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We use input/output automata to define a simple and general model of networks 
of concurrently executing, nondeterministic processes that communicate through 
unidirectional, named ports. A notion of the input/output relation computed by a 
process is defined, and determinate processes are defined to be processes whose 
input/output relations are single-valued. We show that determinate processes com- 
pute continuous functions, and that networks of determinate processes obey Kahn’s 

fixed-point principle. Although these results are already known, our contribution 
lies in the fact that the input/output automata model yields extremely simple proofs 
of them (the simplest we have seen), in spite of its generality. 0 1989 Academic 

Press. Inc. 

1. INTRODUCTION 

Kahn (1974) describes a simple parallel programming language based on 
the concept of a network of concurrently executing sequential processes 
that can communicate by sending values over “channels.” The com- 
munication primitives available to processes are sufficiently restrictive that 
only functional processes can be programmed. That is, each process may be 
viewed as computing a function from the complete history of values 
received on its input channels to the complete history of values emitted on 
its output channels. Kahn argues that such processes in fact compute 
functions that are continuous with respect to a suitable complete partial 
order (cpo) structure on the sets of input and output histories. Moreover, a 
network of such processes also computes a continuous function, which can 
be characterized as the least fixed-point of a continuous functional 
associated with the network. The advantage of this least fixed-point charac- 
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terization is that it permits the use of Scott’s induction rule to prove 
properties of process networks. 

Kahn’s original conception of a process network has subsequently been 
elaborated to serve as a basis for “dataflow” models of computation. In the 
dataflow literature, a network of processes is typically represented by a 
“dataflow graph,” which is a directed graph whose nodes correspond to 
processes and whose arcs correspond to unidirectional FIFO com- 
munication channels between processes. The program for a process 
designates particular channels to be used for input or output through the 
use of “ports,” which are names assigned by a process to each channel 
attached to that process. In contrast to Kahn’s original model, both 
functional and nonfunctional processes are of interest in dataflow com- 
putation. Although it is straightforward to give an operational semantics 
for such networks by describing the flow of data values through them, it is 
unfortunately the case that Kahn’s denotational semantics for networks of 
functional processes is not known to have an equally elegant generalization 
to networks of processes with non-functional behaviors. Brock and 
Ackerman (1981) have shown that naive generalizations, in which 
relations, rather than functions, are used to represent the input/output 
behavior of processes, fail to be consistent with the intuitive operational 
model of network execution. An extensive literature has arisen from 
attempts to resolve the so-called “Brock-Ackerman anomaly.” Although we 
cannot adequately review this literature here, the reader may refer to the 
recent papers (Gaifman and Pratt, 1987; Kok, 1987; Stark, 1987) for 
references to earlier work. 

Kahn did not give a proof of the consistency of his fixed-point principle 
with respect to an operational semantics. However, Kahn’s principle is 
similar to results that had already been proved (Cadiou, 1972) for recursive 
program schemes, and thus was generally accepted without an explicit 
proof. In the search for extensions to the non-functional case, though, 
consistency proofs are essential, since it is fairly easy to define denotational 
“semantics” which, although seemingly plausible, do not agree with an 
intuitively correct operational semantics. Recently, some attention has been 
paid to the problem of establishing the Kahn principle as a theorem about 
an operational model. Faustini (1982) defines a reasonably general model 
of networks of nondeterministic processes. Using some game-theoretic 
ideas, Faustini defines a subclass of networks of functional processes and 
shows that such networks obey the Kahn principle. Stark (1987) defines a 
class of nondeterministic processes, through axioms that constrain the 
structure of processes viewed as a kind of generalized transition system. 
“Kahn processes” are defined to be processes whose underlying transition 
systems obey an additional Church-Rosser-like property. Stark shows that 
the Kahn principle can be derived from the axioms. Gaifman and Pratt 
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(1987), and Rabinovich (1987) show that the Kahn principle holds for the 
“pomset” model. 

