chromosome structure have broad implications in studying effects of the geometry of nucleus on higher-order genome organization and nuclear functions. Here we describe a multi-chromosome constrained self-avoiding chromatin model for studying ensembles of structural genome models to understand the folding principles of budding yeast genome. We successfully generated a large number of model genomes of yeast under different geometrical constraints and found that spatial confinement of cell nucleus and molecular crowding in the nucleus are key determinants of the folding behavior of yeast chromosomes. Furthermore, the relative positioning of chromosomes and the interactions between them are found to be due to presence of nuclear landmarks such as centromere tethering to spindle pole body.

2728-Pos Board B158
Torque Mediated Kinetics of CENP-A Nucleosomes Reveals Resilience to Tension
Riﬁa Vlijm1, Yamin Dalal2, Cees Dekker1
1Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands, 2Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.

In eukaryotic cells, DNA is wrapped around histone octamers, forming nucleosomes. In the centromere, the region of the chromosome that links sister chromatids, histone H3 is replaced by CENP-A (Centromere protein A). Since CENP-A chromatin is the point of contact between the microtubules/kinetochore complex and the rest of the chromosome, these regions endure very high forces. Whereas canonical nucleosomes unwrap at 3pN and disassemble at 15-20pN of force, the estimated forces applied by microtubuli are much higher. To investigate how CENP-A nucleosomes respond to externally applied forces and torque, we studied how CENP-A chromatin responds to defined stretching forces and torque generated by magnetic tweezers. With this technique, a single DNA molecule containing a few (up to 10) nucleosomes is tethered at one end to a glass surface and a magnetic bead. By applying stretching forces and torque generated by magnetic tweezers. With this technique, a single DNA molecule containing a few (up to 10) nucleosomes is tethered at one end to a glass surface and a magnetic bead. By applying stretching forces at constant negative and positive supercoiling, the forces needed for disassembly of canonical H3 and CENP-A nucleosomes can be obtained and compared. By measuring the DNA end-to-end length as a function of applied rotations before and after CENP-A nucleosomes are removed from the DNA, the linking number of the nucleosomes can be determined. Interestingly, while inducing supercoiling at constant low (<0.5pN) forces, unlike canonical nucleosomes, CENP-A nucleosomes appear to respond to the applied torque. By further analyzing the structural stability of CENP-A nucleosomes under stretching force and torque, we hope to unravel the mechanism by which CENP-A nucleosomes resist disassembly during mitosis in vivo.

2729-Pos Board B159
The Chd1 Chromatin Remodeler can Sense a Protein Bound at the Edge of the Nucleosome and Be Extrinsically Driven by a Processive Motor
Ilana Nodelman1, Kyle Horvath1, Jessica Winger1, Robert Levendosky1, Ashok Patel1, Ming Li2, Michelle Wang1, Gregory Bowman1
1Biophysics, Johns Hopkins University, Baltimore, MD, USA, 2Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.

Chromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. However, how remodelers respond to transcription factors and other bound factors that might influence chromatin organization is poorly understood. Here we use the Lac repressor to investigate how the Chd1 remodeler responds to a protein bound to the edge of a nucleosome. We found that Lac repressor effectively provided a barrier for nucleosome sliding by Chd1. This barrier did not require an absolute block in sliding, but instead was achieved through the bidirectional movement of nucleosomes, with a higher preference for sliding nucleosomes away from occupied Lac repressor sites. The presence of Lac repressor did not markedly diminish the affinity of Chd1 for nucleosomes, suggesting that Lac repressor is sensed after nucleosome sliding has been initiated. Nucleosome sliding rates were also reduced by DNA unwrapping, suggesting a mechanism by which Chd1 may indirectly sense factors bound at the edge of the nucleosome.

2730-Pos Board B160
Mechanochemistry of Persistent Plasmid Movement
Longhua Hu, Jian Liu
National Institutes of Health, Bethesda, MD, USA.

The segregation of DNA prior to cell division is essential to the faithful inheritance of the genetic materials. In many bacteria, the segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and DNA-binding ParB protein, which stimulates the hydrolysis activity of ParA. Both in vivo and in vitro experiments have shown that the ParA/ParB system can drive the persistent movement of the plasmids in a directed fashion, just like a processive motor protein. However, the underlying mechanism remains unknown. We have developed the first theoretical model on ParA/ParB-mediated motility. We establish that the coupling between the ParA/ParB biochemistry and its mechanical action works as a robust engine. It powers the directed movement of plasmids, buffering against the diffusive motion. Our work thus sheds light on a new emergent phenomenon, in which elaborate mechanochemical couplings of non-motor proteins can work collectively to propel cargos to designated locations, an ingenious way shaped by evolution to cope with the lack of a processive motor protein in bacteria.

2731-Pos Board B161
Nucleosome Repeat Length Relates to the Gene Expression Level in Yeast Ataur Katchi1, Davood Norouzi1, Feng Cui2, Victor Zhurkin1
1National Cancer Institute, National Institute of Health, Bethesda, MD, USA, 2College of Science, Rochester Institute of Technology, Rochester, NY, USA.

