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a b s t r a c t

Outcome-dependent sampling designs are commonly used in economics, market research
and epidemiological studies. Case-control sampling design is a classic example of outcome-
dependent sampling, where exposure information is collected on subjects conditional
on their disease status. In many situations, the outcome under consideration may have
multiple categories instead of a simple dichotomization. For example, in a case-control
study, there may be disease sub-classification among the ‘‘cases’’ based on progression
of the disease, or in terms of other histological and morphological characteristics of the
disease. In this note, we investigate the issue of fitting prospectivemultivariate generalized
linearmodels to suchmultiple-category outcome data, ignoring the retrospective nature of
the sampling design.We first provide a set of necessary and sufficient conditions for the link
functions that will allow for equivalence of prospective and retrospective inference for the
parameters of interest. We show that for categorical outcomes, prospective–retrospective
equivalence does not hold beyond the generalized multinomial logit link. We then derive
an approximate expression for the bias incurred when link functions outside this class are
used. Most popular models for ordinal response fall outside the multiplicative intercept
class and one should be cautiouswhile performing a naive prospective analysis of such data
as the bias could be substantial.We illustrate the extent of bias through a real data example,
based on the ongoing Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial
by the National Cancer Institute. The simulations based on the real study illustrate that the
bias approximations work well in practice.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Case-control study is a prime example of outcome-dependent sampling where individuals are sampled conditional on
their disease status, and exposure information is then collected on the sampled individuals. Several other forms of outcome-
dependent sampling are commonly observed in econometric and social research, where explanatory variables are related
to the discrete choices already made by individuals [1]. For binary outcomes, it is well known that the disease-exposure
(response-explanatory variable) association can be consistently estimated using a prospective logistic model [2,3] under
outcome-dependent sampling. The prospective–retrospective equivalence does not hold for any other generalized linear
model (GLM) for binary data, beyond the logistic link function [4]. The necessary and sufficient conditions for the link
functions that allow prospective–retrospective equivalence as established in Kagan [4] serves as a characterization of the
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logistic link function. Ignoring the outcome-dependent nature of sampling and fitting any arbitrary link function (such as
probit, complimentary log–log) could produce biased estimates of the regression parameters of interest, and the bias could
be substantial depending on the sampling rates from the two response categories [5].
In modern medicine, with precise characterization of diseases in histological and morphological terms, it is natural to

consider disease stateswithmore than one category, i.e., theremay be subdivisionswithin the ‘‘cases’’. For example, patients
diagnosedwith cancermay have cancer of stage-I, stage-II or stage-III at the time of the diagnosis ormay simply be classified
in terms of the number/size of adenomas/tumors present. There are several popular models for analyzing categorical
response [6], for instance, the cumulative logitmodel for ordered outcomes, that onemaywant to fit in such scenarios. Itmay
also be desirable to select a fixed number of subjects from each disease category through an outcome-dependent sampling
scheme. The purpose of this note is: (i) to provide a characterization of the link functions in amultivariate generalized linear
model setting which allow for prospective–retrospective equivalence of inference as an extension of Kagan [4] and (ii) to
establish an approximation to the bias whenmultivariate generalized linear models (which includesmany commonmodels
for outcomeswithmultiple categories) are fitted to data collected by retrospective sampling in the spirit of Neuhaus [5]. It is
known that the Prentice–Pyke result for prospective and retrospective equivalence holds for the multinomial logit link, but
to the best of our knowledge, no necessary and sufficient conditions for the link function for multi-category outcomes have
been rigorously established in the literature. An additional objective is to illustrate the degree and extent of bias that could
occur, through a real example based on the PLCO cancer screening trial (based on data available in Reference [7]). In our
example, we consider ordinal disease outcomes that are classified according to the number of colorectal adenomas detected
in a subject by sigmoidoscopy screening of the distal colon (descending colon and sigmoid or rectum). We investigate the
association between smoking (never vs. ever) and the number of adenomas and illustrate the extent of bias that may result
with a naive prospective analysis of this ordinal data sampled retrospectively from the PLCO cohort. This dataset is also used
to assess the accuracy of our analytical approximation to the bias.
Wewould like to emphasize that there exists a rich literature on appropriate estimation techniques for fitting prospective

models under outcome-dependent or choice-based sampling schemes. We refer the reader to the pioneering work by Scott
andWild [8] and Breslow and Cain [9]. Their work spurred further research in this area [10–19]. Pfeffermann et al. [20] and
Pfeffermann and Sverchov [21] also considered outcome-dependent sampling in the context of sample surveys. The purpose
of this note is not to develop new inferential procedures, but to provide an analytical description of the bias for the situation
with multiple outcome categories, and to leave the reader with an intuitive sense of the bias mechanism via our real data
example. Our exposition is directed not towards developing new corrected point and interval estimates under retrospective
sampling, but to study changes in the bias under different design and model settings. Case-control or nested case-control
studies which provide data on further disease sub-classification are becoming increasingly common in practice [22]. The
analytical work in the current paper provides strong evidence, why one should not rely on naive fitting of popular models
for ordinal data under retrospective design and should employ a proper and valid inference procedure as developed in the
papers referred above, though the adjusted estimation proceduresmay appearmore complex than the ones readily available
in standard statistical softwares.
The rest of the article is organized as follows. In Section 2, we introduce the model, notations, and provide a

characterization of the link functions in a multivariate generalized linear model for categorical outcomes (MVGLM) which
allow prospective–retrospective equivalence of likelihood inference regarding the regression parameters of interest. In
Section 3, we provide an approximation to the bias when a prospective MVGLM is fitted to retrospective data, completely
ignoring the sampling design. In Section 4, we illustrate the magnitude of the bias and the quality of our approximation
through simulations based on a real study setting. Section 5 presents the concluding remarks.

