological conditions and turbine
reliability.

Aspects that an operations teammayencounter during the O&M
phase are turbine and support structure (such as a transition piece)
reliability; accessibility via vessels; transfer of technicians and
components to the turbine; meteorological conditions and condi-
tion monitoring. The offshore environment presents challenges
that make OWF operation different to an onshore wind farm. Also
unlike onshore wind farms, large OWFs are often built in different
stages or extended. Sections of projects are completed and move
into the operations stage before installation of another section.
Examples in the UK are Walney, Gunfleet Sands and the planned
Dogger Bank project.

Computer models inform project developers and operators of
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Fig. 1. Diagram of the Offshore Wind O&M tool [20].
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likely costs and performance. Sophisticated models that incorpo-
rate a level of uncertainty to emulate stochastic elements from the
weather and reliability, help to reduce the cost of energy. This can
be achieved through identification of the level of risk of operational
expenditure by providing a distribution of costs rather than single
mean values. It also provides guidance on areas in uncertainty
reduction. Potential cost reduction can be achieved through iden-
tification of optimal maintenance strategies and demonstrating the
benefits when moving from time-based to condition-based
maintenance.

There are a number of wind farm O&M models currently under
development incorporating turbine reliability and meteorological
conditions both for the onshore [3,4,5] and offshore [6,7,8,9] wind
sectors. The majority of models estimate O&M cost, while some
consider wind turbine/farm availability. Models can assess a range
of options of how to manage an OWF to maximize profitability [7].
A thorough overview of O&M tools for onshore and offshore wind
can be found in Dinwoodie et al. and Hofmann [6,7]. At the core of
most offshore wind O&M models is a stochastic approach for
representative failure event generation based on wind turbine
reliability analysis. Approaches are based on either statistical dis-
tributions (using Weibull distributions or Poisson processes),
Markovian or Structural Load elaboration [10]. All O&M models
include a meteorological module employed to provide weather
windows relevant to planned maintenance intervals of turbines.
Uncertainty is introduced by using Markov chains or similar ap-
proaches. The models investigated in Dinwoodie et al. [6] do not
couple the meteorological simulation with the reliability model. It
has been found that there is aweak correlation between periodicity
of wind turbine failure rates and wind speed [11,12] but this aspect
has yet to be included in models and the effect on O&M is yet to be
studied.

Sensitivity Analysis (SA) methodologies measure a computer
model output variance against the variance in model inputs,
resulting in identification of inputs that have the largest influence
on outputs. Application of SA methods can be found where there is
use of a model to simulate a natural system; be it biological,
chemical, operational, mechanical or a more abstract process like
economics and statistics [13]. It can be used to understand the
uncertainty associated with each input factor as well as to identify
variables to create a metamodel [14]. A variety of different methods
exist to explore the sensitivity of inputs factors to model outputs,
each with their own strengths and weaknesses. Reviews exist to
compare different methods, often through the prism of the
research field; nuclear, medical or biological [15,16,17]. A thorough
introduction of all SA types is provided by Saltelli et al. [14]. There
are some examples of application of SA to OWF O&M models.

Hofmann and Sperstad [18] have conducted a one-at-a-time
(OAT) SA on O&M cost using the NOWIcob simulation model.
Main findings included high sensitivity to vessel operational wave
limits, failure rates andmaintenance task duration. Moreover, O&M
cost was not sensitive to fuel cost or inter turbine distance. A lim-
itation is that it only investigates local points in the global region of
investigation. A simple method was opted for in this case as a more
complex method requires restrictions, such as wind farm size and
capacity within the region of interest.

The analysis applied in this investigation provides a qualitative
way to screen out unimportant factors in a computationally effi-
cient manner. While, if additional analysis is needed, a more so-
phisticated analysis can be conducted on those remaining to
quantify their effect on the model outputs. This paper presents how
the important factors contributing to O&M cost and availability
changewhen building OWF projects in phases using the application
of the well-known Morris method for sensitivity analysis [19]. The
first half of the methodology section defines the OWF O&M model,
outlines the fixed and variable inputs used (Sections 2.1 And 2.2).
The second half (Section 2.3) introduces a general framework for
conducting SA and the approach used is outlined in Section 2.3.2.
The case studies are introduced in Section 3 along with details of
the analysis execution. The results and discussion of the analysis
follow in Section 4 along with concluding remarks in Section 5.
2. Methodology

This section describes the overall methodology, including pre-
sentation of the Offshore Wind O&M tool on which the work per-
formed. Then, details on the variable inputs are provided such as
wind farm site, fixed costs, technicians used, vessels and helicop-
ters employed in the O&Mactivities togetherwith thewind turbine
component reliability features. Furthermore, details on the SA
performed and selection of appropriate SA method are presented.
2.1. Offshore wind model

The offshore wind O&M tool used for the analysis is described
by Douard [20]. The tool evaluates the annual and total O&M cost
and the cost of wind farm unavailability. Fig. 1 shows a schematic of
the different modules of the tool.

