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Abstract

This paper determines what structure is needed for internal homs in a monoidal category C to be liftable
to the category CG of Eilenberg–Moore coalgebras for a monoidal comonad G on C . We apply this to lift
∗-autonomy with the view to recasting the definition of quantum groupoid.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

It was recognized by Szlachányi [Sz03] that Takeuchi’s ×R-bialgebras (bialgebroids) could
be described as opmonoidal monads. Brzeziński and Militaru [BM02] developed this further
and dualized the notion. The dual concept was called quantum category in [DS04] and was
expressed in terms of a monoidal comonad; however the main point of the paper was to obtain
a definition of quantum groupoid which involved ∗-autonomy in the sense of Barr [B95]. This
∗-autonomy amounts to an antipode in the case of a bialgebra (which is a “one object” quantum
category). The paper [DS04] expressed the generalized antipode as a structure on a generating
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monoidal adjunction (“basic data”) for the comonad, rather than giving this antipode in terms of
the monoidal comonad itself. Motivation for the present paper was to clarify the latter possibility.

The problem leads to one that can be stated for monads T on ordinary monoidal categories A .
It was pointed out in [M02] that the category A T of Eilenberg–Moore algebras for an op-
monoidal monad T becomes monoidal in such a way that the underlying functor U : A T → A
becomes strict monoidal. We ask when internal homs in A can be lifted to A T . More specifi-
cally, we ask under what extra structure on T does the Eilenberg–Moore category A T become
∗-autonomous if A is.

In the meantime, the paper [BV06] came to our notice, solving the autonomous case. An
autonomous category in the sense of [JS91] (also, well before that, called “compact” and “rigid”
in the symmetric case) admits a left and right dual for each object. A common generalization of
antipode for a bialgebra and autonomy for a monoidal category was obtained in [DMS03] and
called “dualization.” The concept of antipode ν for an opmonoidal monad T on an autonomous
monoidal category A is defined in [BV06] and the pair (T , ν) is there called a “Hopf monad.”
Autonomy is a special case of ∗-autonomy so [BV06] answered our questions in an important
special case.

Our present paper answers the question of lifting ∗-autonomy. Our motivation from quantum
groupoids causes us to write in terms of a monoidal comonad G on a monoidal category C
rather than an opmonoidal monad T . Since we are interested in abstracting our work to monoidal
comonads in monoidal bicategories, this duality is not a serious point of difference. There are
some new subtleties required in the non-autonomous case arising from the lack of unit and counit
morphisms involved with duals in C ; we must be content with the coevaluation and evaluation
morphisms associated with the weaker duality of ∗-autonomy.

To support our claim (following [DS04]) that quantum groupoids lead to ∗-autonomous
monoidal comonads, we should explain how an ordinary groupoid A with finite homsets A(a, b)

leads to such a comonad on some non-braided ∗-autonomous monoidal category. Let V be a
complete and cocomplete ∗-autonomous monoidal category; we have in mind the monoidal cate-
gory obtained from the category of (not necessarily finite dimensional) vector spaces by applying
the Chu construction [B95]. Let A denote the set of morphisms and let C denote the set of objects
of the groupoid A. Let A be the monoidal category of A-indexed families of objects of V with
tensor product defined by

(V ⊗ W)γ =
∑

β◦α=γ∈A

Vα ⊗ Wβ.

It follows from unpublished work of Brian Day (on ∗-autonomous promonoidal categories)
that A is ∗-autonomous. A special case of this construction is when A is chaotic: that is, where
each homset is a singleton and so A = C × C. So we also have the ∗-autonomous monoidal
category C of C × C-indexed families of objects of V . There is a ∗-autonomous monoidal
comonad G on C which is defined on objects by G(V )(a,b) = A(a, b) · V(a,b), where S · X (for
a set S) denotes the coproduct of S copies of X. Furthermore, A is the category of Eilenberg–
Moore algebras for the comonad G.

In Section 1 we review closed and ∗-autonomous categories from the point of view of what
we are calling “raisers.” Section 2 reviews monoidal comonads and describes what is required
to lift a raiser from a category C to the category C G of Eilenberg–Moore G-coalgebras for a
monoidal comonad G. In Section 3 we define what it means for a monoidal comonad G to be
(left) ∗-autonomous and prove the main result of our paper, viz., that C G is (left) ∗-autonomous
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if G is. Section 4 starts from a monoidal adjunction and investigates what is required on the
adjunction to reproduce the results of Section 3 for the induced comonad. In Section 5 we show
that a Hopf algebra in a braided ∗-autonomous category gives an example of a ∗-autonomous
comonad.

1. Internal homs and raisers

Let D be an object of a monoidal category C . A left internal hom for objects B and D is a
representing object BD (or [B,D]l) for the functor

C (− ⊗ B,D) : C op → Set.

This means that the object BD comes equipped with an isomorphism

�A,B : C (
A,BD

) ∼=−−−−→C (A ⊗ B,D)

which is natural in A ∈ C . By taking A = BD and evaluating at the identity, we obtain an evalu-
ation morphism

eB : BD ⊗ B → D.

The Yoneda lemma states that natural transformations out of a representable functor are in bijec-
tion with their values at the identity morphism of the representing object. This means that �A,B

is recaptured as the composite

C
(
A,BD

) −⊗B−−−→ C
(
A ⊗ B,BD ⊗ B

) C (1,eB)−−−−−→ C (A ⊗ B,D).