Although the technical complexities of the three papers (Gaifman and 
Pratt, 1987; Rabinovich, 1987; Stark, 1987) make anything other than 
qualitative comparisons difficult, all seem to be talking about essentially 
similar sets of ideas. Each of the proofs involves the use of the properties: 

1. A process is capable of accepting any input at any time. 

2. Production of output by a process depends only on previously 
received input and not on input received later than or simultaneously with 
the output. 

3. If the input history of a process in one computation is consistent 
with its input history in another computation, then the output histories in 
the two computations are also consistent. 

These three properties are used in an inductive argument to show that a 
network must produce output less than or equal to the output specified by 
the Kahn principle. The additional property: 

4. A process can always make progress toward a complete com- 
putation, regardless of the input received 

is used to establish that a network must produce at least as much output as 
that specified by the Kahn principle. 

In this paper, we prove the consistency of the Kahn principle with 
respect to an operational model based on the “input/output automata” of 
Lynch and Tuttle (1987). Our proof shares with others the four central 
ideas listed above but has the advantage of being extremely simple (the 
simplest we have yet seen). In part, this simplicity is attained because we 
are able to make use of two powerful general theorems (Lemma 1 and 
Proposition 2) about input/output automata. Our model is more general 
than Faustini’s (1982), since we do not make any concrete assumption 
about the structure of “channel buffers.” Faustini postulates channel buffers 
whose states are sequences of messages in transit. In contrast, we think of 
each process as containing, as components of its state, the buffers for the 
channels from which it takes its input. We also do not require for our 
definitions and proofs the game theory used by Faustini. Our work can be 
seen as complementary in a sense to that of Stark (1987). Whereas the 
latter work can be viewed as a search for as weak a condition as possible 
on nondeterministic processes, from which the Kahn principle can be 
proved, our results show that the simple restriction to “determinate” 
processes (those with single-valued input/output relations) is already an 
extremely strong constraint, from which the Kahn principle follows almost 
automatically. 
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Even though the truth of the Kahn principle is not really in doubt, we 
believe it is important to search for semantic models in which the principle 
can be proved as simply and generally as possible. Since this principle is 
perhaps the simplest and most elegant result we have to date in the theory 
of concurrency, it seems reasonable to expect that any purportedly useful 
semantic model should admit a simple proof of it. The ultimate goals of the 
search would be the identification of a minimal set of properties that a 
model of nondeterministic process networks must have if, the Kahn 
principle is to hold, and a determination of the extent to which the theory 
of functional processes can be usefully generalized. The results of this paper 
show the input/output automata model does indeed admit a simple proof 
of the Kahn principle. The recent results of Panangaden and Stark (1988), 
concerning a closely related model, suggest that input/output automata are 
also well suited for the study of nondeterministic process networks. 

2. INPUT/OUTPUT AUTOMATA 

An action signature is a triple A = (Ai”, A”“‘, A’“‘), where the sets Ai”, 
A Out, and Aint are pairwise disjoint. The elements of A’” are called input 
actions, those of A”“’ are called output actions, and those of Aint, internal 
actions. We use the same symbol A to denote both an action signature and 
the set A’” u A”“‘u Ai”’ of all its actions. 

An input/output automaton is a tuple M= (A, Q, Q”, T, - ), where 

l A is an action signature. 

l Q is a set of states. 

l Q” c Q is a distinguished set of start states. 

l TG Q x A x Q is a set of transitions, with the property that for all 
q E Q and all input actions a, there exists a transition (q, a, r) in T. 

. - is an equivalence relation on the set (Aout u Ai”‘) of non-input 
actions, such that the number of equivalence classes of - is at most 
countable. 

If (q, a, r) E T, and T is clear from the context, then we write q -a r. An 
action a is said to be enabled in state q if there exists a state r such that 
q +a r. The definition of an input/output automaton requires that all input 
actions be enabled in every state. 