The wind farm technology block in Fig. 1 provides project infor-
mation, such as turbine number, monthly capacity factors and
components. Failure rates, repair times and costs are inputs for each
component. Strategy and resources provides details of technicians
and vessels available to conduct maintenance. The site meteoro-
logical condition data is provided as a time series of wind speed and
wave height data which is used to determine length of access
windows for maintenance operations for a given site. Within the
meteorological simulation the time series data is randomised. A
probabilistic failure event model is used to simulate failure occur-
rences using an inverse transformation sampling algorithm. It for-
mulates dates according to distributions based on the lifecycle of
the component related to the bathtub curve [20], as shown in Fig. 2
[21]. The model is capable of simulating corrective and time-based,
but not condition-based, maintenance. After a corrective mainte-
nance action occurs, the component is returned to an “as bad as
old” state, a conservative assumption. Other information sources



Fig. 2. Diagram of a theoretical bath tub curve for a repairable system [21], l(t) is the
failure rate as function of time, b is a shape parameter and r is a scale parameter.
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used in the model are deterministic costs and strategy chosen by
the user. The mean cost and exceedance probabilities are calculated
using Monte Carlo simulation [20]. The results from the tool are
used to assess the estimated cost of a particular strategy based on
best available data and compared with other possible maintenance
strategy solutions.

The model is treated as a black box for the SA, meaning that the
experimenter does not have information on the model's internal
parameters and algorithms other than the inputs and resulting
outputs.
2.2. Variable inputs

The values of the total set of variable inputs are found from
industrial experience, operational research, scientific literature and
analysis. An important part is to provide the right distribution to
reflect reality as close as possible. With a nascent industry like
offshore wind it is a challenge to identify the full spectrum of
possible values. Additionally, turbine manufacturers and operators
are reluctant to distribute information related to reliability and cost
due to intellectual property agreements. With models that require
hundreds of input factors, assigning accurate distribution factors
incur a lot of effort if the factor effect is deemed to be negligible.
Therefore, uniform and log-uniform distributions can be used
initially. When the important factors have been identified a more
complex distribution is used [14]. With this in mind, an attempt
was made to identify possible minimum and maximum values and
affix a uniform distribution. Where this was unobtainable, due to
lack of published data or commercial sensitivity, a single value is
identified and uncertainty envelope of ± 10% or 20% was applied.
This was performed in order to input a known value of uncertainty
proportional to the estimated value but is simplistic. Ten percent
was been used when a variety of sources was available, whereas
20% was used where only a single value was found therefore has a
greater uncertainty attached to the value. This approach in
assigning uncertainty to unknown parameters has been adopted by
other SA practitioners and model developers [3,6,22]. Once the
number of factors under investigation has been reduced then effort
can be awarded to attributing more accurate uncertainty distribu-
tions for further analysis.

In this section, a subset of the variable inputs is described. In
order to identify inputs in the results, abbreviations have been
used.
The mean inter-turbine distance [WFint] is the mean value of

the distance between all turbines from every other turbine. This
was calculated from a sample of several operating and planned
wind farm layouts. It indicates turbine geographical spread
ensuring that, over the course of the project lifetime, cost and time
taken to travel between turbines is accounted for. This can be site-
specific but the values used in this analysis are indicative as there
are two likely forces governing this value. The first is the desire for a
developer to maximise the number of turbines in a licenced area
and the second is that a minimum distance between each turbine
needs to be kept for wake loss and toppling distances.

An average capacity factor for each month [WFjan e Wfdec] is
found from multiplying an approximation of three turbine manu-
facturers published power curves [23,24,25] with 5 years' worth of
modelledwind speed data from an existing OWF [26] in increments
of 1 m/s over 1 h averages. A spread of 10% was found and inputted
at a uniform distribution.

Balance of plant (BoP) availability [WFbop] includes downtime
for the OWF not due to turbines such as cables, substation and grid
issues. Information in the public domain on BoP availability is
minimal but it is known to be quite high, between 98% and 99%
[27], so a conservative margin of between 90% and 100% was
chosen.