2. Model and notations

2.1. Multivariate generalized linear models

Let Yi be a K -category outcome variable scaled from 1, . . . , K , and let xi denote the s × 1 vector of covariates, both
measured for subject i, i = 1, . . . , n. Let us define a set of q = K − 1 indicator variables yi = (yi1, . . . , yiq)′, where yim = 1
if subject i belongs to response classm and 0 otherwise,m = 1, . . . , q.
Following the notational convention of Fahrmeir and Tutz [23], we express the multinomial distribution for a general

categorical variable Yi, in terms of the vector yi as

f (yi | θi, φ,wi) = exp
[
y′iθi − b(θi)

φ
wi + c(yi, φ,wi)

]
,

where

θ′i =

log
 πi1

1−
q∑
j=1
πij

 , . . . , log
 πiq

1−
q∑
j=1
πij
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b(θi) = − log

(
1−

q∑
j=1

πij

)

c(yi, φ,wi) = − log

(
yi1! · · · yiq!

(
1−

q∑
j=1

yij

)
!

)
.

Here πim = P(yim = 1) = P(Yi = m). Typically, πim is modeled as a transformation of some function of the covariates xi for
allm = 1, . . . , q. In that case, we can express the model as

π(xi) = h(Ziβ) (1)

where π(xi) = (πi1(xi), . . . , πiq(xi))′; Zi is a q × p design matrix involving xi;β is a p × 1 vector of parameters; and
h = (h1, . . . , hq)′ is a vector valued function operator

h : S ⊂ Rq → M ⊂ Rq

where M is the q-dimensional simplex representing the admissible set of probabilities
M =

{
(η1, . . . , ηq) | 0 < ηj < 1,

∑q
j=1 ηj < 1

}
.

Let us now consider the class of MVGLMs for categorical data with the design matrix Zi of the following particular
structure,

Zi =


1 x′i 0 0′ · · · 0 0′
0 0′ 1 x′i · · · 0 0′
...
0 0′ 0 0′ · · · 1 x′i

 , β =



β01
β1
β02
β2
...
β0q
βq


.

In this model, the total number of parameters is given by p = (s+ 1)q. The model in (1) can also be expressed as

πim(xi) = P(Yi = m | xi) = hm(β01 + x′iβ1, . . . , β0q + x′iβq), m = 1, . . . , q,

where h = {h1, . . . , hq}′ is the multidimensional response function and hm : Rq → R is the response function
corresponding to the mth component (or category) of Y for all m = 1, . . . , q. We assume that for all m = 1, . . . , q, hm
is differentiable with respect to each co-ordinate.

2.2. Likelihood under outcome-dependent sampling scheme

Let us assume that the sampling probabilities for each individual in the population depend only on the outcomes and
let λm denote the sampling rate at which subjects from response category Y = m is sampled, m = 1, . . . , K . Let nm be the
number of subjects selected from outcome categorym and let Nm be the total number of subjects available in categorym for
the population under study. Then λm = nm/Nm. Typically, the sampling rates are unknown, as Nms are unknown except for
some special cases. Let Si be an indicator variable denoting whether subject i is selected or not from the population. Instead
of the assumption of sampling without replacement, we will assume that the sampling model is iid Bernoulli sampling
where each member from category Y = m is selected by the result of a coin toss with equal selection probability λm.
Therefore,

P(Si = 1 | Yi = m, xi) = λm.

By the Bayes theorem, we have

P(Yi = m | xi, Si = 1) =
P(Si = 1 | Yi = m, xi)P(Yi = m | xi)

P(Si = 1 | xi)

=
λmhm(β01 + x′iβ1, . . . , β0q + x′iβq)

q∑
j=1
λjhj(β01 + x′iβ1, . . . , β0q + x′iβq)+ λq+1

(
1−

q∑
j=1
hj(β01 + x′iβ1, . . . , β0q + x′iβq)

)

=
λmhm(ui1, . . . , uiq)

q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

) , (2)
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where uim = β0m+x′iβm,m = 1, . . . , q. Without loss of generality, let the response category K = q+1 denote the baseline
category. The retrospective likelihood based on the above sampling scheme is

LR(β01, . . . , β0q,β1, . . . ,βq|xi, yi, i = 1, . . . , n)

∝

n∏
i=1


q∏
m=1


λmhm(ui1, . . . , uiq)

q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)


yim

×


λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)
q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)


1−
q∑
j=1
yij
 .

However, the prospective likelihood assuming that the data was obtained through a cohort study is given by

LP(β01, . . . , β0q,β1, . . . ,βq|xi, yi, i = 1, . . . , n)

∝

n∏
i=1

 q∏
m=1

{
hm(ui1, . . . , uiq)

}yim (1− q∑
j=1

hj(ui1, . . . , uiq)

)1− q∑
j=1
yij
 .

We now establish the following theorem which provides necessary and sufficient conditions for the response functions
which will allow the effect of sampling rates in LR to be absorbed in the intercept parameters β0m,m = 1, . . . , q, and thus
allow LR to differ from LP by intercept terms only. Consequently, only for such link functions, the regression parameters
βm,m = 1, . . . , q remain identifiable via the prospective likelihood.