A comment is in order concerning the equivalence relation -. We use 
input/output automata not just to model single processes, but also systems 
of concurrently executing processes. When we model a system of processes, 
we are interested only in “fair” computations, that is, in computations in 
which no process that desires to execute is forever prevented from doing so. 
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To impose the requirement of fairness, we need a certain amount of 
information about the correspondence between actions and processes. The 
equivalence relation N provides this information, in the sense that we 
think of each equivalence class of N as the set of actions of a single process 
that should receive fair treatment. 

All execution fragment of an input/output automaton is either a finite 
sequence of the form 

or an infinite sequence of the form 

where for each k 2 0, we require that qk -+Uk qk + 1 E T. An execution is an 
execution fragment whose first state q0 is a start state. 

A finite execution fragment 

on-1 qo-Lq,A . . . --+qn, 

is fair if no non-input actions are enabled in state qn. An infinite execution 
fragment 

is fair if, for every w-equivalence class C of actions, either there exist 
infinitely many k 2 0 with ak E C or else there exist infinitely many k > 0 for 
which no action in C is enabled in state qk. 

If U is any set, then let U” denote the set of all finite and infinite 
sequences of elements of U. If A is an action signature, then we call A” the 
set of action sequences for A. If Q is an action sequence, and U is a‘set, then 
the restriction of g to U is the subsequence c 1 U of CJ consisting only of 
those actions that are in U. If M is an input/output automaton, then the 
schedule of an execution fragment of M is the sequence of actions 
appearing in that fragment. The set linscheds(M) offinite schedules of M is 
the set of all schedules of finite executions of M. The set fairscheds(M) of 
fair schedules of M is the set of all schedules of fair executions of M. 

LEMMA 1. Let A4 be an inputfoutput automaton, and suppose 
o~linscheds(M). Then given any action sequence p consisting only of input 
actions, there exists a sequence T such that ot E fairscheds(M), and such that 
z 1 A’” = p. 

Proof We first claim that given any state q E Q and sequence p con- 
sisting only of input actions, there exists a fair execution fragment, starting 
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from state q and having schedule t, such that t 1 A’” = p. This fair execution 
fragment can be obtained by a dovetailing construction in which actions in 
p are interleaved with actions from the various equivalence classes of -. 
The condition that every input action is enabled in every state of an 
input/output automaton ensures that actions in p can be executed 
whenever required. The condition that the set of equivalence classes of - 
is at most countable ensures that the dovetailing can be carried out in such 
a way that the resulting execution fragment is fair. 

It is now easy to prove our result. Given cr E finscheds(M), obtain a finite 
execution 

q()-fL q*+L a,-1 ... -4, 

with schedule 0. Given a sequence p consisting only of input actions, apply 
the claim of the previous paragraph to obtain a fair execution fragment, 
starting from state qn and having schedule r, such that t 1 A’” = p. 
Concatenating the finite execution with schedule o with the fair execution 
fragment with schedule r yields a fair execution with schedule err, thus 
showing or E fairscheds(M). 1 

Suppose I is a finite or countably infinite index set. A collection 
d = {Ai: in Z} of action signatures is called compatible if for all i, Jo I with 
i#j we have ,p”’ n ,4yt = @ and A? n Aj= @. If d is compatible, then 
the sets A”“‘= UiPIApUt, A’” = (UiEIA;?)\AoUt, and Ai”’ = Ui,,Aj”’ are 
pairwise disjoint, and we may therefore define the composition of d to be 
the action signature n ~4 = (A’“, Aout, Ai”‘). 

A collection JZ = (Mi: i E I} of input/output automata, where Mi has 
signature Ai, is called compatible if the collection d = { Ai: i E Z} of action 
signatures is compatible. If M is compatible, then the composition of &Z is 
the quintuple n J@ = (A, Q, Q”, T, - ), where 

l A=JJd. 

l Q=Ilis,Ql. 

l Q”=lYIie,QP. 

l T is the set of all ((ql : i E I), a, (T,: i E I)) such that for all i E Z, if 
a E Ai, then (qi, a, ri) E T;, and if a $ Ai, then Yi = qi. 