The wind speed was inputted in the time series from ground
level and extrapolated to hub height using the wind shear law [20].
This allows the wind speed to be affected in the SA through
changing the wind speed at hub height by varying the alpha value
between 0.06 and 0.27 [28,29].

The fixed onshore costs for the O&M site infrastructure such as
office and staff will depend on the base location and the wind farm
size. As they are foreseen to have an additive effect on OWF cost, a
mean value is found based on scaling existing OWF costs according
to turbine number.

CstxðiÞ ¼ Cstxð0Þ �
NtxðiÞ

Ntxð0Þ
(1)

In Equation (1), x(i) is the newcases, x(0) is an existingwind farm,
Cst is the staff cost and Nt is the turbine number.

One key input is the technician number available to keep the
turbines operable. Information on the technician number for cur-
rent OWFs is limited. Details of the technician number and total
staff are available from six wind farms; Teesside, Robin Rigg,
Greater Gabbard, Sheringham Shoal, Dudgeon, Lynn, Lyncs and
Inner Dowsing from personal communication with operators and
promotional literature [30,31,32]. For these OWFs, the total staff
number, including onshore staff, ranges from 0.37 to 0.75 persons
per turbine. For Teesside and Robin Rigg, the proportion of turbine
technicians to other operational staff is approximately 60% [32].
From the trend found in Fig. 3, the total staff number for the three
cases can be estimated. The 60% factor from Robin Rigg and Tees-
side is applied to find an approximate technician number.

Theworking day length [MEend] varies between 10 and 12 h per
day as a typical one shift per day strategy.

The vessel inputs are based on a typical Crew Transfer Vessel
(CTV), from the Ocean Wind series, aluminium catamarans
with ± 10% uncertainty to account for fleet variation. Workboats in
the UK fleet attending offshore wind O&M are similar with regards
to maximum vessel speed and operational limitation. The vessel
number for each case was based on a survey of CTVs working at 19
UKOWFs taken on 5thMarch 2014 using theMarine Traffic website
[33]. The survey criterion was to count the number of CTVs and
workboats visiting OWFs within a 24 h period (Fig. 4).

The Heavy Lift Vessels (HLV) used are based on a self-propelled



Fig. 3. Number of total O&M based staff from 6 UK OWF based on number of turbines.

Fig. 4. Number of CTVs and workboats used per turbine.
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jack up barge and values for operational limits based on a survey of
eligible vessels from the 4COffshore vessel database [34]. Themean
maximum significant wave height from the database was 1.83 m.

Information on helicopters is based on the Eurocopter ECN 135,
used at Greater Gabbard OWF. A ± 10% uncertainty envelope was
applied as this helicopter model represents the majority of those
used on OWFs currently.

The reliability and maintenance of seven major components of a
generic turbine with a gearbox have been considered in this
Table 1
WTG components and corresponding label.

Component Label

Blades/Pitch system a
Generator b
Electrical system c
Control system d
Mechanical brakes e
Yaw system f
Gearbox g
analysis. Table 1 lists the components along with a label used to
identify in the analysis.

Failure rate and associated downtime information of modern
components is a significant gap in offshore wind turbine perfor-
mance modelling. The most complete information source in the
public domain stems from reliability data in the Scientific Mea-
surement and Evaluation Programme (WMEP) and Land-
wirtschaftskammer (LWK) databases from Germany [35]. Although
failure rates may differ for larger turbines placed offshore [36],
onshore values are commonly used. To reflect this large uncer-
tainty, an envelope of ± 20% was applied. It is assumed that the
turbines remain within the useful life region of the bathtub curve
shown in Fig. 2 and so have a constant failure rate. The failure rates
in Ref. [35] are based on databases that do not distinguish between
failures requiring CTVs and those that require large, specialist
vessels. Therefore it was assumed that the rate of failure type 2 for
each component is lower than failure type 1, but the proportion of
components is consistent. As this information was not available,
industry experts were asked for howmany failures they expect over
the course of the project lifetime and the mean failure rates tuned
to that value.

It was assumed that component repair costs will be similar to
onshore costs and have been taken from a database of component
costs collated by National Renewable Energy Laboratory [37].

2.3. Sensitivity analysis methodology

The suggested framework of conducting SA on a given model
includes: identifying the input factors' distributions of values which
best represent the input uncertainty in the real system then to
decide on the SA method, which will, to some degree, dictate the
design of experiment to test the model. Finally, calculate the SA
indices according the method chosen.

