
INFORMATION AND COMPUTATION 82, 81-92 (1989)

A Proof of the Kahn Principle for
Input/Output Automata

NANCY A. LYNCH

MIT Laboratory for Computer Science, 545 Technology Square,

Cambridge, Massachusetts 02139

AND

EUGENE W. STARK

Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, New York I1794

We use input/output automata to define a simple and general model of networks
of concurrently executing, nondeterministic processes that communicate through
unidirectional, named ports. A notion of the input/output relation computed by a
process is defined, and determinate processes are defined to be processes whose
input/output relations are single-valued. We show that determinate processes com-
pute continuous functions, and that networks of determinate processes obey Kahn’s

fixed-point principle. Although these results are already known, our contribution
lies in the fact that the input/output automata model yields extremely simple proofs
of them (the simplest we have seen), in spite of its generality. 0 1989 Academic

Press. Inc.

1. INTRODUCTION

Kahn (1974) describes a simple parallel programming language based on
the concept of a network of concurrently executing sequential processes
that can communicate by sending values over “channels.” The com-
munication primitives available to processes are sufficiently restrictive that
only functional processes can be programmed. That is, each process may be
viewed as computing a function from the complete history of values
received on its input channels to the complete history of values emitted on
its output channels. Kahn argues that such processes in fact compute
functions that are continuous with respect to a suitable complete partial
order (cpo) structure on the sets of input and output histories. Moreover, a
network of such processes also computes a continuous function, which can
be characterized as the least fixed-point of a continuous functional
associated with the network. The advantage of this least fixed-point charac-

81
0890-5401/89 63.00

Copyright 0 1989 by Academic Press. Inc.
All rights of reproduction in any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82094825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

82 LYNCH AND STARK

terization is that it permits the use of Scott’s induction rule to prove
properties of process networks.

Kahn’s original conception of a process network has subsequently been
elaborated to serve as a basis for “dataflow” models of computation. In the
dataflow literature, a network of processes is typically represented by a
“dataflow graph,” which is a directed graph whose nodes correspond to
processes and whose arcs correspond to unidirectional FIFO com-
munication channels between processes. The program for a process
designates particular channels to be used for input or output through the
use of “ports,” which are names assigned by a process to each channel
attached to that process. In contrast to Kahn’s original model, both
functional and nonfunctional processes are of interest in dataflow com-
putation. Although it is straightforward to give an operational semantics
for such networks by describing the flow of data values through them, it is
unfortunately the case that Kahn’s denotational semantics for networks of
functional processes is not known to have an equally elegant generalization
to networks of processes with non-functional behaviors. Brock and
Ackerman (1981) have shown that naive generalizations, in which
relations, rather than functions, are used to represent the input/output
behavior of processes, fail to be consistent with the intuitive operational
model of network execution. An extensive literature has arisen from
attempts to resolve the so-called “Brock-Ackerman anomaly.” Although we
cannot adequately review this literature here, the reader may refer to the
recent papers (Gaifman and Pratt, 1987; Kok, 1987; Stark, 1987) for
references to earlier work.

Kahn did not give a proof of the consistency of his fixed-point principle
with respect to an operational semantics. However, Kahn’s principle is
similar to results that had already been proved (Cadiou, 1972) for recursive
program schemes, and thus was generally accepted without an explicit
proof. In the search for extensions to the non-functional case, though,
consistency proofs are essential, since it is fairly easy to define denotational
“semantics” which, although seemingly plausible, do not agree with an
intuitively correct operational semantics. Recently, some attention has been
paid to the problem of establishing the Kahn principle as a theorem about
an operational model. Faustini (1982) defines a reasonably general model
of networks of nondeterministic processes. Using some game-theoretic
ideas, Faustini defines a subclass of networks of functional processes and
shows that such networks obey the Kahn principle. Stark (1987) defines a
class of nondeterministic processes, through axioms that constrain the
structure of processes viewed as a kind of generalized transition system.
“Kahn processes” are defined to be processes whose underlying transition
systems obey an additional Church-Rosser-like property. Stark shows that
the Kahn principle can be derived from the axioms. Gaifman and Pratt

KAHN PRINCIPLE FOR I/O AUTOMATA 83

(1987), and Rabinovich (1987) show that the Kahn principle holds for the
“pomset” model.