We are investigating correlation between the DNA folding in 30-nm chromatin fiber and the level of gene expression. The 30-nm fiber is generally characterized by the nucleosome repeat length (NRL) - that is, the length of the core DNA, 147 bp, plus the linker DNA length, L. We found previously that there are two families of the two-start chromatin fiber structures characterized by different DNA topology and flexibility. (Depending on the NRL value, the energetically optimal fiber structure belongs to one of the two families.) Here we analyze the high resolution nucleosome positioning data to find whether there is any correlation between the NRL and the gene expression level in yeast. We calculate the NRL values for the two groups of genes - 25% highly expressed and 25% lowly expressed genes (out of ~3,500 yeast genes that are at least 1,000 bp long). Our results show that the average NRL = 161-162 bp for the highly active genes (i.e., linker L = 14-15 bp), whereas NRL = 167-168 bp (i.e., linker L = 20-21 bp) for the lowly transcribed genes. Based on these findings, we conclude that the highly and lowly active gene sets have distinct nucleosome fiber organization with the linker L ≈ 10n+5 and 10n, respectively. We hypothesize that organization of the most active genes in fibers with L ≈ 10n+5 (which are more flexible than the fibers with L = 10n) facilitates formation of gene loops, thereby inducing transcription of these genes.

2732-Pos Board B162
Using FRET to Monitor Nucleosome Movement by the Chd1 Chromatin Remodeler
Robert Levendosky1, Kyle Horvath1, Srinivas Chakravarty2, Matt Hobson1, Gregory Bowman1
1Biology, Johns Hopkins University, Baltimore, MD, USA, 2Argon National Laboratory, Chicago, IL, USA, 3Biophysics, Johns Hopkins University, Baltimore, MD, USA.

The chromatin remodeler, Chd1, creates regularly spaced arrays of nucleosomes. The extent of this behavior is driven by binding to DNA. However, the remodeler can also regulate DNA unwrapping, suggesting that Chd1 may indirectly sense factors bound at the edge of the nucleosome. Using FRET and a chimeric system we observe an initial increasing phase followed by a pause and then a second increasing phase. In addition, after an initial drop in Cy5 fluorescence expected from FRET, a later phase shows an increase in Cy5 fluorescence above its initial level. These results suggest that not all of the fluorescence signals are regulated, we are adopting a FRET-based nucleosome sliding assay to measure the kinetics of Chd1 directed nucleosome sliding. By labeling the end of the DNA with Cy3 and the nucleosome with Cy5, we should be able to monitor the directed movement of Chd1 by a FRET-based sliding assay.

2733-Pos Board B163
Development of a “Realistic” Model of the Dynamic Chromatin Fiber using an Integrated Computational Approach
Sefjord Todolli1, Nil Rawal2, Nicolas Clauvelin1, Willy Wrighgers1, Wilma K. Olson1
1Biocomputing, Rutgers University, Piscatway, NJ, USA, 2Rutgers University, Piscatway, NJ, USA.

The segregation of DNA prior to cell division is essential to the faithful inheritance of the genetic materials. In many bacteria, the segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and DNA-binding ParB protein, which stimulates the hydrolysis activity of ParA. Both in vivo and in vitro experiments have shown that the ParA/ParB system can drive the persistent movement of the plasmids in a directed fashion, just like a processive motor protein. However, the underlying mechanism remains unknown. We have developed the first theoretical model on ParA/ParB-mediated motility. We establish that the coupling between the ParA/ParB biochemistry and its mechanical action works as a robust engine. It powers the directed movement of plasmids, buffering against the diffusive motion. Our work thus sheds light on a new emergent phenomenon, in which elaborate mechanochemical couplings of non-motor proteins can work collectively to propel cargos to designated locations, an ingenious way shaped by evolution to cope with the lack of a processive motor protein in bacteria.
on biological processes, such as gene expression. Two major challenges are that linker histones contain a long intrinsically disordered C-terminal domain (CTD) and determine higher-order structures of chromatin has not been possible due to the large size of the system and its dynamic nature.

We are taking advantage of the recently published 11Å resolution electron microscopy maps of two chromatin fibers (Song et al., 2014), to construct a complete low-resolution model of chromatin. High-resolution crystal structures of nucleosome core particles are fitted to the electron density maps and the intervening segments of linker DNA are modeled based on a sampling protocol that utilizes new DNA optimization methods. Situs is used to score all models against the density maps. Linker histones are modeled on the densities extracted after accounting for the nucleosomes and linker DNA. The modeled paths of the DNA linkers and the sites of the nucleosomes provide spatial constraints for positioning the globular core and modeling the folding of the disordered CTD of the linker histone. The pathways of the CTD are selected from ensembles of conformations obtained using ab initio structure prediction tools like Rosetta. We are using the model in coarse-grained Monte Carlo simulations of long-range interactions along arrays of precisely positioned nucleosomes in the presence of linker histones.

2734-Pos Board B164 Matrix Constraints Regulate Transcription Dependent 3D Organization of Chromosomes

Yejun wang1, Mallika Nagarajan1, G.V. Shivasanker1-2.
1Mechanobiology Institute, Singapore, Singapore, 2FIRC Institute for Molecular Oncology (IFOM), Milan, Italy.

Recent studies have revealed that cell geometric constraints regulate cytoskeleton as well as nuclear architecture, and gene expression. In addition, the spatial and temporal organization of chromosomes has been shown to modulate gene expression. However, the role of 3D organization of the nuclear architecture and chromosome assembly in facilitating this geometric-constraints regulated genome regulation is unclear. To address this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanied with the enrichment of active RNA polymerase II (phospho 5SCTD) in intermingling regions. Consistent with microarray results, we observed nuclear localization of serum response factors (MKL) in flattened nuclei, while that of inflammatory response transcription factors (p65) in spherical nuclei. Supporting this, we used NIH 3T3 fibroblast cells cultured on fibronectin coated microfabricated patterns, and combined fluorescence in situ hybridization (FISH) with confocal imaging. We found that alteration of cell geometry changed the radial position of individual chromosomes, as well as the relative position of specific chromosome pairs. Interestingly, such chromosome reorganization was accompanies...