In many of the more complex, global SA methods the required
model evaluation number can become untenable depending on the
input factor number k, model run time length, and number of
replicates chosen. For example, using the Fourier Amplitude
Sensitivity Testing method (FAST), the model evaluation number is
k � N, where N is the size of the sample and should be greater than
500 [17], therefore if there are 100 input factors the model evalu-
ation number can be 50,000. When the number of input factors is
high and a single simulation is more than a few seconds then the
run time for such analysis becomes unfeasible without the use of
advance computational capability [14]. The more simplistic designs
require a lower number of simulations or replicates.

2.3.1. Choice of SA method
Methods can range from simple to complex. They can be classed

into two groups; local and global [14,16,38]. ‘Local methods’ assess
the impact at the point of measurement, whereas ‘global methods’
consider the impact across the entire region of investigation. The
method choice largely depends on the computational size of the
analysis with regards to time, which will be influenced by the
number of the input factors k, number of replications necessary r
and length of time it takes to complete one model execution. The
choice of method will also depend on the desired assessment re-
quirements. For example, screening methods can provide a ranking
of the factor influence but without quantification of how much
more important these are with respect to other input factors. Some
models can handle interactions between factors better which may
also influence the method choice [14].

The OWF O&M model computational execution time can be
between one and 30 min long for each model execution. The
number of inputs factors for this analysis was 115. For these reasons
a screening designwas chosen as this approach allows for the most
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important factors to be found with a reasonable amount of
computational efficiency, i.e. the information obtained for the least
computational effort. There are several different approaches
available for factor screening. The easiest to understand are OAT
and factorial designs. The more complex are the Morris method,
Cotter, iterated fractional factorial design and sequential bifurcation
[39]. Again, screening design choice depends on the type of model
subject to the study (inputs complexity, output type) and the type
of information required from the study (first order, linear, non-
linear or higher order effect).

An OAT SA of 12 different factors in the model was conducted
and compared with four other O&M models in Ref. [6]. The results
provided valuable insight into the effect of internal model param-
eters on cost and availability of OWFs, but did not go further than
the OAT analysis. Key factors, such as failure rates and number of
technicians, were raised and lowered around a base case of inputs.
The variation between outputs and the variation between the
sensitivity of the outputs to the changes in inputs between different
models were discussed and internal model parameters that caused
the difference in sensitivity identified. The OAT method was suit-
able for this application as the objective was to compare the main
effects from a limited subset of inputs. The study was conducted
under the assumption that failure rates, technician number and
vessel number were of the most important to the model outputs.
The effect of interaction between input factors on the outputs could
not be investigated as the factors of interest were not changed
simultaneously. Any factor that exhibited significance through
interaction with others may be over looked using the OAT method.
The results from an OAT study are dependent on the mean values
from which the input factor values are increased and decreased.
This aspect is ideal for creating a reference case to compare
different O&M models but serves as a weak point for single model
factor screening.

For this paper the objective was to consider the main and
possible interactive or non-linear effects of 115 inputs within a
reasonable amount of model executions. This is achieved through
using the Morris method for factor screening. Furthermore, the
Morris method is often presented as best practice for factor
screening because, firstly of its applicability to most models, sec-
ondly, that it is computationally inexpensive and, thirdly, provides
information on the influential factors beyond the first order [40].

2.3.2. Morris method for factor screening
This approach is a type of local SA but allows changing of the

input factors, xi, throughout the region of study. The number of runs
required by following Morris' design described by Morris [19] is
n¼ r(kþ 1). The r value is the number of replicates and is chosen by
the experimenter. Practitioners have suggested that r ¼ 4 is the
minimum and r ¼ 10 is satisfactory [13,41].

The original author of the Morris method provides a sampling
design matrix to explore the region of study for least computation
cost. A full description of the method is available in Morris and
Saltelli et al. [13,19].

As mentioned above, it is a type of local sensitivity method but
the effect of changing the input factors, xi, throughout the study
region. Morris offers a design of experimentation which changes
the values of xi throughout the region of investigation [19]. The first
column of the design matrix is an initialising vector of xi, the values
of which are randomly chosen and is not used in the analysis but is
a starting point for translating xi to a predetermined distance away
D. The distance D is found from a predetermined multiple of 1/
(p�1) where p is a value of discretization of the input factor dis-
tribution. The effect of the change of the output due to the input is
found through, what Morris calls, the Elementary Effect (EE). The
EEs are determined from each trajectory for each input factor using:
EEðxÞ ¼ ½yðx1;…; xi�1; xi þ D; xiþ1;…; xkÞ � yðxÞ�
D

(2)

Where if D is increased:

EE
�
xl
�
¼

h
y
�
xðlþ1Þ

�
� y

�
xðlÞ

�i
D

(3)

And if D is decreased:

EE
�
xl
�
¼

h
y
�
xðlÞ

�
� y

�
xðlþ1Þ

�i
D

(4)

Where y is the output of the model l and lþ 1 denote the perturbed
points [19]. If using the designmatrix byMorris, then for each input
xi there are r EEs from which a distribution is sampled.