Although the technical complexities of the three papers (Gaifman and
Pratt, 1987; Rabinovich, 1987; Stark, 1987) make anything other than
qualitative comparisons difficult, all seem to be talking about essentially
similar sets of ideas. Each of the proofs involves the use of the properties:

1. A process is capable of accepting any input at any time.

2. Production of output by a process depends only on previously
received input and not on input received later than or simultaneously with
the output.

3. If the input history of a process in one computation is consistent
with its input history in another computation, then the output histories in
the two computations are also consistent.

These three properties are used in an inductive argument to show that a
network must produce output less than or equal to the output specified by
the Kahn principle. The additional property:

4. A process can always make progress toward a complete com-
putation, regardless of the input received

is used to establish that a network must produce at least as much output as
that specified by the Kahn principle.

In this paper, we prove the consistency of the Kahn principle with
respect to an operational model based on the “input/output automata” of
Lynch and Tuttle (1987). Our proof shares with others the four central
ideas listed above but has the advantage of being extremely simple (the
simplest we have yet seen). In part, this simplicity is attained because we
are able to make use of two powerful general theorems (Lemma 1 and
Proposition 2) about input/output automata. Our model is more general
than Faustini’s (1982), since we do not make any concrete assumption
about the structure of “channel buffers.” Faustini postulates channel buffers
whose states are sequences of messages in transit. In contrast, we think of
each process as containing, as components of its state, the buffers for the
channels from which it takes its input. We also do not require for our
definitions and proofs the game theory used by Faustini. Our work can be
seen as complementary in a sense to that of Stark (1987). Whereas the
latter work can be viewed as a search for as weak a condition as possible
on nondeterministic processes, from which the Kahn principle can be
proved, our results show that the simple restriction to “determinate”
processes (those with single-valued input/output relations) is already an
extremely strong constraint, from which the Kahn principle follows almost
automatically.

84 LYNCHANDSTARK

Even though the truth of the Kahn principle is not really in doubt, we
believe it is important to search for semantic models in which the principle
can be proved as simply and generally as possible. Since this principle is
perhaps the simplest and most elegant result we have to date in the theory
of concurrency, it seems reasonable to expect that any purportedly useful
semantic model should admit a simple proof of it. The ultimate goals of the
search would be the identification of a minimal set of properties that a
model of nondeterministic process networks must have if, the Kahn
principle is to hold, and a determination of the extent to which the theory
of functional processes can be usefully generalized. The results of this paper
show the input/output automata model does indeed admit a simple proof
of the Kahn principle. The recent results of Panangaden and Stark (1988),
concerning a closely related model, suggest that input/output automata are
also well suited for the study of nondeterministic process networks.

2. INPUT/OUTPUT AUTOMATA

An action signature is a triple A = (Ai”, A”“‘, A’“‘), where the sets Ai”,
A Out, and Aint are pairwise disjoint. The elements of A’” are called input
actions, those of A”“’ are called output actions, and those of Aint, internal
actions. We use the same symbol A to denote both an action signature and
the set A’” u A”“‘u Ai”’ of all its actions.

An input/output automaton is a tuple M= (A, Q, Q”, T, -), where

l A is an action signature.

l Q is a set of states.

l Q” c Q is a distinguished set of start states.

l TG Q x A x Q is a set of transitions, with the property that for all
q E Q and all input actions a, there exists a transition (q, a, r) in T.

. - is an equivalence relation on the set (Aout u Ai”‘) of non-input
actions, such that the number of equivalence classes of - is at most
countable.

If (q, a, r) E T, and T is clear from the context, then we write q -a r. An
action a is said to be enabled in state q if there exists a state r such that
q +a r. The definition of an input/output automaton requires that all input
actions be enabled in every state.

A comment is in order concerning the equivalence relation -. We use
input/output automata not just to model single processes, but also systems
of concurrently executing processes. When we model a system of processes,
we are interested only in “fair” computations, that is, in computations in
which no process that desires to execute is forever prevented from doing so.

KAHN PRINCIPLE FOR I/O AUTOMATA 85

To impose the requirement of fairness, we need a certain amount of
information about the correspondence between actions and processes. The
equivalence relation N provides this information, in the sense that we
think of each equivalence class of N as the set of actions of a single process
that should receive fair treatment.