Theorem 1. Suppose that h1, . . . , hq are real valued functions and for m = 1, . . . , q, θm(λ) is a real valued function of the
sampling ratios, with λ = (log(λ1/λq+1), . . . , log(λq/λq+1))′. Then,

n∏
i=1


q∏
m=1


λmhm(ui1, . . . , uiq)

q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)


yim

×


λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)
q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

)


1−
q∑
j=1
yij


=

n∏
i=1

 q∏
m=1

{
hm(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ))

}yim

×

(
1−

q∑
j=1

hj(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ))

)1− q∑
j=1
yij
 (3)
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iff

hm(u1, . . . , uq) =

exp

(
dm +

q∑
j=1
cmjuj

)

1+
q∑
l=1
exp

(
dl +

q∑
j=1
cljuj

) (4)

and

log
(
λm

λq+1

)
= log

(
λm

λK

)
=

q∑
j=1

cmjθj(λ)

for some set of scalars {dm, cmj,m = 1, . . . , q, j = 1, . . . , q}. The theorem holds under the assumption that the map f : λ =
(log(λ1/λq+1), . . . , log(λq/λq+1))′ → θ(λ) = (θ1(λ), . . . , θq(λ))

′ is one-to-one and onto, that is, if we know one vector we
can retrieve the other.

Proof. The proof of this theorem resemble the argument in Kagan [4] where an analogous characterization for the logistic
link function is presented for all GLMs for binary data. The mathematical argument has to be modified for MVGLMs for
outcomes with multiple categories and due to the nature of long algebraic steps, a rigorous complete proof is relegated to
Appendix A.1. Examples of commonly used link functions which satisfy the above characterization are the multinomial and
adjacent category logit links, or any other generalized multiplicative intercept logit link functions [24]. �

3. Magnitude of bias by ignoring the sampling scheme

From Theorem 1, we know that by using LP in MVGLMmodel with link functions beyond themultiplicative intercept and
odds structure, one is not able to estimate the true model parameters by a naive prospective analysis. We now present an
approximation to the bias incurred by fitting a prospective MVGLM to these categorical observations. We treat the problem
of ignoring the sampling design as a model mis-specification problem [5,25] and use classical results from Huber [26] and
White [27] to derive properties of MLEs under the mis-specified model ignoring the sampling design.
From (2), we know that the true model which acknowledges the retrospective sampling scheme is given by

πTm(x) = P T(Y = m | x, S = 1)

=
λmhm(β01 + x′β1, . . . , β0q + x′βq)

q∑
j=1
λjhj(β01 + x′β1, . . .)+ λq+1(1−

q∑
j=1
hj(β01 + x′β1, . . .))

, (5)

form = 1, . . . , q. The false model that ignores the retrospective sampling scheme is described by

π Fm(x) = P F(Y = m | x, S = 1) = hm(β
∗

01 + x′β∗1, . . . , β
∗

0q + x′β∗q).

Note that when λ1 = λ2 = · · · = λq+1, then πTm(x) = π
F
m(x) for allm and the two likelihoods agree perfectly. However, in a

typical outcome-dependent design, sampling rates for the rare outcome categories are much higher than sampling rates for
the controls or the commonly prevalent outcome category, and this equality is extremely unlikely to hold in any practical
situation.
It is well known that the MLEs from the false model converge to (β∗01, . . . , β

∗

0q,β
∗

1, . . . ,β
∗

q) that minimizes the
Kullback–Leibler divergence (KLD) between the true model and the false model [26,28]. The KL-divergence between the
two models is defined as

KLD(T, F) = EX

[
EY/X

{
log

πTY (x)
πFY (x)

}]

= EX


q∑
j=1

πTj (x) log
πTj (x)
π Fj (x)

+

{
1−

q∑
j=1

π Tj (x)

}
log

{1−
q∑
j=1
π Tj (x)}

{1−
q∑
j=1
π Fj (x)}

 .
So (β∗01, . . . , β

∗

0q,β
∗

1, . . . ,β
∗

q), which minimize KLD(T , F), solve the system of equations:

∂

∂β∗0m
KLD(T, F) = 0 form = 1, . . . , q,

∂

∂β∗m
KLD(T, F) = 0 form = 1, . . . , q.

(6)
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Let us consider a single covariate x, to simplify the notations. The results and proof directly translate to multiple covariates.
With a single x, the equations in (6) can be expressed as,

EX


q∑
j=1

π Tj (x)

π Fj (x)
∂

∂β∗0m
π Fj (x)+

{1−
q∑
j=1
πTj (x)}

{1−
q∑
j=1
π Fj (x)}

∂

∂β∗0m

{
1−

q∑
j=1

π Fj (x)

} = 0 (7)

and

EX

x


q∑
j=1

π Tj (x)

π Fj (x)
∂

∂β∗m
π Fj (x)+

{1−
q∑
j=1
πTj (x)}

{1−
q∑
j=1
π Fj (x)}

∂

∂β∗m

{
1−

q∑
j=1

π Fj (x)

}
 = 0 (8)

form = 1, . . . , q.

Remark 1. Suppose that there is no association between Y and X , i.e., β1 = β2 = · · · = βq = 0, then πTj (x) is independent
of X . Without loss of generality, let E(X) = 0. Then, if β∗1 = β

∗

2 = · · · = β
∗
q = 0, each equation in (8) is a multiple of X and

has expected value 0. Therefore, β∗1 = β
∗

2 = · · · = β
∗
q = 0 is a solution to the equations in (8). Thus, under the null model,

using a prospective likelihood, ignoring the sampling scheme does provide consistent ML estimation for βm,m = 1, . . . , q.

Remark 2. Values of (β∗01, . . . , β
∗

0q, β
∗

1 , . . . , β
∗
q )which result in

πTj (x) = π
F
j (x)

for all x, trivially satisfy (7) and (8); the right-hand sides of these equations then reduce to the expectation of true score
function, which is zero by classical ML theory.