. - = lJie, - i’ 

It is not difficult to see that n k’ is an input/output automaton. An action 
a E A is an input action of A iff it is an input action of each Ai that contains 
it. Since for all iE Z, all input actions of Ai are enabled in every state of Mi, 
it follows by the definition of n .4! that all input actions of A are enabled 
in every state of n .H. Also, since the compatibility condition ensures that 
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the collection {AP”‘u Ai”‘: in Z} is pairwise disjoint, it follows that 

- =Uiol N i is an equivalence relation on A”“’ u Ai”‘. 
The following result characterizes the set of finite or fair schedules of 

n 4 in terms of the sets of finite or fair schedules of the Mi. A proof can 
be found in (Lynch and Tuttle, 1987). The following consequence of the 
compatibility condition is essential to this proof: each output action a of A 
is an output action of Ai for exactly one i E Z, and a is an input action of Ai 
for all j # i such that u E Ai. 

PROPOSITION 2. Suppose k? = (Mi: ie Z} is a compatible collection of 
input/output automata. For each ie I, let Ai be the action signature of M;. 
Suppose o is a finite sequence of actions from n { Ai: iE Z}. 

1. Zf o is finite, then a~linscheds(n A) iff (~1 Ai~linscheds(Mj) for 
all i E I. 

2. G E fairscheds(n A) iff o ( A i E fairscheds(M,) for all i E I. 

3. PORT AUTOMATA 

Let V be a set of data values. A port signature is an action signature A, 
whose sets of input and output actions have the particular form A’” = 
Pi” x V and A”“’ = Pout x V, with Pi” and Pout disjoint and at most coun- 
table. The elements of Pi” and Pout are called input ports and output ports, 
respectively. If CI = (p, v) E A’” u A”“‘, then we write port(u) for the port 
component p, and value (a) for the value component v, of a. A port 
automaton is an input/output automaton whose action signature is a port 
signature. 

Suppose d = {Ai: in Z} is a compatible collection of port signatures. 
Then the composition n d is also a port signature, with output port set 
Pout = U,,[ PpU’ and input port set Pi” = (U,, , Pj”)\P”“‘. It follows that the 
composition of a compatible collection of port automata is also a port 
automaton. 

The composition of a compatible collection of port automata models a 
network of communicating, concurrently executing, component processes. 
Communication between components in such a network occurs when an 
output transition of one component, with a particular port and data value, 
occurs simultaneously with input transitions, with the same port and data 
value, for a number of other components. We allow arbitrary “fanout” in 
the sense that a single action may be shared by more than two com- 
ponents, as long as it is an output action for at most one of them. This is a 
bit more general than the usual definition of “linking” in the dataflow 
literature, in which each port of a process may be connected with at most 
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one port of another process. We do not have any formal notion of “input 
buffers” or “channel processes.” Rather, we think of a buffer for each input 
port of a process as already incorporated into the state of that process. 

If P is a set of ports, then a history over P is a function H: P + V”. 
Let Hist(P) denote the set of all histories over P. If A is a port signature, 
then each sequence 0 in A” determines a corresponding history 
H,, E Hist( Pin u Pout), defined by 

H,(p)=value(oI {~EA~“uA~“‘: port(a)=p}), c 

where we have extended the “value” notation to sequences 
o=a,a, ..- E (Ai” u Aout)co, by defining value(o) = value(a,) value(a,) . . . . 
The restrictions H$ = H, 1 Pin and Hzut = H, 1 Pout to the sets of input and 
output ports, respectively, are called the input history and ourpul history of 
6. The input/output relation of a port automaton M is the set Rein(M) of all 
pairs (Hf , Hz”‘) with c E fairscheds(M). 