After executing the model according to the sampling design
matrix, the relative importance of input factor to each other is
ascertained with two sensitivity indices. The first is calculated from
a distribution of sampled EEs in the results [19]. It indicates the
main or first order effects of the input factor [40]:

m*i ¼
Pr

i¼1 jEEij
r

(5)

Higher m*meansmore influence on themodel output. Note, m* is
used here as opposed to m to differentiate between the original
calculation [19] and a later improvement [41]. The second index is
an indicator of the interaction or non-linear effects of an input
factor or a combination of the two but cannot be distinguished from
each other. It is calculated from the standard deviation of the EE
distribution [40]:

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr

i¼1 ðEEi � miÞ2
r

s
(6)

The m* and s indicate the mean and standard deviation of the
change in output over the change in the input. They should not be
considered as a measure of uncertainty but as an indication of the
effect of the input on the output. They can be compared for the
same output, for example m*availability and savailability, and m*costs and
scosts, but not m*availability and m*costs.

There has been criticism of the method's ability to truly identify
the most important effects adequately when compared to the re-
sults of a more sophisticated design. Additionally, an investigation
into the number of replications required indicates that r may need
to be much greater than 10 suggested by other authors. It may need
to be of the order of hundreds instead [17].

3. Case study

In this section of the paper the application of the above pre-
sented methodology will be demonstrated. In this case, in order to
investigate how the costs and availability affect different stages of a
built OWF project, three separate case studies were identified and
considered as independent OWFs. Fixed inputs were defined and
the uncertainty ranges of the variable inputs determined based on
literature and industry knowledge, as detailed in Section 2.2. An SA
approach was used on these three cases studies and the results
were then compared with each other.

3.1. Case study description

The cases, labelled 1A, 1B and 1C were potential phases of a pre-
consent OWF in the south of the UK. The best opportunity for



Table 2
Fixed inputs used in the three case studies modelled in SA.

Case studies 1A 1B 1C

Number of turbines 62 59 121
Capacity of one turbine (MW) 8 8 8
Total capacity (MW) 496 472 968
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conducting this type of analysis is before decisions pertaining to the
O&M have been made. Discovering key factors at an early stage
allows sufficient time to inform decisions and manage the opera-
tion stage, resulting in lower cost and higher availability. The OWF
could be built in two stages. The two halves with regards to
geographical extent (north and south) are labelled 1A and 1B and
the entire project is labelled 1C. Fig. 5 shows an illustration of the
cases.

The cases modelled in this investigation are moderately com-
plex, with seven components with independent failure rates; rep-
resenting the major sub-assemblies found in wind turbines. The
turbines are maintained through both condition based mainte-
nance and timed-based maintenance. Each component could fail in
two ways, requiring corrective maintenance action. The first re-
quires minor repairs and the second requires major repairs. Minor
repairs, called failure type 1, includes all failures that can be tended
to by corrective technicians to restore the turbine to an operative
state, who access the turbine with a CTV. A CTV is used to take
personnel to and from the turbines as well as small components
and have very limited lifting capability on board. A major failure,
failure type 2, requires specialist contractors and charter of a HLV. A
HLV has a large capacity for lifting heavy components, typically a
crane. Here HLV is used to describe a self-propelled vessel or jack up
barge.

The turbines are also subject to an annual servicing visit to
simulate preventative maintenance (although the model does not
change the potential for failure after the preventative maintenance
visit, it serves for unavailability and costs calculation purposes
only). The parameters related to the strategy vary in terms of
number of technicians, teams, number of vessels needed and costs.

In order to investigate the sensitivities within the three cases,
the number of turbines and the capacity was fixed as per Table 2.
These cases are based on a possible option for an OWF but do not
represent a particular plan for a real wind farm.