All execution fragment of an input/output automaton is either a finite
sequence of the form

or an infinite sequence of the form

where for each k 2 0, we require that qk -+Uk qk + 1 E T. An execution is an
execution fragment whose first state q0 is a start state.

A finite execution fragment

on-1 qo-Lq,A . . . --+qn,

is fair if no non-input actions are enabled in state qn. An infinite execution
fragment

is fair if, for every w-equivalence class C of actions, either there exist
infinitely many k 2 0 with ak E C or else there exist infinitely many k > 0 for
which no action in C is enabled in state qk.

If U is any set, then let U” denote the set of all finite and infinite
sequences of elements of U. If A is an action signature, then we call A” the
set of action sequences for A. If Q is an action sequence, and U is a‘set, then
the restriction of g to U is the subsequence c 1 U of CJ consisting only of
those actions that are in U. If M is an input/output automaton, then the
schedule of an execution fragment of M is the sequence of actions
appearing in that fragment. The set linscheds(M) offinite schedules of M is
the set of all schedules of finite executions of M. The set fairscheds(M) of
fair schedules of M is the set of all schedules of fair executions of M.

LEMMA 1. Let A4 be an inputfoutput automaton, and suppose
o~linscheds(M). Then given any action sequence p consisting only of input
actions, there exists a sequence T such that ot E fairscheds(M), and such that
z 1 A’” = p.

Proof We first claim that given any state q E Q and sequence p con-
sisting only of input actions, there exists a fair execution fragment, starting

86 LYNCH AND STARK

from state q and having schedule t, such that t 1 A’” = p. This fair execution
fragment can be obtained by a dovetailing construction in which actions in
p are interleaved with actions from the various equivalence classes of -.
The condition that every input action is enabled in every state of an
input/output automaton ensures that actions in p can be executed
whenever required. The condition that the set of equivalence classes of -
is at most countable ensures that the dovetailing can be carried out in such
a way that the resulting execution fragment is fair.

It is now easy to prove our result. Given cr E finscheds(M), obtain a finite
execution

q()-fL q*+L a,-1 ... -4,

with schedule 0. Given a sequence p consisting only of input actions, apply
the claim of the previous paragraph to obtain a fair execution fragment,
starting from state qn and having schedule r, such that t 1 A’” = p.
Concatenating the finite execution with schedule o with the fair execution
fragment with schedule r yields a fair execution with schedule err, thus
showing or E fairscheds(M). 1

Suppose I is a finite or countably infinite index set. A collection
d = {Ai: in Z} of action signatures is called compatible if for all i, Jo I with
i#j we have ,p”’ n ,4yt = @ and A? n Aj= @. If d is compatible, then
the sets A”“‘= UiPIApUt, A’” = (UiEIA;?)\AoUt, and Ai”’ = Ui,,Aj”’ are
pairwise disjoint, and we may therefore define the composition of d to be
the action signature n ~4 = (A’“, Aout, Ai”‘).

A collection JZ = (Mi: i E I} of input/output automata, where Mi has
signature Ai, is called compatible if the collection d = { Ai: i E Z} of action
signatures is compatible. If M is compatible, then the composition of &Z is
the quintuple n J@ = (A, Q, Q”, T, -), where

l A=JJd.

l Q=Ilis,Ql.

l Q”=lYIie,QP.

l T is the set of all ((ql : i E I), a, (T,: i E I)) such that for all i E Z, if
a E Ai, then (qi, a, ri) E T;, and if a $ Ai, then Yi = qi.

. - = lJie, - i’

It is not difficult to see that n k’ is an input/output automaton. An action
a E A is an input action of A iff it is an input action of each Ai that contains
it. Since for all iE Z, all input actions of Ai are enabled in every state of Mi,
it follows by the definition of n .4! that all input actions of A are enabled
in every state of n .H. Also, since the compatibility condition ensures that

KAHN PRINCIPLE FOR I/O AUTOMATA 87

the collection {AP”‘u Ai”‘: in Z} is pairwise disjoint, it follows that

- =Uiol N i is an equivalence relation on A”“’ u Ai”‘.
The following result characterizes the set of finite or fair schedules of

n 4 in terms of the sets of finite or fair schedules of the Mi. A proof can
be found in (Lynch and Tuttle, 1987). The following consequence of the
compatibility condition is essential to this proof: each output action a of A
is an output action of Ai for exactly one i E Z, and a is an input action of Ai
for all j # i such that u E Ai.