For B = I , the unit for ⊗ on C , we always have the choice ID = D with eI : D ⊗ I → D

equal to the right unit isomorphism.
Our object D is called a left raiser when there is a choice of BD for all B ∈ C . Again by

Yoneda, we obtain a unique functor

S = −D : C op → C

defined on objects by SB = BD and such that �A,B becomes natural in B ∈ C . This last is
equivalent to saying that eB is natural in B in the sense of Eilenberg and Kelly [EK66]. We can
easily modify the tensor product to make the unit I strict, so we can ensure that

SI = D, �A,I = 1C (A,D), and eI = 1D.

The composite natural isomorphism

C
(
A,S(B ⊗ C)

) �A,B⊗C−−−−−→ C
(
A ⊗ (B ⊗ C),D

)

∼=−−−−→ C
(
(A ⊗ B) ⊗ C,D

) �−1
A⊗B,C−−−−−→ C (A ⊗ B,SC)
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will be denoted by

ωA,B,C : C (
A,S(B ⊗ C)

) ∼=−−−−→C (A ⊗ B,SC).

It follows that, if D is a left raiser, so too is SC = CD with BSC = S(B ⊗ C). Note also that
ωA,I,C = 1C (A,SC) and ωA,B,I = �A,B .

Assume that D is a left raiser for the remainder of this section.
By taking A = S(B ⊗ C) and evaluating at the identity, the isomorphism ωA,B,C defines

a morphism

eB,C : S(B ⊗ C) ⊗ B → SC.

By Yoneda, ωA,B,C is recovered as the composite

C
(
A,S(B ⊗ C)

) −⊗B−−−→ C
(
A ⊗ B,S(B ⊗ C) ⊗ B

) C (1,eB,C)−−−−−−→ C (A ⊗ B,SC).

In particular, eI,C = 1SC . From the definition of ω in terms of � and �−1, we obtain the com-
mutativity of the triangle2

S(B ⊗ C) ⊗ B ⊗ C SC ⊗ C
eB,C⊗1

D.

eCeB⊗C

In particular, eB,I = eB : SB ⊗ B → D.
We define a natural isomorphism

ρA,B = ω−1
I,A,B : C (A,SB)

∼=−−−−→C
(
I, S(A ⊗ B)

)
.

Taking A = SB and evaluating at the identity, we obtain a morphism

nB : I → S(SB ⊗ B)

natural in B . By Yoneda, ρA,B is the composite

C (A,SB)
S(−⊗B)−−−−−→ C

(
S(SB ⊗ B),S(A ⊗ B)

) C (nB,1)−−−−−→ C
(
I, S(A ⊗ B)

)
.

Using the formula for ωI,A,B in terms of eA,B , we obtain the commutativity of the triangle

SB S(SB ⊗ B) ⊗ SB
nB⊗1

SB.

eSB,B1SB

2 We are now writing as if C were strict monoidal, however this is not necessary.
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Proposition 1.1. The following triangle commutes.

C (I, S(A ⊗ B ⊗ C)) C (A,S(B ⊗ C))
ωI,A,B⊗C

C (A ⊗ B,SC)

ωA,B,CωI,A⊗B,C

Proof. This is verified by the following calculation.

ωA,B,C ωI,A,B⊗C = �−1
A⊗B,C �A,B⊗C �−1

A,B⊗C �I,A⊗B⊗C

= �−1
A⊗B,C �I,A⊗B⊗C

= ωI,A⊗B,C �
Corollary 1.2. The following triangles commute.

(i) C (A,S(B ⊗ C)) C (A ⊗ B,SC)
ωA,B,C

C (I, S(A ⊗ B ⊗ C)).

ρA⊗B,CρA,B⊗C

(ii) I S(SB ⊗ B)
nB

S(S(A ⊗ B) ⊗ A ⊗ B).

S(eA,B)nA⊗B

(iii) I SSI
nI

S(SA ⊗ A).

S(eA)nA

Proposition 1.3. The inverse of �I,B is the composite

C (B,SI)
S−−−−→C (SSI,SB)

C (nI ,1)−−−−−→ C (I, SB).

Proof. �I,B = ωI,B,I has inverse ρB,I and this composite is the formula for ρB,I in terms
of nI . �
Corollary 1.4.

(i) The inverse of �A,B is the composite
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C (A ⊗ B,D)
S−−−−→ C

(
SD,S(A ⊗ B)

) C (nI ,1)−−−−−→ C
(
I, S(A ⊗ B)

)

−⊗A−−−→ C
(
A,S(A ⊗ B) ⊗ A

) C (1,eA,B)−−−−−−→ C (A,SB).

(ii) A left inverse for S : C (B,SI) → C (SSI,SB) is the composite

C (SSI,SB)
C (nI ,1)−−−−−→ C (I, SB)

�I,B−−−→ C (B,SI).

Proof. (i) From Proposition 1.1, we have

�I,A⊗B = ωI,A⊗B,I

= ωA,B,I ◦ ωI,A,B

= �A,B ◦ ωI,A,B.

So the result follows from Proposition 1.3 and the formula for ωI,A,B in terms of eA,B .
(ii) This is a reinterpretation of Proposition 1.3. �
We also introduce the natural family of morphisms

πA,B,C = (
C (A ⊗ B,C)

S−−−−→C
(
SC,S(A ⊗ B)

) ωSC,A,B−−−−−→ C (SC ⊗ A,SB)
)
.

Taking C = A ⊗ B and evaluating at the identity, we obtain the natural transformation

eA,B : S(A ⊗ B) ⊗ A → SB.

By Yoneda, it follows that πA,B,C is the composite

C (A ⊗ B,C)
S(−)⊗A−−−−−→ C

(
SC ⊗ A,S(A ⊗ B) ⊗ A

) C (1,eA,B)−−−−−−→ C (SC ⊗ A,SB).