In a general setting, solving (7) and (8) is considerably difficult. We adopt the route followed in Neuhaus [5,25] by solving
an alternate system of equations.
For the multivariate generalized linear model as described in (1), namely, π(xi) = h(Ziβ), consider the link function

denoted by g = h−1. The equivalent model is written as
g(π(xi)) = Ziβ,

where g = (g1, . . . , gq)′ is a vector function from Rq → Rq. For a simple case with only one covariate x, the model in terms
of the link functions can be written as,

g1(π1(x), . . . , πq(x))
g2(π1(x), . . . , πq(x))

...
gq(π1(x), . . . , πq(x))

 =

β01 + β1x
β02 + β2x

...
β0q + βqx

 .
Therefore, the covariate effects under the FALSE prospective model are measured by

g1(π F1(x+ 1), . . . , π
F
q (x+ 1))− g1(π

F
1(x), . . . , π

F
q (x))

g2(π F1(x+ 1), . . . , π
F
q (x+ 1))− g2(π

F
1(x), . . . , π

F
q (x))

...

gq(π F1(x+ 1), . . . , π
F
q (x+ 1))− gq(π

F
1(x), . . . , π

F
q (x))

 =

β∗1
β∗2
...
β∗q

 . (9)

Similarly, the covariate effects under the TRUE retrospective model are measured by
g1(πT1 (x+ 1), . . . , π

T
q (x+ 1))− g1(π

T
1 (x), . . . , π

T
q (x))

g2(πT1 (x+ 1), . . . , π
T
q (x+ 1))− g2(π

T
1 (x), . . . , π

T
q (x))

...

gq(πT1 (x+ 1), . . . , π
T
q (x+ 1))− gq(π

T
1 (x), . . . , π

T
q (x))

 =

β1
β2
...
βq

 . (10)

To relate the β∗s to the βs we try to find an approximate solution for which, g(πT (x)) ≈ g(πF (x)). This is achieved by first
equating the LHS of (10) to the RHS of (9).

H1(β1, . . . , βq)
H2(β1, . . . , βq)

...
Hq(β1, . . . , βq)

 =

β∗1
β∗2
...
β∗q

 (11)
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where Hl(β1, . . . , βq) = gl(πT1 (x+ 1), . . . , π
T
q (x+ 1))− gl(π

T
1 (x), . . . , π

T
q (x)), for l = 1, . . . , q.

Next, we carry out a first-order multivariate Taylor’s expansion of the elements Hl(β1, . . . , βq) around β = (0, . . . , 0).
Note that Hl(0, . . . , 0) ≡ 0 for all l = 1, . . . , q. The details of Taylor’s expansion are relegated to Appendix A.2. Combining
the first-order Taylor expansion with the matrix equation in (11) we have,

∂

∂β1
H1(β1, . . . , βq) |(0,...,0) · · ·

∂

∂βq
H1(β1, . . . , βq) |(0,...,0)

∂

∂β1
H2(β1, . . . , βq) |(0,...,0) · · ·

∂

∂βq
H2(β1, . . . , βq) |(0,...,0)

...
∂

∂β1
Hq(β1, . . . , βq) |(0,...,0) · · ·

∂

∂βq
Hq(β1, . . . , βq) |(0,...,0)




β1
β2
...
βq

 =

β∗1
β∗2
...
β∗q



where the derivative at the null model for each Hl (generically denoted as H in the following) can be evaluated as,

∂

∂βm
H(β1, . . . , βq) |(0,...,0) =

q∑
j=1

g(j)(πT10, . . . , π
T
q0)×

 Gjm(β01, . . . , β0q){ q∑
t=1
(rt − 1)ht(β01, . . . , β0q)+ 1

}2
 , (12)

where rt = λt/λq+1, and we follow the convention that for any function f (u1, . . . , uq), f (i)(u1, . . . , uq) is the partial
derivative of f with respect to the ith co-ordinate ui. The function Gjm is defined as

Gjm(β01, . . . , β0q) = rjh
(m)
j (β01, . . . , β0q)

[
q∑
t=1

(rt − 1)ht(β01, . . . , β0q)+ 1

]

− rjhj(β01, . . . , β0q)

[
q∑
t=1

(rt − 1)h
(m)
t (β01, . . . , β0q)

]
,

and

πTj0 =
λjhj(β01, . . . , β0q)

q∑
t=1
λtht(β01, . . . , β0q)+ λq+1(1−

q∑
t=1
ht(β01, . . . , β0q))

denotes the probabilities for category j, under the null model.
Thus we have related the truemodel parameters to the limiting values of theMLE’s under the false model by an equation

of the form

β = H−1β∗ (13)

whereH is a q× qmatrix with entries depending on the sampling ratios (λm/λq+1), and the intercepts (β0m),m = 1, . . . , q.
Equivalently, a knowledge of the disease risk for each category at the baseline value of the covariate x and the sampling rates
is necessary to compute the matrix H.

Remark 3. As shown in Neuhaus [5], when q = 1, that is, for GLMs for binary data with any general link function g , and
h = g−1, ∂

∂β1
H(β1)|β1=0 simplifies to

g(1)(π0)π0(1− π0)
g(1)(µ0)µ0(1− µ0)

,

where

π0 =
rh(β01)

(r − 1)h(β01)+ 1
,

µ0 = h(β01) and, g(1)(π0) =
∂g(π)
∂π

∣∣∣∣
π=π0

.