PROPOSITION 2. Suppose k? = (Mi: ie Z} is a compatible collection of
input/output automata. For each ie I, let Ai be the action signature of M;.
Suppose o is a finite sequence of actions from n { Ai: iE Z}.

1. Zf o is finite, then a~linscheds(n A) iff (~1 Ai~linscheds(Mj) for
all i E I.

2. G E fairscheds(n A) iff o (A i E fairscheds(M,) for all i E I.

3. PORT AUTOMATA

Let V be a set of data values. A port signature is an action signature A,
whose sets of input and output actions have the particular form A’” =
Pi” x V and A”“’ = Pout x V, with Pi” and Pout disjoint and at most coun-
table. The elements of Pi” and Pout are called input ports and output ports,
respectively. If CI = (p, v) E A’” u A”“‘, then we write port(u) for the port
component p, and value (a) for the value component v, of a. A port
automaton is an input/output automaton whose action signature is a port
signature.

Suppose d = {Ai: in Z} is a compatible collection of port signatures.
Then the composition n d is also a port signature, with output port set
Pout = U,,[PpU’ and input port set Pi” = (U,, , Pj”)\P”“‘. It follows that the
composition of a compatible collection of port automata is also a port
automaton.

The composition of a compatible collection of port automata models a
network of communicating, concurrently executing, component processes.
Communication between components in such a network occurs when an
output transition of one component, with a particular port and data value,
occurs simultaneously with input transitions, with the same port and data
value, for a number of other components. We allow arbitrary “fanout” in
the sense that a single action may be shared by more than two com-
ponents, as long as it is an output action for at most one of them. This is a
bit more general than the usual definition of “linking” in the dataflow
literature, in which each port of a process may be connected with at most

88 LYNCH AND STARK

one port of another process. We do not have any formal notion of “input
buffers” or “channel processes.” Rather, we think of a buffer for each input
port of a process as already incorporated into the state of that process.

If P is a set of ports, then a history over P is a function H: P + V”.
Let Hist(P) denote the set of all histories over P. If A is a port signature,
then each sequence 0 in A” determines a corresponding history
H,, E Hist(Pin u Pout), defined by

H,(p)=value(oI {~EA~“uA~“‘: port(a)=p}), c

where we have extended the “value” notation to sequences
o=a,a, ..- E (Ai” u Aout)co, by defining value(o) = value(a,) value(a,)
The restrictions H$ = H, 1 Pin and Hzut = H, 1 Pout to the sets of input and
output ports, respectively, are called the input history and ourpul history of
6. The input/output relation of a port automaton M is the set Rein(M) of all
pairs (Hf , Hz”‘) with c E fairscheds(M).

It is important for our purposes that the sets A” and V”, and the set
Hist(P) of all histories H: P -+ V”, form algebraic, directed-complete
posets’ when equipped with suitable partial orderings. The ordering of
interest on A” and V” is the prefix ordering, and on Hist(P) it is the
ordering c obtained componentwise from the prefix ordering on V”. The
finite elements of A” and V” are the finite sequences, and the finite
elements of Hist(P) are exactly those functions from P to V* that map all
but a finite subset of P to the empty sequence. Moreover, the map that
takes a sequence cr E A” to the corresponding history H, is continuous and
maps finite sequences to finite histories. Finally, note that the assumption
that P is at most countable ensures that every history HE Hist(P) is H, for
some sequence c E A”.

4. DETERMINACY

A port automaton M is determinate if its input/output relation Rein(M)
is single-valued, hence it is the graph of a function

Fun(M): Hist(P’“) + Hist(P”“‘).

1 A subset U of a partially ordered set (poset) (D, z) is directed if it is nonempty and every

pair of elements of U has an upper bound in U. The poset (D, c) is directed-complete if it has
a least element and every directed subset U of D has a supremum u UE D. A function
between directed-complete posets is called continuous if it preserves suprema of directed sets. If
(D, E) is directed-complete, then an element e E D is called finite (also isolated, or compact) if
whenever U c D is directed, and e E u U, then e c d for some de U. The poset (D, c) is
algebraic if every element dE D is the supremum of the set of all finite e E D with e E d.