The meteorological time series is comprised of four years of
hourly data from a wave buoy near the site and the corresponding
wind speed at 10 m above sea level from modelled data from the
Fig. 5. Illustration of OWF of project phasing, each grid length is 20 km.
site. The mean wind speed of the dataset is 7.15 m/s and the mean
annual wave height is 1.02 m. The mean annual wind speed is
approximately 0.5 m/s lower than compared to other UK OWF sites
of equivalent development stage. Likewise, when comparing the
annual wave height of other UK OWFs from the Atlas of UK Marine
Renewables [42], the site is lower than the mean by 0.47 m.

Other than the fixed inputs shown in Table 2, all 115 inputs in
the study are varied. Themajority of inputminimum andmaximum
values are the same across all cases. Five of the inputs factors, the
minimum andmaximumvalues of inputs are different between the
cases. This avoids the model simulating maintenance strategies
that would not occur in real life, for example 10 maintenance teams
but only 1 CTV, The factors where the distribution of limits vary
between cases are:

� MEnve: Number of CTV chartered to the site
� MEptm: Number of preventative maintenance technicians
teams available

� MEcmt: Number of corrective maintenance teams available
� WFinf: Mean inter-turbine distance
� WFdis: Distance from the centre of the wind farm to the O&M
base

For this study, the sensitivity of the O&M costs and the time-
based availability to the change in inputs are considered. The cost
is the average annual cost of operations and performing mainte-
nance and is not discounted. It is a summation of the costs of repair,
the cost of technicians' salaries, vessels daily rates and fuel costs as
well as costs for extra costs for subcontractors. The direct O&M
costs do not include the cost of lost production. The availability is
the time based as a proportion of the time the turbines are in a
ready state to the total time.
3.2. SA execution

Having described the inputs in the previous section, the SA
framework software SimLab [43] was used to create the samples
according to the Morris design and to calculate the sensitivity
indices. MATLAB was used to write the input file to the offshore
wind O&M tool according to the sample, execute it, provide the
results and save them to an output file for SimLab to read. The time
to complete a simulation is dependent on turbine number.

The flowchart in Fig. 6 shows how the SA of the model was
implemented using MATLAB and SimLab. For the three cases 1A, 1B
and 1C, k was 115, discretization level p was 8 and the number of
replications r was 10. The number of model executions is therefore
N¼ 1160 for each case. The number of p and r are chosen to provide
the highest number of model executions whilst remaining within
the limits of SimLab software, which allows a maximum r value of
10.

The computational time is dependent on the number of turbines
in the OWF. For case 1A and 1B the analysis took several days to
complete on an HP EliteBook with Intel® Core™ i5 processor.
However Case 1C, with 150 turbines, required use of the parallel
computing toolbox in MATLAB and an 8 processor desktop com-
puter to reduce the computational time down from weeks to days.



Fig. 6. Flow chart of SA used with computational software in bold.
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If a global SA method such as FAST was used, then the required
number of simulations suggested in literaturewould be of the order
k � 500 / 1000 [17], between 57,500 and 115,000 model execu-
tions resulting in computational time of several months to
complete.

4. Results

The results from two OWF cases are shown in Figs. 7 and 9 along
with histograms of sample results in Figs. 8 and 10. The results from
case 1A and 1B were indistinguishable. Therefore results from 1A to
1C are shown in Table 3 and Table 4 and the implications for op-
erators discussed. The factors identified are provided in the
Appendix along with a full description and the sensitivity indices
results.

Each point in Figs. 7 and 9 represents an input factor with the
coordinates provided from the m*and s indices. The location of the
points in relation to each other provides information on the input
Fig. 7. Sensitivity results for case 1A a) c
factor importance in the model. Factors with a negligible effect on
the model have low indices values and are located in the lower left
of the graph. The more important factors will have higher indices
and appear depending on the strength of main or interactive/non-
linear effect. The majority of factors are a mixture of the two and
occasionally there will be factors with a primarily strong main or
interactive/non-linear effect. A factor was classified as either a)
main effect, b) interactive/non-linear or c) a mixture of the two by
calculating the ratio of difference between m*and s and the mean
value. If this value is less than 10%, the factor is considered mixed, a
negative value greater than 10% is interactive/non-linear and a
positive value greater than 10%, a main effect.
4.1. Operational expenditure

The results for the O&M costs are shown in Figs. 7a and 9a. A list
of the important factors is seen in Table 3 along with the effect.
From these graphs it can be argued that the high rate of component
failures for both small and large repairs is important as these factors
in Table 3 are prominent.