This bias factor could be greater than or less than the one depending on the sampling ratio r = λ1/λ2, the link function, and
the baseline disease risk.
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Since the sampling rates and baseline disease risks are typically unknown for a given study, it is potentially difficult
to adopt a bias correction strategy based on the expression in (13). In case such information is available, one can devise
a corrected estimate based on the above derivation. However, when supplementary information on the total number of
subjects in each disease category is known, as for example in a nested case-control study embedded within a large cohort
study, or when case-control samples are drawn from a large hospital registry, Scott andWild [15] provide away to construct
consistent and fully efficient estimates under any link function and any outcome-dependent sampling scheme. The purpose
of this note is not to provide bias-corrected estimates and standard errors, but to study this bias expression analytically and
present a clear illustration of the theoretical relationship between sampling rates and biasmechanism through the following
data example.

4. Illustration through real data example

The data example is based on the large ongoing Prostate, Lung, Colorectal andOvarian (PLCO) Cancer Screening Trial at the
National Cancer Institute, USA [29,30]. The association between tobacco smoking and colorectal adenoma and hyperplastic
polyps in this trial has been documented in Ji et al. [7], and we use the same dataset. Data is available on patients with
sigmoidoscopy screening of the left side of the distal colon. Patients are classified into three disease states based on the
number of adenomas detected on the left side (1 = sigmoidoscopy negative, 2 = single adenoma, 3 = multiple adenoma).
We consider a subject’s cigarette smoking behavior (0 = never and 1 = ever, which includes both former and current
smokers) as the only risk factor X . After deleting subjects with missing observations, we have complete information on
47364 subjects in the trial. The cohort data is represented by the following frequency table

Adenoma 1 2 3

Smoking
0 20420 1234 329
1 22397 2213 771

Total 42817 3447 1100

In view of the natural ordering of the disease states, onemay be inclined to fit one of themost popularmodels for ordered
categorical outcomes, namely, the cumulative logit model [6] given by,

logit[P(Y ≤ m|X)] = β0m + βmX, m = 1, . . . , q = K − 1. (14)

Instead of the popular proportional odds structure, we do allow separate covariate effects (βm) for each cumulative logit
as that model appears to be more scientifically plausible in the current context. This model is also known as the partial
proportional odds model [31]. We first analyze the available data on the whole cohort of 47364 subjects using the above
cumulative logit model with smoking history as the risk factor of interest. The fitted model is given by,

logit[P(Y ≤ 1|X)] = 2.570− 0.554X logit[P(Y ≤ 2|X)] = 4.187− 0.724X . (15)

The results suggest that the smokers are less likely to have no adenoma (versus more than one adenoma) and less likely to
have single or no adenoma (versusmultiple adenoma) than the non-smokers. Both the cumulative log odds ratio parameters
are statistically significant (P < 0.001). We can consider these fitted values as the ‘TRUE’ values of the parameters, as
obtained via a prospective study of the full cohort. We deliberately chose to use the cohort data to illustrate our analytical
work for the following reason. If we analyze a single retrospective study with outcome-dependent sampling (as done in
Reference [22]), we do not know the ‘‘TRUTH’’ about the parameter had a prospective cohort study been done, and it is
impossible to empirically assess the true bias in that situation. However, the availability of the full PLCO cohort data ensures
that we know the true estimates of cumulative odds ratio parameters and by repeated retrospective sampling from this full
cohort we can assess the accuracy of our bias approximation and study it as a function of various sampling rates.
Suppose we now take a retrospective sample from the given cohort, conditional on the multiple adenoma category and

then analyze the retrospective data by the cumulative logit model, ignoring the sampling design. In fact, it is a common
practice to consider a case-control studywhich is embeddedwithin a large cohort study (Moslehi et al. [32] considers a case-
control study embeddedwithin the PLCO trial). Note that the cumulative logitmodel does not have amultiplicative intercept
structure as required by Theorem 1 for prospective–retrospective equivalence, thus the estimates of β1 and β2 obtained by
a prospective analysis of the retrospectively collected data will be typically different from the ‘TRUE’ ones obtained in (15).
The difference in magnitude of the two estimates will reflect the resultant bias. We furnish an empirical estimate of the bias
factor by first taking repeated retrospective samples from the cohort under a given sampling design (with fixed sampling
rates for each category) and then calculating the ratio of the mean of the resultant naive prospective estimates based on
retrospective data with the ‘‘true’’ estimate obtained in (15) from the full cohort. We compare this estimated bias with the
bias computed by using our analytical approximation formula as given in Section 3, under the same design and parameter
setting. The numerical results are collected in Table 1, whereas the analytical details specific to the cumulative logit model
are available in Appendix A.3. Table 1 clearly brings out the fact that withmultiple disease categories, ignoring the sampling
design may provide quite inaccurate point estimate of the disease-exposure association depending on the sampling rates.
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Table 1
Estimates of bias factor under different designs when nm individuals are sampled from disease category Y = m from the PLCO cohort,m = 1, 2, 3