KAHNPRINCIPLEFORI/OAUTOMATA 89

LEMMA 3. Suppose M is determinate. Suppose ts E linscheds(M) and
z~fairscheds(M) are such that Hf E H’;“. Then Hyt E Hz”‘.

Proof. By Lemma 1, o extends to a schedule p in fairscheds(M), such
that Hi” = Hi” By determinacy, we must have Hzut = Hz”‘. Since
Hrt 5 %zut by’construction, it follows that Hz”’ g Hyut. u

LEMMA 4. Suppose M is determinate, with Fun(M) =f: Then
HzUt c f(Hf) for all c E finscheds(M).

Proof: Given D E linscheds(M), we may use Lemma 1 to extend u to
T E fairscheds(M), with Hf’ = Hz. Then H$, c Hvut by Lemma 3, and
HFut =f(HF) by the fact that z~fairscheds(M). Since HF= Ht,
j-(H”)=f(Ht). Thus, Hzut c f(HF). 1

THEOREM 1. If M is determinate, then Fun(M) is continuous.

Proof: We first show monotonicity. Suppose O, t E fairscheds(M), with
Hf s HF. Then HP & Hz holds for all finite prefixes p of O, so by
Lemma 3, H;“’ c H;“, holds for all finite prefixes p of rr. It follows that
HO”’ t HO”’

0 - 7.

Next, we show continuity. Suppose Cc fairscheds(M), such that the
collection (H’,” : o EC} is directed, with supremum Hi”. By Lemma 1 and
the fact that Hi” is the history of some sequence consisting only of input
actions, we know there exists a schedule r E fairscheds(M) with Hy = Hi”.
Then by monotonicity, Hyt c Hzut for all u E C. This implies that the
collection { H y : c E C> is directed, hence has a supremum H”“’ & H$‘.
We claim that Hzut c Ho”‘. By the continuity of the map that takes each
action sequence to the corresponding history, it s&ices to show that
Hi”, 5 H”“’ for all finite prefixes p of r. But if p is a finite prefix of z, then
HF c Hi”, hence HP” c H: for some 0 E 2 by the finiteness of HF. Thus
Hrt c H rt by Lemma 3, and therefore H;“’ c H Out. 1

5. THE KAHN PRINCIPLE

Let ~4 = (Ai: ie Z> be a compatible collection of port signatures. Let P
denote the set of ports of JJ ,rQ, and for each i E Z, let P, denote the set of
ports of Ai. Suppose 5 = { fi: iE Z} is a collection of continuous functions,
where for each i E I,

fi: Hist(Pp) + Hist(PP”‘).

90 LYNCHANDSTARK

The network equations associated with 9 are the equations (in the
unknown history HE HA(P)):

H(Pp”‘=f;.(Hj Pi”) (i E I).

The network functional associated with .Y is the function

~8: [Hist(P’“) + Hist(P)] + [Hist(P’“) -+ Hist(P).]

that takes each continuous function

f: Hist(P’“) -+ Hist(P)

to the function

O(f): Hist(P’“) --, Hist(P)

defined by

@(f)(H’“) 1 Pi” = Hi”, @(f)(H’“)) Pp”‘=fi(f(Hi”) 1 Pi?).

The compatibility condition on d ensures that Cp is well defined, and it is
straightforward to verify that @p(f) is continuous whenever-f is continuous.

The following result can be proved by standard techniques in the theory
of cpo’s (see, e.g., Kahn, 1974, Section 3).

PROPOSITION 5. Suppose port signatures AX? and functions 9 are as
above. Then the network functional @ associated with B is continuous, hence
has a least fixed point u@. Moreover, u@ takes each history Hi” E Hist(P’“)
to the least history HE Hist(P) such that HI Pin = Hi”, and such that H
satisfies the network equations associated with 9.

THEOREM 2 (Kahn principle). Suppose 4 = {M,: i E Z} is a compatible
collection of determinate port automata, let 9 = {Fun(M,): iE I>, and let @
be the network functional associated with 9. Then n A! is determinate, and
Fun(n A) satisfies

(Hi”) = @(H’“)) Pout

for all Hi” E Hist(P’“).

Proof Let f, = Fun(M,) for each iE I. By Proposition 5, it suffices to
show that for each schedule o E fairscheds(n A’), the history H, is the least
history HE Hist(P) such that HI Pi” = HF, and such that H satisfies the
network equations associated with 9.