Proposition 1.5. The natural transformation π is invertible if and only if S is fully faithful.

Proof. If S is fully faithful then each πA,B,C is invertible (from the definition, using invertibility
of ωSC,A,B ). Conversely, if π is invertible, we may take A = I in the definition of πA,B,C to
obtain S : C (B,C) → C (SC,SB) which is consequently invertible. So S is fully faithful. �

A right internal hom for objects A and E of C is a representing object EA (or [A,E]r ) for
the functor C (A ⊗ −,E) : C op → Set.

Corollary 1.6. If S is fully faithful then (SB)SC ∼= BC.

Proof. The representability of C (SC⊗−, SB) by BC is guaranteed by the invertibility of π . �
An object E is called a right raiser when there exists a choice of EA for all A ∈ C .
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Proposition 1.7. A left raiser D is a right raiser if and only if the functor

S : C op → C

has a left adjoint S′ : C op → C .

Proof. To say S has a left adjoint means that, for each object A, there is an object S′A and an
isomorphism C (A,SB) ∼= C (B,S′A), natural in B . However, we have the natural isomorphism
C (A,SB) ∼= C (A ⊗ B,D), and therefore S′A ∼= DA. �

Notice that the existence of a family of “commutativity” isomorphisms cA,B : A⊗B ∼= B ⊗A

in C , which only need to be natural in one of the indices A or B , implies that every left raiser D

is automatically also a right raiser; moreover, DA ∼= AD. This is the case when C is braided, or,
a fortiori, symmetric.

We call D a raiser when it is both a left and right raiser. In this case, the unit and counit for
the adjunction S′ 	 S are natural families of morphisms αA : A → SS′A and βB : B → S′SB

in C . (The apparent wrong direction of the counit β is explained by the contravariantness of S;
Peter Freyd has called this situation “a contravariant adjunction on the right.”)

A monoidal category is left closed when every object is a left raiser. It is closed when every
object is a raiser.

Following Chapter 12 of [S07] we call the object D left dualizing when it is a raiser and each
αA : A → SS′A is invertible. By Proposition 1.7, this is equivalent to requiring D to be a left
raiser for which S has a fully faithful left adjoint. We call D dualizing when it is a left raiser and
S is an equivalence. Since an equivalence has a fully faithful left adjoint, it follows that D is also
a right raiser.

A monoidal category is left ∗-autonomous when it is equipped with a left dualizing object. It
is ∗-autonomous [B95] when it is equipped with a dualizing object.

Each left ∗-autonomous category is left closed since

BA ∼= B(SS′A) ∼= S(B ⊗ S′A).

Each ∗-autonomous category is closed since it is left ∗-autonomous and so left closed, and (by
looking at C with the reversed tensor product) has right internal hom defined by

BC ∼= S′(SB ⊗ C).

2. Monoidal comonads

A monoidal comonad on a monoidal category C consists of a comonad G = (G, δ, ε) on C
such that G : C → C is a monoidal functor and δ : G → GG and ε : G → 1C are monoidal
natural transformations. So, apart from the comonad axioms, we have a natural transformation

ϕA,B : GA ⊗ GB → G(A ⊗ B)
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and a morphism ϕ0 : I → GI satisfying the following conditions (where we continue to write as
if C were strict monoidal).

GA ⊗ GB ⊗ GC
1⊗ϕB,C

ϕA,B⊗1

GA ⊗ G(B ⊗ C)

ϕA,B⊗C

G(A ⊗ B) ⊗ GC
ϕA⊗B,C

G(A ⊗ B ⊗ C)

GA
ϕ0⊗1 1⊗ϕ0

1GI ⊗ GA

ϕI,A

GA ⊗ GI

ϕA,I

GA

GA ⊗ GB G(A ⊗ B)
ϕA,B

GG(A ⊗ B)

δ

GGA ⊗ GGB

δ⊗δ

G(GA ⊗ GB)
ϕGA,GB

GϕA,B

GA ⊗ GB
ϕA,B

ε⊗ε

G(A ⊗ B)

ε

A ⊗ B

I

ϕ0

ϕ0
GI

δ

GI
Gϕ0

G2I

GI

εI

I

ϕ0

1
I

Let C G denote the category of Eilenberg–Moore coalgebras for the comonad G. Objects are
pairs (A,γ : A → GA), called G-coalgebras, satisfying

A

GA

γ

GGA
δA

GA
γ

Gγ and

A GA

A.

γ

εA
1

Morphisms f : (A,γ ) → (B,γ ) in C G are morphisms f : A → B in C such that the square

A GA
γ

GB

Gf

B

f

γ

commutes.
We make a note of the following fact:
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Proposition 2.1. If G : C → C is a comonad with a left adjoint T : C → C , then T becomes
a monad and C G ∼= C T . Furthermore, if G is a monoidal comonad then T is an opmonoidal
monad.

It is well known [M02] that, if G is a monoidal comonad, then C G becomes monoidal in such
a way that the underlying functor U : C G → C becomes strict monoidal. The tensor product
for C G is defined by

(A,γ ) ⊗ (B,γ ) = (
A ⊗ B,A ⊗ B

γ⊗γ−−−→ GA ⊗ GB
ϕA,B−−−→ G(A ⊗ B)

)

and the unit object is (I, ϕ0).
In the dual setting of opmonoidal monads, the paper of A. Bruguières and A. Virelizier [BV06]

provides the structure on the monad in order for left (or right) autonomy of C to lift to the
category of Eilenberg–Moore algebras. Here we are interested in lifting ∗-autonomy from C
to C G. We begin with structure weaker than ∗-autonomy.

Assume we merely have a functor S : C op → C that we would like to lift to C G.