Design Empirical
estimate of bias
factor β∗1 /β1

Estimate obtained by
bias approximation
formula

Empirical
estimate bias
factor β∗2 /β2

Estimate obtained by
bias approximation
formula

n1 = 1000, n2 = n3 = 500 1.12 1.11 0.82 0.85
n1 = 1000, n2 = 500, n3 = 1000 1.20 1.19 0.83 0.85
n1 = 1000, n2 = 1000, n3 = 500 1.04 1.04 0.72 0.74
n1 = 1000, n2 + n3 = 1000a 1.00 1.00 0.76 0.79
n1 = 1500, n2 = n3 = 1000 1.04 1.12 0.79 0.81
n1 = 1500, n2 = 500, n3 = 1000 1.21 1.19 0.89 0.90
n1 = 1500, n2 = 1000, n3 = 500 1.05 1.04 0.79 0.81
n1 = 4500, n2 = 3447, n3 = 1100 1.00 1.00 0.76 0.79
Under each design, 1000 replicates of the retrospective sample are generated. A cumulative logit model with unequal slopes as described in (14) is fitted
to each retrospective sample. The empirical estimate of the bias factor for each parameter is calculated by computing the ratio of the mean of the 1000
cumulative odds ratio estimates to the true prospective estimates. The true values of the model parameters are the prospective estimates obtained by
analyzing the data from the whole cohort: β01 = 2.57, β02 = 4.18, β1 = −0.554 and β2 = −0.724.
a This design samples 1000 controls (Y = 1) and 1000 cases (Y = 2 or Y = 3) from the PLCO cohort and does not sample separately from the two
categories (Y = 2) and (Y = 3).

Fig. 1. The figure on the left represents the bias in estimating the true parameter β1 by the cumulative logit model where the Bias Factor plotted on the
vertical axis denotes the ratio β1∗/β1 . The figure on the right represents the bias in estimating the true parameter β2 by the cumulative logit model where
the Bias Factor plotted on the vertical axis denotes the ratio β2∗/β2 . The other two axes in both plots represent the sampling rates for disease categories
2 and 3 (λ2 and λ3 respectively). The sampling rate for controls, namely, λ1 is fixed at 1500/42817. The intercept for category 1 and category 2 are set at
2.57 and 4.18 in accordance with the analysis of the multiple adenoma data.

We also notice that our analytical approximation is remarkably close to the empirical estimate of the bias factor. Owing to
the special logistic structure of the cumulative logit model in terms of the cumulative probabilities, it can be noted from
Table 1 and also Appendix A.3 that whenever λ2 = λ3, an unbiased estimate of β1 can be obtained, though the estimate of
β2 remain biased. Only in the event of λ1 = λ2 = λ3, both the estimates of β1 and β2 are unbiased.
Fig. 1 plots the bias factors (β∗m/βm,m = 1, 2) as obtained by our analytical formulae, when 1500 controls (Y = 1) are

selected from the 42817 controls in our cohort, and the sampling rates for the outcome categories Y = 2 and Y = 3 vary
freely from 0 to 1. The values of the intercept parameters are set at the estimates obtained in (15). One can note that under
this setting, the estimate of β1 is inflated, whereas the estimate of β2 is deflated. The bias seems to be more severe for β2 for
a wide range of sampling rates, whereas the bias in β1 is significant for small values of λ2 or small values of λ3 (<0.2).
Fig. 2 represents one of the common designs used in practice, when one includes half/all available cases in the case-

control sample. Since in both of the designs, λ2 = λ3, the estimate of β1 is unbiased. The bias factor for β2 is plotted as
a function of λ1, the sampling rate for the controls and one can notice that the plotted curve crosses the vertical axis at 1
(reflecting no bias) onlywhen λ1 = λ2 = λ3. The figure also indicates that sampling 20%–30% controls is sufficient to reduce
much of the bias under such a sampling design, with a baseline disease risk as noticed in the colorectal adenoma data. If one
has prior information on the baseline disease risks from past historical data, and a prospective model is implemented, the
bias approximation could be used to evaluate possible sampling strategies for a given study.

Remark 4. We did fit the repeatedly drawn retrospective samples by using the pseudo-likelihood optimization routine
developed by Scott andWild [15] after utilizing the supplementary information obtained from the full cohort. As established
in their work, the estimation procedure produces unbiased and fully efficient estimates of β1 and β2 under the partial
proportional odds link (when compared to the analysis with the full cohort data as in (15)). Since this is a well-documented
phenomenon through significant volume of research, we refrain from including these predictable numerical results.

5. Concluding remarks

In this note, we consider the problem of fitting multivariate generalized linear models for categorical outcomes under an
outcome-dependent sampling scheme.We first provide a rigorous characterization result for the link functionswhich allow
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Fig. 2. The two figures represent the bias in estimating the true parameter β2 by the cumulative logit model where the Bias Factor plotted on the vertical
axis denotes the ratio β2∗/β2 . The Bias Factor is plotted as a function of λ1 , the sampling rate for the controls. The figure on the left represents the design
when you select half of the available observations in categories 2 and 3, i. e. λ2 = λ3 = 0.5, whereas the figure on the right-hand side represents the design
when you select ALL available cases, i. e. λ2 = λ3 = 1. Note that whenever λ2 = λ3 , under the cumulative logit model, the estimate of β1 is unbiased, thus
we only examine the estimate of β2 .