Suppose o E fairscheds(n A’). Since (T I Ai E fairscheds(M,) by

KAHN PRINCIPLE FOR I/O AUTOMATA 91

Proposition 2, it follows that for each i E Z, H, I Pput = H,, Ayt = fi(H,, a~) =
fi(H, 1 pi”). Thus, the network equations are satisfied by H,.

It remains to be shown that if H is any history with Hi” = Hf such that
H satisfies the network equations, then H, c H. It suffices to show that
H, E H for all finite prefixes p of 0. We proceed by induction on the
length Ipj of p. The basis, IpI =0 is immediate. For the induction step, let
p = p’u, where a E A and H,, E H. There are three cases:

Case a E A’“‘. Then H, = H,. c H. .

Case a E A’“. Since Hi” = Hi” , we have HF c Hi”. Then H,, c H
and HP” E Hi” together imily H, g H.

Case a E A”“‘. Then UEAP”’ for some ieZ, so that H,IPj”=H,.IP:“.
By Proposition 2 and Lemma 4 we know that H, 1 P;“, c fi(H, 1 Pf’) =
fi(HP, I Pj,). But Hp. I Pi” E HIPj”,hencef,(H,.IP:?) c~,(HIP~?)=HIPP”’
by the monotonicity off, and the assumption that H satisfies the network
equations. Thus, H, 1 Pp”’ c HI Py’. This fact, together with H,, E H,
implies H, c H. 1

6. CONCLUSION

We have used input/output automata to define a rather general model of
networks of nondeterministic processes. A notion of the input/output
relation computed by a process has been defined and used to define the
class of determinate (or functional) processes. We have shown that deter-
minacy is a very strong property, from which it follows almost immediately
that the functions computed by determinate processes are continuous, and
that networks of determinate processes obey the Kahn principle.

ACKNOWLEDGMENTS

Nancy Lynch’s study of this problem was inspired by discussions in Albert Meyer’s seminar
on the semantics of concurrency. Nancy Lynch was supported in part by DARPA Grant
NOOO14-83-K-0125, ONR Grant NOOO14-85-K-0168, and NSF Grant CCR-8611442. Eugene
Stark was supported in part by NSF Grant CCR-8702247.

~CEIVED December 17, 1987; ACCEPTED May 26, 1988

REFERENCES

BROCK, J. D., AND ACKERMAN, W. B. (1981), Scenarios: A model of non-determinate
computation, in “Formalization of Programming Concepts,” Lecture Notes in Computer
Science Vol. 107, pp. 252-259, Springer-Verlag, New York/Berlin.

92 LYNCH AND STARK

CADIOU, J. M. (1972) “Recursive Definitions of Partial Functions and Their Computations,”
Ph.D. thesis, Stanford University.

FAUSTINI, A. A. (1982), An operational semantics for pure dataflow, in “Automata,
Languages, and Programming, 9th Colloquium,” Lecture Notes in Computer Science
Vol. 140, pp. 212-224, Springer Verlag, New York/Berlin.

GAIFMAN, H., AND PRATT, V. (1987), Partial order models of concurrency and the com-
putation of functions, in “Symposium on Logic in Computer Science,” pp. 72-85.

KAHN, G. (1974) The semantics of a simple language for parallel programming, in
“Information Processing 74” (J. L. Rosenfeld, Ed.), North-Holland, Amsterdam.

KOK, J. N. (1987), A fully abstract *semantics for data flow nets, in “Lecture Notes in
Computer Science, Vol. 259, pp. 351-368, Springer-Verlag, New York/Berlin.

LYNCH, N. A., AND TUTTLE, M. (1987) “Hierarchical Correctness Proofs for Distributed
Algorithms,” Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer Science.

PANANGADEN, P. AND STARK, E. W. (1988) Computations, residuals, and The power of
indeterminacy, in “Automata, Languages, and Programming, 15th Colloquium, Lecture
Notes in Computer Science, Vol. 317, pp. 439454, Springer-Verlag, New York/Berlin.

RABINOVICH. A. (1987) Pomset semantics is consistent with data flow semantics. EATCS
Bull., June, pp. 107-l 17.

STARK, E. W. (1987), Concurrent transition system semantics of process networks, in “Four-
teenth ACM Symposium on Principles of Programming Languages,” pp. 199-210.