For both the first phase, case 1A, and the complete project, case
1C, the component failure rates for the electrical system and the
gearbox are important. The electrical system is susceptible to high
rate of small failures but has the lowest component cost. The
gearbox, on the other hand has a low failure rate for repairs
requiring a HLV, but has a high component cost. This demonstrates
to operators that they have to consider the frequent, low cost
component failures as well as the high cost, low probability failures
and take steps to reduce the failure rate and cost of both. Other
important factors for cost in both 1A and 1C are the cost for HLVs
and helicopters [MEjdr and MEhco, respectively].

For case 1C the duration of smaller repairs [DE1od] and inter-
action with shift length [MEend] are other important factors.
Shown by DE1od and MEend in Fig. 9a on the left hand side of the
group, indicating high interaction.

Component cost and failure rates are assumed to be the same as
those for onshore wind farms. Therefore it can be concluded that
the influence of those constituents would also be non-negligible for
onshore wind. Especially as the same conclusion cannot be made
for the access vehicles for onshorewind projects, where helicopters
are not used and the cost implications of lifting heavy components
is much larger in an offshore context. The length of shift and
operation duration would similarly affect costs for onshore wind
farms as offshore. However, they are unlikely to be the same
magnitude. Fixed costs associated with each visit to the turbine, if
the operation was more than one shift length, would be higher
offshore as vessel daily rates are greater than vehicles used to
osts and b) availability of the OWF.



Fig. 8. Histograms of sample results from a) costs and b) availability for Case 1A.

Fig. 9. Sensitivity results for case 1C a) costs and b) availability of the OWF.

Fig. 10. Histogram of sample results for a) costs and b) availability for Case 1C.

Table 3
Important factors for costs in both cases in alphabetical order with description and type of influence (main effect, interactive/non-linear or mixed).

Code Description Type of influence

CO1gc Repair cost for gearbox for failure type 1 Main
CO1gf Failure rate of gearbox for failure type 1 Main
CO2cf Failure rate of electrical system for failure type 2 Main
DE1od Operation duration of repair for failure type 1 Interactive/Non-linear
DE2od Operation duration of repair for failure type 2 Main
DE2pd Planning delay to conduct failure type 2 repair Main
DE2wf Cost of subcontracted workforce to conduct failure type 2 repair Interactive/Non-linear
MEctc Number of technicians per corrective maintenance team Main
MEend Work end time Interactive/Non-linear
MEhco Annual fixed cost of helicopter Main
MEjdr Day rate of HLV Main
MEjmf Maximum number of failures before mobilization of jack up vessel Main
MEjmo Time to mobilize HLV Main
WFbas Distance to O&M base from OWF centre Main
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Table 4
Important Factors for availability in alphabetical order with description and type of influence (main effect, interactive/non-linear or mixed).

Code Description Type of influence

CO1df Failure rate of control system for failure type 1 Main
CO2cf Failure rate of electrical system for failure type 2 Main
DE1int Number of teams required to repair failure type 1 Mixed
DE1od Operation duration of repair for failure type 1 Mixed
MEend Work end time Mixed
MEnve Number of type CTV Interactive/Non-linear
WFbop Average BoP availability Main
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access onshore farms.
The results demonstrate that the access strategy may need to

look beyond just CTVs and helicopters to provide enough time to
conduct necessary repairs. This analysis shows that, other than the
access and duration of small repairs, the important factors related
to costs are the same for the first phase and complete project.
4.2. Availability

For case 1A the most important factors are the small repair
duration [DE1od], working day length [MEend], failure rate of the
components requiring a HLV [CO2cf], BoP availability [WFbop] and
personnel transfer time from vessel to turbine [MEblg].

For the complete OWF project 1C, the top factors are the same as
for case 1A. Additional factors are the vessel number [MEnve] and
number of teams required in order to complete small repairs
[DE1int].

The histograms in Figs. 8 and 10 show the results from the
samples. The range of availability generated for the first case is
between 84% and 92%, with an average of 89%. With case 1C, there
is a dramatic reduction in project availability which sometimes can
be as low as 50% and an average of 82%. The maintenance strategy
was limited to only an onshore O&M base, with transfer via either
CTVs or helicopter and a single 12 h shift. In this case, this is the
limiting factor of the availability. Employing an offshore base in a
mothership or permanent structure might lead to increased avail-
ability for case 1C.
5. Discussion

5.1. Case comparison

The factors that affect costs are similar for different phases of the
same OWF. The exceptions are failure rates and repair costs.
Therefore plant reliability becomes more important with larger
OWFs.