prospective and retrospective equivalence and then provide an approximation to the bias incurred by ignoring the sampling
scheme. The characterization result illustrates that for categorical outcomes, prospective–retrospective equivalence of
likelihood inference in terms of the regression parameters do not hold beyond the generalized multinomial logit links.
Theorem1provides a precise description of the class ofmultivariate link functions that satisfy the prospective–retrospective
equivalence and proves that any link function outside this class will not have this property. Although for binary outcomes,
similar issues have been investigated thoroughly, results of this nature have not previously been collected in the literature for
a general categorical outcome variable. The findings imply that direct prospective approaches which consider flexible non-
parametric modeling of link functions for categorical outcomes, are not appropriate under outcome-dependent sampling
scheme unless some additional supplementary information is included [8].
The real data example based on the PLCO trial, where case-control samples are selected from a prospective cohort, is

reflective of howmany of the nested case-control studies are carried out in practice. We study the bias function under some
common sampling designs one may very likely implement in a real investigation. Though we illustrate the results with the
partial proportional odds model, there are other commonly used models for polytomous outcome, like the continuation-
ratio logit model [6], which models logit of P(Y = j|Y ≥ j, x), that does not fall in the generalized multinomial logit class.
Since this link function lies somewhere intermediate between the multinomial and the cumulative logit links, it will be
another interesting link function to investigate.
The purpose of this note is to leave the reader with an analytical and practical understanding of the bias mechanism

for multicategory outcomes, when common prospective models are fitted by ignoring an outcome-dependent sampling
process. The analytical expression for the bias and subsequent numerical discussion in the paper illustrate how the bias
changes as a function of the sampling rates for a MVGLM with given link function. The discussion in Section 4 establishes
that the bias approximation works well under common design and model settings. Apart from the rigorous theoretical
generalization of the link function characterization and bias approximation results to the multivariate setting, the paper
emphasizes on a message for the practitioner: with ordered disease outcomes in a retrospectively collected sample, it
is absolutely necessary to employ the finer techniques (as developed in several papers mentioned in Section 1), and the
convenient prospective analysis implemented in a standard software ignoring the sampling scheme with commonly used
ordinal models will produce erroneous inference.
A possible interesting extension of these results could be in the context of Bayesian analysis of retrospectively collected

data. Seaman and Richardson [33] have characterized the class of priors under which Bayesian inference based on prospec-
tive and retrospective likelihoods are equivalent. Whether a characterization result for the link function is available in the
Bayesian setting in terms of equivalence of posterior inference is an interesting open question, even with binary outcomes.
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Appendix

A.1. Proof of Theorem 1 in Section 2

We first establish the necessity part of Theorem 1, i.e., (3) implies (4). Let Yi = m for all i, such that all individuals are
selected from the mth response category. (i.e., yim = 1 for all i = 1, . . . , n and yij = 0 for all j 6= m and i = 1, . . . , n. Then
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the equality in (3) becomes
n∏
i=1

λmhm(ui1, . . . , uiq)
q∑
j=1
λjhj(ui1, . . . , uiq)+ λq+1

(
1−

q∑
j=1
hj(ui1, . . . , uiq)

) = n∏
i=1

hm(ui1 + θ1(λ), ui2 + θ2(λ), . . . , uiq + θq(λ)).

Since ui1, . . . , uiq for i = 1, . . . , n are free variables with rangeR, this implies

λmhm(u1, . . . , uq)
q∑
j=1
λjhj(u1, . . . , uq)+ λq+1

(
1−

q∑
j=1
hj(u1, . . . , uq)

) = hm(u1 + θ1(λ), ui2 + θ2(λ), . . . , uq + θq(λ)). (16)

By dividing the numerator and denominator of LHS of (16) by (1−
∑q
j=1 hj(u1, . . . , uq)), we have

λmh̃m(u1, . . . , uq)
q∑
j=1
λjh̃j(u1, . . . , uq)+ λq+1

= hm(u1 + θ1(λ), . . . , uq + θq(λ)), (17)

where h̃m(u1, . . . , uq) = hm(u1, . . . , uq)/(1−
∑q
j=1 hj(u1, . . . , uq)).

Summing both sides of (17) overm and subtracting from 1, we have

λq+1
q∑
m=1

λmh̃m(u1, . . . , uq)+ λq+1

= 1−
q∑
m=1

hm(u1 + θ1(λ), . . . , uq + θq(λ)). (18)

Dividing (17) by (18), and then taking logarithms on each side, we have

log h̃m(u1, . . . , uq)+ log
(
λm

λq+1

)
= log h̃m(u1 + θ1(λ), . . . , uq + θq(λ)). (19)

The above Eq. (19), is of the form,

Am(u1, . . . , uq)+ Bm(λ) = Am(u1 + θ1(λ), . . . , uq + θq(λ)),

where Am = h̃m and Bm(λ) = log
(
λm/λq+1

)
.

Let u = (u1, . . . , uq)′ and v = [θ(λ)] = (θ(λ1), . . . , θ(λq))
′. We may rewrite Bm(λ) = Bm(f −1(θ(λ))) = Bm(f −1(v)),

where f : λ→ θ(λ) is a one-to-one and onto mapping according to Theorem 1, then the above equation can be written in
the form,

Am(u)+ B̃m(v) = Am(u+ v),

where B̃m = Bm ◦ f −1.
We will now need the following lemma.

Lemma 1. Let u and v be q× 1 vectors and A, B be continuous functions from Rq → R such that,

A(u)+ B(v) = A(u+ v) ∀u, v. (20)

Then,

A(u) = c′u+ d.

Proof. By (20), we have, for any set of vectors u, v, andw,

A(u+ v+w) = A(u)+ B(v+w) and also,
A(u+ v+w) = A(u+ v)+ B(w) = A(u)+ B(v)+ B(w).

Therefore,

B(v+w) = B(v)+ B(w).

By the above property of B, for every rational number r , and vector u, we have B(ru) = rB(u). Implying the linearity of B
(recall that B is continuous), i.e., B(u) = c′u, for some vector c. Thus by (20), we have,

A(u) = A(0)+ B(u) = c′u+ A(0) = c′u+ d

where A(0) = d, is some scalar. Therefore, A(u) is linear in u. By the relationship B(v) = A(v) − A(0), it follows that
B(v) = c ′v. �
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Returning to the proof of Theorem 1, applying Lemma 1 directly to (19), exponentiating and normalizing, we have,

hm(u) =
exp(c′mu+ dm)

1+
q∑
l=1
exp(c′lu+ dl)

. (21)

Letting B̃m(v) = B(v) in Lemma 1, it also follows that,

log
(
λm

λq+1

)
= c′mθ(λ).