(C G)op S

Uop

C G

U

C op S
C

By [S72], we require a G-coaction on SUop; that is, a natural transformation

ν̂ : SUop → GSUop

satisfying two conditions. Since U has a right adjoint R defined by RA = (GA,δA), such ν̂ are
in bijection with natural transformations

ν : S → GSGop

(where we use the fact that G = UR) satisfying:

GSG
εSG

S

ν

Sε
SG,

(Axiom 1)

S GSG
ν

GGSG

δSG

GSG

ν

GGSGG.
GνG

GGSδ

(Axiom 2)
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Proposition 2.2. If S : C op → C is a functor and ν : S → GSG is a natural transformation
satisfying Axioms 1 and 2 then a functor S̄ : (C G)op → C G is defined by

S̄(A,γ ) = (SA,GSγ ◦ νA), S̄f = Sf.

Now suppose we also have a natural transformation

ωA,B,C : C (
A,S(B ⊗ C)

) → C (A ⊗ B,SC).

By Yoneda, such natural transformations are in bijection with natural transformations

eB,C : S(B ⊗ C) ⊗ B → SC.

The bijection is determined by eB,C = ωS(B⊗C),B,C(1S(B⊗C)) and ωA,B,C is the composite

C
(
A,S(B ⊗ C)

) −⊗B−−−→ C
(
A ⊗ B,S(B ⊗ C) ⊗ B

) C (1,eB,C)−−−−−−→ C (A ⊗ B,SC).

As we shall see, the condition that e is a G-coalgebra morphism is encapsulated in the fol-
lowing axiom.

S(A ⊗ B) ⊗ GA

GSG(A ⊗ B) ⊗ GGA

νA⊗B⊗δA

G(SG(A ⊗ B) ⊗ GA)

ϕSG(A⊗B),GA

G(S(GA ⊗ GB) ⊗ GA)
G(SϕA,B⊗1)

GSGB

GeGA,GB

S(A ⊗ B) ⊗ A
1⊗εA

SB
eA,B

νB

(Axiom 3)

Proposition 2.3. Assuming Axioms 1, 2, and 3, the morphism eA,B becomes a G-coalgebra
morphism

eA,B : S̄(
(A,γ ) ⊗ (B,γ )

) ⊗ (A,γ ) → S̄(B, γ )

for G-coalgebras (A,γ ) and (B,γ ).
Conversely, if eX,Y is a G-coalgebra morphism when X = (GA,δA) and Y = (GB, δB) are

cofree G-coalgebras, then Axiom 3 holds.
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Proof. The following diagram commutes.

S(A ⊗ B) ⊗ A S(A ⊗ B) ⊗ GA
1⊗γ

S(A ⊗ B) ⊗ GGA
1⊗δA

1⊗Gγ

GSG(A ⊗ B) ⊗ GGA

νA⊗B⊗1

G(SG(A ⊗ B) ⊗ GA)

ϕ

G(S(GA ⊗ GB) ⊗ GA)

G(Sϕ⊗1)

GSGB

GeGA,GB

GSB

GSγ

GSG(A ⊗ B) ⊗ A

νA⊗B⊗1

GS(GA ⊗ GB) ⊗ A

GSϕ⊗1

GS(A ⊗ B) ⊗ A

GS(γ⊗γ )⊗1

GS(A ⊗ B) ⊗ GA

1⊗γ

G(S(A ⊗ B) ⊗ A)

ϕ

GeA,B

GSG(A ⊗ B) ⊗ GA
1⊗γ 1⊗Gγ

GS(GA ⊗ GB) ⊗ GA

GSϕ⊗1

GS(γ⊗γ )⊗1

G(S(GA ⊗ GB) ⊗ A)

ϕ

G(S(γ⊗γ )⊗1)

G(SG(A ⊗ B) ⊗ A)

ϕ

G(1⊗γ )

G(Sϕ⊗1)

G(1⊗γ )

G(S(GA ⊗ B) ⊗ GA)

G(S(1⊗γ )⊗1)

GeGA,B

G(S(GA ⊗ B) ⊗ A)

G(S(1⊗γ )⊗1)

G(S(γ⊗1)⊗1)

G(1⊗γ )

By Axiom 3, the top route around this diagram is

S(A ⊗ B) ⊗ A

S(A ⊗ B) ⊗ GA
1⊗γ

S(A ⊗ B) ⊗ A

1⊗εA

1
SB

eA,B

GSGB
νB

GSB
GSγ

and, therefore, the following diagram commutes

S(A ⊗ B) ⊗ A

GSG(A ⊗ B) ⊗ A

νA⊗B⊗1

GS(GA ⊗ GB) ⊗ A

GSϕ⊗1

GS(A ⊗ B) ⊗ A
GS(γ⊗γ )⊗1

GS(A ⊗ B) ⊗ GA
1⊗γ

G(S(A ⊗ B) ⊗ A)

ϕ

GSB

GeA,B

SB
eA,B

GSGB
νB GSγ

which is precisely the condition for eA,B to be a G-coalgebra morphism.
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To prove the converse statement we observe that the diagram

S(A ⊗ B) ⊗ GA

S(A ⊗ B) ⊗ A

SB

GSGB

S(GA ⊗ B) ⊗ GA

GSG(A ⊗ B) ⊗ GGA

G(SG(A ⊗ B) ⊗ GA)

S(GA ⊗ GB) ⊗ GA

GSG(GA ⊗ GB) ⊗ GGA

G(SG(GA ⊗ GB) ⊗ GA)

G(S(GGA ⊗ GGB) ⊗ GA)

G(S(GA ⊗ GB) ⊗ GA)

SGB

GSGGB

GSGB

1⊗ε

S(ε⊗1)⊗1

ν⊗δ
S(1⊗ε)⊗1

e

e

ν⊗δGSG(ε⊗ε)⊗1

ϕ
ϕ

G(SG(ε⊗ε)⊗1)

G(Sϕ⊗1)

G(Sϕ⊗1)

G(S(δ⊗δ)⊗1)G(S(Gε⊗Gε)⊗1)

1

Ge

e

ν
Sε

ν

GSδ

GSGε

1

(†)

commutes. The outside of the diagram is Axiom 3 and the region labeled by (†) exactly expresses
that eGA,GB is a G-coalgebra morphism. �
Corollary 2.4. If A, B , and C are G-coalgebras then there is a natural transformation ωA,B,C

such that the following square commutes.