It is important for our purposes that the sets A” and V”, and the set 
Hist(P) of all histories H: P -+ V”, form algebraic, directed-complete 
posets’ when equipped with suitable partial orderings. The ordering of 
interest on A” and V” is the prefix ordering, and on Hist(P) it is the 
ordering c obtained componentwise from the prefix ordering on V”. The 
finite elements of A” and V” are the finite sequences, and the finite 
elements of Hist(P) are exactly those functions from P to V* that map all 
but a finite subset of P to the empty sequence. Moreover, the map that 
takes a sequence cr E A” to the corresponding history H, is continuous and 
maps finite sequences to finite histories. Finally, note that the assumption 
that P is at most countable ensures that every history HE Hist(P) is H, for 
some sequence c E A”. 

4. DETERMINACY 

A port automaton M is determinate if its input/output relation Rein(M) 
is single-valued, hence it is the graph of a function 

Fun(M): Hist(P’“) + Hist(P”“‘). 

1 A subset U of a partially ordered set (poset) (D, z ) is directed if it is nonempty and every 

pair of elements of U has an upper bound in U. The poset (D, c ) is directed-complete if it has 
a least element and every directed subset U of D has a supremum u UE D. A function 
between directed-complete posets is called continuous if it preserves suprema of directed sets. If 
(D, E ) is directed-complete, then an element e E D is called finite (also isolated, or compact) if 
whenever U c D is directed, and e E u U, then e c d for some de U. The poset (D, c ) is 
algebraic if every element dE D is the supremum of the set of all finite e E D with e E d. 
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LEMMA 3. Suppose M is determinate. Suppose ts E linscheds(M) and 
z~fairscheds(M) are such that Hf E H’;“. Then Hyt E Hz”‘. 

Proof. By Lemma 1, o extends to a schedule p in fairscheds(M), such 
that Hi” = Hi” By determinacy, we must have Hzut = Hz”‘. Since 
Hrt 5 %zut by’construction, it follows that Hz”’ g Hyut. u 

LEMMA 4. Suppose M is determinate, with Fun(M) =f: Then 
HzUt c f(Hf ) for all c E finscheds( M). 

Proof: Given D E linscheds(M), we may use Lemma 1 to extend u to 
T E fairscheds(M), with Hf’ = Hz. Then H$, c Hvut by Lemma 3, and 
HFut =f(HF) by the fact that z~fairscheds(M). Since HF= Ht, 
j-(H”)=f(Ht). Thus, Hzut c f(HF). 1 

THEOREM 1. If M is determinate, then Fun(M) is continuous. 

Proof: We first show monotonicity. Suppose O, t E fairscheds(M), with 
Hf s HF. Then HP & Hz holds for all finite prefixes p of O, so by 
Lemma 3, H;“’ c H;“, holds for all finite prefixes p of rr. It follows that 
HO”’ t HO”’ 

0 - 7. 

Next, we show continuity. Suppose Cc fairscheds(M), such that the 
collection (H’,” : o EC} is directed, with supremum Hi”. By Lemma 1 and 
the fact that Hi” is the history of some sequence consisting only of input 
actions, we know there exists a schedule r E fairscheds(M) with Hy = Hi”. 
Then by monotonicity, Hyt c Hzut for all u E C. This implies that the 
collection { H y : c E C> is directed, hence has a supremum H”“’ & H$‘. 
We claim that Hzut c Ho”‘. By the continuity of the map that takes each 
action sequence to the corresponding history, it s&ices to show that 
Hi”, 5 H”“’ for all finite prefixes p of r. But if p is a finite prefix of z, then 
HF c Hi”, hence HP” c H: for some 0 E 2 by the finiteness of HF. Thus 
Hrt c H rt by Lemma 3, and therefore H;“’ c H Out. 1 

5. THE KAHN PRINCIPLE 

Let ~4 = (Ai: ie Z> be a compatible collection of port signatures. Let P 
denote the set of ports of JJ ,rQ, and for each i E Z, let P, denote the set of 
ports of Ai. Suppose 5 = { fi: iE Z} is a collection of continuous functions, 
where for each i E I, 

fi: Hist(Pp) + Hist(PP”‘). 