For the first construction phase, 1A, it is turbine reliability and
speed of which repairs can take place that primarily affects farm
availability. This is true for the complete farm, 1C, but the repair
strategy also becomes more prevalent.
5.2. Input factor limitations

There is minimal information available in the public domain on
the frequency of major component failures. The input distribution
of failure rate is taken from onshore reliability databases from
smaller turbines a decade ago.

The OWF performance in case 1C was limited having by only an
onshore O&M base strategy, where as other options include using
offshore bases such as motherships or fixed platforms to reduce
CTV travel time. In the same manner, a single shift per day scenario
was modelled, which can be extended to consider 2 or 3 shifts per
day as well.
5.3. Future work

Once the screening process has been completed, the next stage
is to look at those factors that have been identified in Tables 3 and 4,
improve the input distributions, and then perform a more sophis-
ticated global SA in order to quantify the amount of sensitivity. The
model does not yet directly capture the effect of conditional
monitoring systems or structural health monitoring on the opera-
tions of OWFs. As such, the contribution of such systems to the
sensitivity of costs and availability of OWF projects is not consid-
ered but could be subject for further study.
6. Conclusion

In this paper, an SA approach was applied to an offshore wind
O&M model to discover which factors are most important for both
cost and availability. The novelty lies in using SA to identify the
most significant factors affecting O&M cost and availability, what
type of effect they have and if they change for different projects
phases. A general SA framework was introduced. The process to
identify distributions of some inputs was outlined. The approach
itself was introduced and the results discussed. It was found that
the results from the northern half of the project was identical to the
southern half however a difference in results was found between
the smaller phases and the complete project.

Fourteen inputs were found to be important in calculating O&M
cost; including failure rates, component cost, repair duration
interacting with the shift length. For availability, seven important
factors were found, components with both low and high failure
rates, the maintenance resources availability and shift length. In a
comparison of two cases of a single OWF, it was found that the
larger OWF had the same important input factors as the smaller
phases plus additions. This indicates to operators considering a
multi-phase project that the priorities for making the most prof-
itable decisions may change with OWF extensions.
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List of identified important factors for cost and availability divided into the case 1A and 1C along with the input ranges and sensitivity indices m* and s.

Case Factor code Factor description Min Value Max Value m* s

1A Availability DE1od Operation duration of repair for failure type 1 3 h 14 h 1.649 1.658
MEend Work end time 17:00 20:00 1.139 1.033
CO2cf Failure rate of electrical system for failure type 2 0.005 0.02 2.722 0.8794
WFbop Average BoP availability 90% 100% 4.378 0.4109

Cost CO2cf Failure rate of electrical system for failure type 2 0.005 0.02 5200 1960
CO1gf Failure rate of gearbox for failure type 1 0.19 0.65 3840 1210
MEjdr Day rate of HLV £50k £125k 1290 908.6
CO1gc Repair cost for gearbox for failure type 1 £101k £187k 2310 711.7
DE2wf Cost of subcontracted workforce to conduct failure type 2 repair £20k £100k 947.7 607.5
DE20d Operation hours to conduct failure type 2 repair 1 h 20 h 1010 584.2
MEctc Number of technicians per corrective maintenance team 2 3 1660 258.5
MEhco Annual fixed cost of helicopter £2,000k £6,000k 3070 190.4
MEjmo Time to mobilize HLV 5 h 24 h 473.3 401.3
MEjmf Maximum number of failures before mobilization of HLV 1 5 471 398.6
DE2pd Planning delay to conduct failure type 2 repair 18 h 47 h 334.9 301.2
WFbas Distance to O&M base from the OWF centre 30 km 50 km 880 154.4

1C Availability DE1od Operation duration of repair for failure type 1 3 h 14 h 17.08 16.12
MEend Work end time 17:00 20:00 9.308 13.23
MEnve Number of type CTV 4 6 4.328 6.981
DE1int Number of teams required to repair failure type 1 2 3 5.107 5.241

Cost CO2cf Failure rate of electrical system for failure type 2 0.005 0.02 9290 3660
DE1od Operation duration of repair for failure type 1 3 h 14 h 1950 3040
CO1gf Failure rate of gearbox for failure type 1 0.19 0.65 7320 2400
MEjdr Day rate of HLV £50k £125k 2320 1590
CO1gc Repair cost for gearbox for failure type 1 £101k £187k 4310 1230
MEend Work end time 17:00 20:00 825 1220
MEjmo Time to mobilize HLV 5 h 24 h 1780 948.1
MEhco Annual fixed cost of helicopter £2,000k £6,000k 3130 357.7
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