C G(A, S̄(B ⊗ C))
ωA,B,C

C G(A ⊗ B, S̄C)

C (UA,S(UB ⊗ UC))
ωUA,UB,UC

C (UA ⊗ UB,SUC)

The condition that a morphism

nI : I → SSI
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should be a G-coalgebra morphism is given by

I

SSI

nI

GSGSI
νSI

GSGSGI.
GSGSϕ0

GSSI

GSνI

GI
ϕ0 GnI

(Axiom 4)

Theorem 2.5. Suppose D is a left raiser in the monoidal category C and define S, e, and n

as in Section 1. Suppose (G, δ, ε) is a monoidal comonad on C . If ν : S → GSG is a natural
transformation satisfying Axioms 1, 2, 3, and 4 then (D,GSϕ0 ◦ νI ) is a left raiser in C G.

Proof. By Proposition 2.3 and the fact that eB = eB,I , we have that eB : S̄(B, γ ) ⊗ (B,γ ) →
S̄(I, ϕ0) is a G-coalgebra morphism. By Axiom 4 and Corollary 1.2(iii), we have that nA :
(I, ϕ0) → S̄(S̄(A,γ ) ⊗ (A,γ )) is a G-coalgebra morphism. From the formula for ρA,B in terms
of n, we see that ρA,B restricts as follows:

C G(A, S̄B) C G(I, S̄(A ⊗ B))
ρA,B

C (I, S(UA ⊗ UB)).C (UA,SUB)
ρUA,UB

Since ρA,B = ω−1
I,A,B , it follows from Corollary 1.2(i) that the component ωI,A,B :C G(I, S̄(A ⊗

B)) → C G(A, S̄B) is invertible. By Proposition 1.1, it follows that

ωA,B,C : C G
(
A, S̄(B ⊗ C)

) → C G(A ⊗ B, S̄C)

is invertible. Taking C = (I, ϕ0), we have that S̄(I, ϕ0) = (D,GSϕ0 ◦ νI ) is a left raiser in C G,
as required. �

In other words, we have

C G(A ⊗ B,C)
πA,B,C

C G(S̄C ⊗ A, S̄B)

C (UA ⊗ UB,UC)
πUA,UB,UC

C (SUC ⊗ UA,SUB)

for A,B,C ∈ C G. It follows that if the π for C is injective, then so is the π for C G.



C. Pastro, R. Street / Journal of Algebra 321 (2009) 3494–3520 3507
3. Star-autonomous monoidal comonads

Suppose G is a monoidal comonad on the monoidal category C . Suppose S : C op → C has
a left adjoint S′ : C → C op with unit α : 1 → SS′ and counit β : 1 → S′S. Suppose we have
ν : S → GSG and ν′ : S′ → GS′G each satisfying Axioms 1 and 2 so that we obtain liftings

S̄ : (C G
)op → C G and S̄′ : C G → (

C G
)op

.

Consider the following conditions:

G GSS′Gα

SS′G

αG

GSGS′G,
νS′G

GSν′ (Axiom 5)

G GS′S
Gβ

S′SG

βG

GS′GSG.

ν′
S′G

GS′ν (Axiom 6)

Proposition 3.1. The unit αA : (A,γ ) → S̄S̄′(A,γ ) is a G-coalgebra morphism for each
G-coalgebra γ : A → GA if and only if Axiom 5 holds. The counit βA : (A,γ ) → S̄′S̄(A,γ )

is a G-coalgebra morphism for each G-coalgebra γ : A → GA if and only if Axiom 6 holds.
Consequently, if Axioms 5 and 6 hold, then S̄′ is a left adjoint for S̄.

Proof. The outside of the following diagram expresses that αA : (A,γ ) → S̄S̄′(A,γ ) is a
G-coalgebra morphism.

A GA
γ

GSS′A

GαA

SS′A

αA

GSGS′A

νS′A

GSGS′GA
GSGS′γ

GSν′
A

SS′GA
SS′γ

νS′GA

αGA

(†)
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The two unlabeled regions commute by naturality and the region labeled by (†) is simply Ax-
iom 5. Conversely, for all objects B of C , taking A = GB and γ = δB in the G-coalgebra
condition, we obtain the commutativity of the region labeled by (‡) in the following diagram.

GB GGB
δB

GB
GεB

GSS′B

GαB

SS′GB

αGB

GSGS′GB

νS′GB

GSGS′GGB
GSGS′δB

GSGS′GB
GSGS′GεB

GSν′
B

GSS′GB

GαGB

GSS′εB

GSν′
GB

(‡)

The unlabeled squares in the diagram commute by functoriality and naturality, so the outside of
the square commutes and is seen to be Axiom 5.