Translating in terms of the model parameters, we have, c′mu =
∑q
j=1 cmjuj =

∑q
j=1 cmj(β0j + x′βj) = β∗0m + x′β∗m. Thus,

hm(x) is a response function with multiplicative intercept and odds structure and we have the necessity part of Theorem 1.
The sufficiency part follows by simple algebra, plugging in a response function with multiplicative intercept and odds

structure in (3) and verifying that the result holds.

A.2. The details of the Taylor approximation in Section 3

In the following we suppress the suffix l in Hl. By the first-order Taylor expansion, we have,

H(β1, . . . , βq) ≈ H(0, . . . , 0)+
q∑
j=1

βj
∂

∂βj
H(β1, . . . , βq) |(0,...,0)

=

q∑
j=1

βj
∂

∂βj
H(β1, . . . , βq) |(0,...,0).

Recall that, H(β1, . . . , βq) = g(πT(x))− g(πT(x+ 1)). The derivative of g can be obtained as,

∂

∂βm
g(πT1 [β01 + β1x, . . . , β0q + βqx], . . . , π

T
q [β01 + β1x, . . . , β0q + βqx])

=

q∑
j=1

∂

∂πTj
g[πT1 , . . . , π

T
q ] ×

∂

∂βm
πTj (β01 + β1x, . . . , β0q + βqx)

=

q∑
j=1

∂

∂πTj
g[πT1 , . . . , π

T
q ] ×

∂

∂um
πTj (u1, . . . , uq)× x.

By taking the difference of two such derivatives at x+ 1 and x, we evaluate the derivative of H as

∂

∂βm
H(β1, . . . , βq) =

q∑
j=1

∂

∂π Tj
g[πT1 , . . . , π

T
q ] ×

∂

∂um
πTj (u1, . . . , uq), (22)

where um = β0m + βmx. Let

g(j)(π1, . . . , πq) =
∂

∂πj
g(π1, . . . , πq).

We can write the derivative of πTj as

∂

∂um
πTj (u1, . . . , uq) =

∂

∂um

 λjhj(u1, . . . , uq)
q∑
t=1
λtht(u1, . . . , uq)+ λq+1(1−

q∑
t=1
ht(u1, . . . , uq))



=
∂

∂um

 rjhj(u1, . . . , uq)
q∑
t=1
(rt − 1)ht(u1, . . . , uq)+ 1

 , (23)

where

rj = sampling ratio of Y = j to the baseline group of Y = q+ 1

=
λj

λq+1
.
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The derivative in (23) becomes

∂

∂um

 rjhj(u1, . . . , uq)
q∑
i=1
(rt − 1)ht(u1, . . . , uq)+ 1

 = Gjm(u1, . . . , uq)[ q∑
t=1
(rt − 1)ht(u1, . . . , uq)+ 1

]2 ,
where

Gjm(u1, . . . , uq) = rjh
(m)
j (u1, . . . , uq)

[
q∑
t=1

(rt − 1)ht(u1, . . . , uq)+ 1

]

− rjhj(u1, . . . , uq)×

[
q∑
t=1

(rt − 1)h
(m)
t (u1, . . . , uq)

]
.

Hence we arrive at our expressions in (12).

A.3. Derivatives for the cumulative logit model used in Section 4

For simplicity of expressions, let us consider q = 2, as in the PLCO data example. To translate the cumulative logit model
into the MVGLM set-up using the notations followed in the paper, we have,

π1(x) = h1(β01 + β1x, β02 + β2x) =
exp(β01 + β1x)
1+ exp(β01 + β1x)

π2(x) = h2(β01 + β1x, β02 + β2x)

=
exp(β02 + β2x)
1+ exp(β02 + β2x)

−
exp(β01 + β1x)
1+ exp(β01 + β1x)

and the link functions are given by,

g1(π1, π2) = log
(

π1

1− π1

)
g2(π1, π2) = log

(
π1 + π2

1− (π1 + π2)

)
.

Plugging these particular expressions in (13) we have the bias approximation in (11) as
∂

∂β1
H1(β1, β2) |(0,0)

∂

∂β2
H1(β1, β2) |(0,0)

∂

∂β1
H2(β1, β2) |(0,0)

∂

∂β2
H2(β1, β2) |(0,0)

[β1β2
]
=

[
β∗1
β∗2

]
.

The derivative components of the matrix are given by,

∂

∂β1
H1(β1, β2) |(0,0) =

exp(β02)λ2 + λ3
exp(β02)λ2 + λ3 + exp(β01)(λ3 − λ2)

∂

∂β2
H1(β1, β2) |(0,0) =

exp(β02)(1+ exp(β01))(λ3 − λ2)
(1+ exp(β02))(exp(β02)λ2 + λ3 + exp(β01)(λ3 − λ2))

∂

∂β1
H2(β1, β2) |(0,0) =

exp(β01)(1+ exp(β02))(λ1 − λ2)
(1+ exp(β01))(exp(β02 + β01)λ1 + exp(β02)λ2 + exp(β01)(λ1 − λ2))

∂

∂β2
H2(β1, β2) |(0,0) =

exp(β02)(λ1 exp(β01)+ λ2)
(exp(β02 + β01)λ1 + exp(β02)λ2 + exp(β01)(λ1 − λ2))

.
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