90 LYNCHANDSTARK 

The network equations associated with 9 are the equations (in the 
unknown history HE HA(P)): 

H( Pp”‘=f;.(Hj Pi”) (i E I). 

The network functional associated with .Y is the function 

~8: [Hist(P’“) + Hist(P)] + [Hist(P’“) -+ Hist(P).] 

that takes each continuous function 

f: Hist(P’“) -+ Hist( P) 

to the function 

O(f): Hist(P’“) --, Hist(P) 

defined by 

@(f)(H’“) 1 Pi” = Hi”, @(f)(H’“)) Pp”‘=fi(f(Hi”) 1 Pi?). 

The compatibility condition on d ensures that Cp is well defined, and it is 
straightforward to verify that @p(f) is continuous whenever-f is continuous. 

The following result can be proved by standard techniques in the theory 
of cpo’s (see, e.g., Kahn, 1974, Section 3). 

PROPOSITION 5. Suppose port signatures AX? and functions 9 are as 
above. Then the network functional @ associated with B is continuous, hence 
has a least fixed point u@. Moreover, u@ takes each history Hi” E Hist(P’“) 
to the least history HE Hist(P) such that HI Pin = Hi”, and such that H 
satisfies the network equations associated with 9. 

THEOREM 2 (Kahn principle). Suppose 4 = {M,: i E Z} is a compatible 
collection of determinate port automata, let 9 = {Fun(M,): iE I>, and let @ 
be the network functional associated with 9. Then n A! is determinate, and 
Fun(n A) satisfies 

(Hi”) = @(H’“) ) Pout 

for all Hi” E Hist(P’“). 

Proof Let f, = Fun(M,) for each iE I. By Proposition 5, it suffices to 
show that for each schedule o E fairscheds(n A’), the history H, is the least 
history HE Hist(P) such that HI Pi” = HF, and such that H satisfies the 
network equations associated with 9. 

Suppose o E fairscheds(n A’). Since (T I Ai E fairscheds(M,) by 
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Proposition 2, it follows that for each i E Z, H, I Pput = H,, Ayt = fi(H,, a~) = 
fi( H, 1 pi”). Thus, the network equations are satisfied by H,. 

It remains to be shown that if H is any history with Hi” = Hf such that 
H satisfies the network equations, then H, c H. It suffices to show that 
H, E H for all finite prefixes p of 0. We proceed by induction on the 
length Ipj of p. The basis, IpI =0 is immediate. For the induction step, let 
p = p’u, where a E A and H,, E H. There are three cases: 

Case a E A’“‘. Then H, = H,. c H. . 

Case a E A’“. Since Hi” = Hi” , we have HF c Hi”. Then H,, c H 
and HP” E Hi” together imily H, g H. 

Case a E A”“‘. Then UEAP”’ for some ieZ, so that H,IPj”=H,.IP:“. 
By Proposition 2 and Lemma 4 we know that H, 1 P;“, c fi(H, 1 Pf’) = 
fi( HP, I Pj,). But Hp. I Pi” E HIPj”,hencef,(H,.IP:?) c~,(HIP~?)=HIPP”’ 
by the monotonicity off, and the assumption that H satisfies the network 
equations. Thus, H, 1 Pp”’ c HI Py’. This fact, together with H,, E H, 
implies H, c H. 1 

6. CONCLUSION 

We have used input/output automata to define a rather general model of 
networks of nondeterministic processes. A notion of the input/output 
relation computed by a process has been defined and used to define the 
class of determinate (or functional) processes. We have shown that deter- 
minacy is a very strong property, from which it follows almost immediately 
that the functions computed by determinate processes are continuous, and 
that networks of determinate processes obey the Kahn principle. 
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