The second sentence is dealt with symmetrically. �
Definition 3.2. A monoidal comonad G on a left ∗-autonomous monoidal category C is left ∗-
autonomous when it is equipped with natural transformations ν : S → GSG and ν′ : S′ → GS′G,
each satisfying Axioms 1 and 2, with ν satisfying Axioms 3 and 4, and together satisfying Ax-
ioms 5 and 6. If C is ∗-autonomous, we also say G is ∗-autonomous when it is left ∗-autonomous.

Although we obtain the following corollary as an immediate consequence of our results, it is
the desired object of this paper.

Corollary 3.3. If C is a left ∗-autonomous monoidal category and G is a left ∗-autonomous
monoidal comonad on C then the monoidal category C G is left ∗-autonomous and the strict
monoidal underlying functor U : C G → C preserves left internal homs. If C is ∗-autonomous
then so is C G and U preserves left and right internal homs.

4. Monoidal adjunctions and monoidal comonads

Now we step back a bit and work in the reverse direction. Suppose U 	 R : C → A with unit
η : 1 → RU and counit ε : UR → 1, such that U is strong monoidal and the square

A op C opU

C

S

A

S

U

commutes. Then we obtain a monoidal comonad G = UR on C as

δ = UηR : UR → URUR,

ε = ε : UR → 1,
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ϕ = (
URA ⊗ URB

ϕ−→ U(RA ⊗ RB)
UηRA⊗RB−−−−−−→ URU(RA ⊗ RB)

URϕ−1−−−−→ UR(URA ⊗ URB)
UR(εA⊗εB)−−−−−−−→ UR(A ⊗ B)

)
,

ϕ0 = (
I

ϕ0−→ UI
UηI−−→ URUI

URϕ−1
0−−−−→ URI

)
.

There is also a candidate for ν : S → GSG, viz.,

S
Sε−→ SUR = USR

UηSR−−−→ URUSR = URSUR. (�)

Proposition 4.1. Axioms 1 and 2 hold for the data above.

Proof. The following diagram shows that Axiom 1 is satisfied:

S SUR
Sε

USR
=

URUSR
UηSR

USR

εUSR

URSUR
=

SUR,

εSUR

USR

1
=

and from the diagram

URSUR URURSUR

URSURUR

URUSRUR

URURUSRUR

URSUR

URUSR

URURUSR

URSUR

URURSUR

URSεUR

=

URUηSRUR

=

URUηSR URεSUR

UηRSUR

UηRSUR

1

URSUηR

URURUSηR =

=

1

we may conclude that δSG = GGSδ ◦ GνG so that Axiom 2 is satisfied. �
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Now suppose A and C are equipped with natural transformations eA,B : S(A⊗B)⊗A → SB

and that U preserves these; that is, the following diagram commutes.

US(A ⊗ B) ⊗ UA

U(S(A ⊗ B) ⊗ A)

ϕ

∼=

USB
UeA,B

SUB

=

SU(A ⊗ B) ⊗ UA

=

S(UA ⊗ UB) ⊗ UA
Sϕ⊗1

eUA,UB

Proposition 4.2. In this case, Axiom 3 holds.

Proof. This leads us to examine the diagram in Fig. 1. It can be seen that the unlabeled areas of
the diagram commute. The area labeled by (C) commutes by the above assumption and the area
labeled by (A) is seen to commute by examining the following diagram.

USR(A ⊗ B) ⊗ URA

URUSR(A ⊗ B) ⊗ URURA
Uη⊗Uη

URSUR(A ⊗ B) ⊗ URURA

=

U(RSUR(A ⊗ B) ⊗ RURA)

ϕ

URU(RSUR(A ⊗ B) ⊗ RURA)

Uη

UR(URSUR(A ⊗ B) ⊗ URURA)

URϕ−1

UR(SUR(A ⊗ B) ⊗ URA)

UR(ε⊗ε)

U(SR(A ⊗ B) ⊗ RA)

ϕ

URU(SR(A ⊗ B) ⊗ RA)

Uη

UR(USR(A ⊗ B) ⊗ URA)

URϕ−1

UR(USR(A ⊗ B) ⊗ URA)

1

U(RUSR(A ⊗ B) ⊗ RURA)

ϕ

=

URU(RUSR(A ⊗ B) ⊗ RURA)

Uη

=

UR(URUSR(A ⊗ B) ⊗ URURA)

URϕ−1

=

UR(ε⊗ε)

U(η⊗η)

URU(η⊗η)

UR(Uη⊗Uη)

=
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To see that the region labeled by (B) commutes observe that the following diagram commutes.

S(URA ⊗ URB) ⊗ URA

SUR(URA ⊗ URB) ⊗ URA

Sε⊗1

USR(URA ⊗ URB) ⊗ URA

=

U(SR(URA ⊗ URB) ⊗ RA)

ϕ

U(SRU(RA ⊗ RB) ⊗ RA)

U(S(RA ⊗ RB) ⊗ RA)

SU(RA ⊗ RB) ⊗ URA
Sϕ−1⊗1

US(RA ⊗ RB) ⊗ URA

=

SURU(RA ⊗ RB) ⊗ URA
SURϕ−1⊗1

SU(RA ⊗ RB) ⊗ URA

SUη

USRU(RA ⊗ RB) ⊗ URA

USRϕ−1⊗1
US(RA ⊗ RB) ⊗ URA

USη

U(SRϕ−1⊗1) U(Sη⊗1)

Sε⊗1

=

= =

ϕ

ϕ

By our assumption that U preserves e the upper route of the above diagram is

S(URA ⊗ URB) ⊗ URA
e−→ SURB

1−→ USRB
Ue←−− U(S(RA ⊗ RB) ⊗ RA)

which then shows the commutativity of the region labeled by (B). �
Remark 4.3. By Yoneda, Axiom 3 is equivalent to the commutativity of

C (A ⊗ B,C) C (SC ⊗ A,SB)
π

C (SC ⊗ GA,GSGB)
C (1⊗εA,νB)

C (G(A ⊗ B),GC)

G

C (GA ⊗ GB,GC)

C (ϕA,B ,1)

C (SGC ⊗ GA,SGB)
π

C (G(SGC ⊗ GA),GSGB).
G

C (GSGC ⊗ GGA,GSGB)

C (ϕSGC,GA,1)

C (νC⊗δA,1)

Proposition 4.4. The formula for ν given in (�) recovers the original ν when applied to the
adjunction U 	 R : C → C G in the setting of Proposition 4.1.
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Proof. We have that U(A,γ ) = A, RX = (GX,δX), ε : UR → 1 is just the counit ε of the
comonad, and η : 1 → RU has components γ : (A,γ ) → (GA,δA). So the ν given in (�)
becomes

SX

SGX

SεX

GSGGX
νGX

GSGX. �
GSδX

GSGX
νX

GSGεX

1

Now suppose A and C are equipped with morphisms nI : I → SSI and that U preserves
this; that is, the following diagram commutes.

I

UI

ϕ0

USSI
UnI

SSUI

=

SSI
nI SSϕ

Proposition 4.5. In this case, Axiom 4 holds.

Proof. In the diagram in Fig. 2 the unlabeled regions are easily seen to commute, the two regions
labeled by (A) commute by our assumption that U preserves nI , and the region labeled by (B) is
seen to commute from the following diagram.

US2I S2UI
=

S2URUI
S2Uη

S2URI

S2URϕ−1
0

US2RI

=

URUS2RI

Uη

URS2URI

=

URS2I
URS2ε

US2RUI

US2η =

US2Rϕ−1
0

URUS2RUI

Uη

URUS2Rϕ−1
0

URS2URUI

=

URS2UI

URS2ε

URS2ϕ−1
0

URUS2I

Uη

URS2UI

=

1

URUS2η

URS2Uη

�
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Finally, suppose that in A and C we have S′ 	 S with unit α : 1 → SS′ and counit β : 1 → S′S
and that U preserves these, meaning both

U USS′Uα

SS′U

=
αU

and

U US′S
Uβ

S′SU

=
βU

commute.

Proposition 4.6. In this case, both Axioms 5 and 6 hold.

Proof. The commutativity of the following diagram proves that Axiom 5 holds and Axiom 6 is
proved with a similar diagram.

G = UR USS′R

URUSS′R

URUR

URSS′UR

URSS′

UR
UηR

UαR

UηSS′R
=

URUαR

URαUR

URε

URSS′ε

URα

SS′UR

SURS′UR

USRS′UR

URUSRS′UR

URSURS′UR

SUS′R

SURUS′R

USRUS′R

URUSRUS′R

URSURUS′R

SUS′R

USS′R

URUSS′R

URSUS′R

URSS′UR

αUR =
=

SεS′UR

=

=
=

UηSRS′UR

=

=

=

1
SεUS′R

SUηS′R

=
USηS′R

UηSRUS′R
URUSηS′R

=

URSUηS′R

=

UηSS′R

=

=

=

URSS′ε

�
5. The Hopf algebra example

In this section we will show that any Hopf algebra with bijective antipode H =
(H,μ,η, δ, ε, ν) in a braided ∗-autonomous category C gives rise to a ∗-autonomous monoidal
comonad G : C → C defined on objects by GX = HX. A left adjoint for this G is given by
T = H ⊗ − and so, by Proposition 2.1, there is a bijection between G-coalgebras X → XH

and T -algebras H ⊗ X → X. As tensors are easier to work with here than homs, we will take
this latter view in the remainder of this section and show that T is a ∗-autonomous opmonoidal
monad.

For the functor T = H ⊗ − : C → C , the data of a ∗-autonomous monad is given as follows:
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μ = H ⊗ H ⊗ X
μ⊗1−−−→ H ⊗ X,

η = X
η⊗1−−→ H ⊗ X,

ψ = (
H ⊗ X ⊗ Y

δ⊗1⊗1−−−−→ H ⊗ H ⊗ X ⊗ Y
1⊗c⊗1−−−−→ H ⊗ X ⊗ H ⊗ Y

)
,

ψ0 = H
ε−→ I,

ν = (
H ⊗ S(H ⊗ X)

c−→ S(H ⊗ X) ⊗ H
1⊗ν−−→ S(H ⊗ X) ⊗ H

e−→ SX
)
,

ν′ = (
H ⊗ S′(H ⊗ X)

ν−1⊗S′c−1−−−−−−→ H ⊗ S′(X ⊗ H)
e′−→ S′X

)
.

That T forms an opmonoidal monad is standard and so in the remainder of this section we
concentrate on showing that this data satisfies the axioms of a ∗-autonomous monad.

5.1. Lifting the internal hom

We begin with Axiom 3. The remainder of the axioms are straightforward and will be proved
in Section 5.2. Axiom 3 is meant to express that eA,B : S(A ⊗ B) ⊗ A → SB is a morphism of
T -algebras, i.e., a morphism of left H -modules. We will prove this statement directly, instead of
proving Axiom 3. It follows from the more general statement in Proposition 5.1 below.

In this section we need only assume that C is a braided closed category. Suppose H is a
Hopf algebra in C and that M,N ∈ C are left H -modules. Denote by eM,N : MN ⊗ M → N the
morphism obtained by evaluating the isomorphism C (L,MN) ∼= C (L ⊗ M,N) at the identity.

Note that we have the composites

H ⊗ MN ⊗ M
1⊗e−−→ H ⊗ N

μ−→ N,

MN ⊗ H ⊗ M
1⊗μ−−−→ MN ⊗ M

e−→ N

which, under the isomorphism C (L ⊗ M,N) ∼= C (L,MN), become respectively left and right
actions of H on MN :

μl : H ⊗ MN → MN,

μr : MN ⊗ H → MN.

It is not too difficult to see that these actions make MN into an H -bimodule or a left H ⊗ H op-
module. Restriction of scalars along the algebra morphism

H
δ−→ H ⊗ H

1⊗ν−−→ H ⊗ H op

makes MN into a left H -module.

Proposition 5.1. The evaluation morphism eM,N : MN ⊗ M → N is a morphism of H -modules.
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Proof. By the definition of μl and μr the following two diagrams commute.

H ⊗ MN ⊗ M

MN ⊗ M N

H ⊗ N

μl⊗1

e

1⊗e

1⊗e

MN ⊗ H ⊗ M

MN ⊗ M N

MN ⊗ M

μr⊗1

e

1⊗μ

e

Using these facts it is possible to see that the diagram (where we have dropped the “⊗”)

H MN M

H H H MN M

H MN H H M H MN H H M MN H M

MN M

N

H H MN M

H MN H M

H MN H M

H MN M H N

MN M

δ3 1 1

δ 1 1

1

1 c
HH,MN

1

1 1 ν 1 1 μl 1 μ

1 1 μ 1 μr 1
1 μ

e

1 c 1

1 1 δ 1

1 1 ε 1

1 1 η 1
μl 1

1 e

μl μ

μ

commutes and expresses that eM,N is a morphism of H -modules. �
That eA,B : S(A ⊗ B) ⊗ A → SB becomes a morphism of H -modules follows by choosing

M = A and N = BD.

5.2. The remainder of the axioms

It is left to show that the remainder of the axioms hold. Axioms 1 and 2 may respectively be
expressed in terms of a monad as follows:

ST S

T ST ,

Sη

ηST ν

T T ST

T T ST T T ST .

ST ST
μST

T T Sμ

T νT

ν

ν
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The diagram

S(H ⊗ X) H ⊗ S(H ⊗ X)

S(H ⊗ X) ⊗ H

S(H ⊗ X) ⊗ HSX

η⊗1

1⊗η

1⊗η
S(η⊗1)

c

1⊗ν

e

shows that Axiom 1 holds and Axiom 2 is seen to be satisfied since the following diagram
commutes (we have dropped the “⊗” symbol).

H H S(H X)

H H S(H H X)

H S(H H X) H

H S(H H X) H H S(H X) S(H X) H S(H X) H

SX

S(H X) H H S(H X) H

S(H X) H

S(H H X) H H

S(H H X) H H

S(H H X) H H

S(HX)HH

S(H X) H H

S(H H X) H H

cHH,S(HX)

1 1 S(μ 1)

cHH,S(HHX)

1 c

cH,S(HHX)H

1 1 ν

cH,S(HHX)H

1 e c 1 ν

e

S(μ 1) 1 1

1 μ

1 c

1 ν

1 ν ν

e

1 c

1 ν 1

e 1

1 1 ν

1 μ

S(μ 1) 1 1

e 1

e

Similar diagrams show that S′ and ν′ also satisfy Axioms 1 and 2.
Axiom 4 expressed in terms of a monad is

T I

T SSI T ST ST I T ST SI,

SSII
ψ0

T nI

T SνI T ST Sψ0

νSI

nI
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and that this holds may be seen from the following diagram (where we have again dropped the
“⊗”).

H I

H SSI

H S(SH H)

H S(SH H) H S(SI H)

H S(SH H) H S(H SH)

H S(H SI)

S(H SI) H

S(H SI) HSSI H

H S(H SI)

S(H SI) H

SSI

1nI

ε

1Se

1S(ε 1)1Se

1S(ε 1)

c

1S(1ν)

1Sc

1S(Sε 1)
1S(1Sε)

c
1S(ν 1)

1νS(ν 1)1

e

1S(Sν 1)

1S(Sε 1) 1Sc

c

e

S(ε 1)1

1 ε

nI

Axiom 5 may be expressed in terms of a monad as

T

T SS′ T ST S′T .

SS′T
αT

T α

T Sν′

νS′T

Note that the commutativity of the diagram

C (C,S′(A ⊗ B))

C (B ⊗ C,S′A) C (A,S(B ⊗ C))

C (A ⊗ B,SC)
σ

ω′

σ

ω

implies that

A ⊗ B

SS′A ⊗ B S(B ⊗ S′(A ⊗ B)) ⊗ B

SS′(A ⊗ B)
α

α⊗1

Se′⊗1

e
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commutes, and therefore, that the following diagram expressing Axiom 5 commutes.

H ⊗ X

H ⊗ SS′X

H ⊗ S(H ⊗ S′(X ⊗ H)) H ⊗ S(H ⊗ S′(H ⊗ X))

S(H ⊗ S′(H ⊗ X)) ⊗ H

S(H ⊗ S′(H ⊗ X)) ⊗ H

SS′(H ⊗ X)X ⊗ H SS′(X ⊗ H)

SS′X ⊗ H

S(H ⊗ S′(X ⊗ H)) ⊗ H

1⊗α

c

1⊗Se′

c

1⊗S(ν−1⊗S′c−1)

c
c

1⊗νS(ν⊗1)⊗1

e

α

α⊗1

SS′c−1

Se′⊗1

S(1⊗S′c−1)⊗1

e

Axiom 6 may be handled similarly. Thus T = H ⊗ − is a ∗-autonomous monad.
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