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We present a non-perturbative determination of the upper and lower Higgs boson mass bounds with
a heavy fourth generation of quarks from numerical lattice computations in a chirally symmetric Higgs–
Yukawa model. We find that the upper bound only moderately rises with the quark mass while the lower
bound increases significantly, providing additional constraints on the existence of a straight-forward
fourth quark generation. We examine the stability of the lower bound under the addition of a higher
dimensional operator to the scalar field potential using perturbation theory, demonstrating that it is
not significantly altered for small values of the coupling of this operator. For a Higgs boson mass of
∼ 125 GeV we find that the maximum value of the fourth generation quark mass is ∼ 300 GeV, which is
already in conflict with bounds from direct searches.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A heavy fourth generation of quarks is an attractive and simple
extension (denoted SM4) of the three-generation Standard Model
(SM3) [1,2]. However, heavy fermion effects are expected to sig-
nificantly contribute to the properties of the Higgs boson, leading
to measurable deviations in Higgs production cross sections and
branching ratios. The recent discovery of a scalar boson seemingly
consistent with the Standard Model expectation therefore casts se-
rious doubt on straight-forward fourth generation scenarios [3].

Another property of the Higgs boson which is sensitive to a
possible fourth generation is its mass. Invoking arguments from
perturbation theory, the Higgs boson mass is bounded from above
by the triviality bound, which reflects the Gaussian nature of the
UV fixed point, and from below by the vacuum instability bound,
which ensures that the theory has a stable vacuum state.

In perturbation theory, the lower bound can be obtained by
examining the effective potential and demanding that it remains
bounded from below. As the fermion fields contribute negatively
to the effective potential, they have a destabilizing effect which
leads (by demanding the stability of the theory) to a lower Higgs
boson mass bound. However it is expected that the perturbative
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expansion breaks down for Yukawa couplings near or less than the
perturbative unitarity bound [4], which allows maximal fermion
masses of roughly m f ∼ 500–600 GeV [5,6].

Due to these considerations, study of heavy fourth generation
extensions to the Standard Model necessitates non-perturbative
methods. To this end, we employ lattice field theory techniques
which allow us to compute lower and upper Higgs boson mass
bounds as well as resonance parameters of the Higgs boson
non-perturbatively. Such a strategy has already been applied in
Refs. [7–10] for the non-perturbative determination of the upper
and lower Higgs boson mass bounds and the Higgs boson res-
onance parameters in the SM3. First results for a fourth quark
generation have been presented in Ref. [11]. Investigations of a
bulk-phase transition at very large values of the Yukawa coupling
have been initiated in Ref. [12] while first studies of the system at
non-zero temperatures can be found in Ref. [13]. For a summary
of recent work on this model see Ref. [14].

The lattice calculations are possible due to a lattice discretiza-
tion of the fermion action which respects an exact chiral symmetry
at finite lattice spacing a [15], thus ensuring that the chiral charac-
ter of the Higgs-fermion couplings is respected by the lattice regu-
lator in a conceptually clean manner. This advance has triggered a
number of lattice investigations of Higgs–Yukawa like models [7–9,
16–21].

In this Letter we report on a systematic investigation of the
lower and upper Higgs boson mass bounds for quark masses
ranging from the Standard Model top quark mass of m f = mt ≈
175 GeV up to masses of m f ≈ 700 GeV, which is above the
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perturbative unitarity bound. Our calculations are performed at
a fixed lattice cutoff of Λ = 1

a ≈ 1.5 TeV which ensures that the
fermion and Higgs boson masses are sufficiently far from the cut-
off scale. We also rely heavily on the techniques and simulation
strategies of Refs. [7–10].

Our results indicate that with increasing quark mass there is
a substantial upward shift of the lower Higgs boson mass bound
leading to severe constraints on a straight-forward fourth quark
generation in light of the recently discovered scalar boson when
interpreted as the Standard Model Higgs boson. In order to exam-
ine the stability of our results, we analyze the effect of including a
higher dimensional operator in the scalar field potential using per-
turbation theory. For small values of the coupling of this term we
confirm that the lower bound is not significantly altered.

2. The model

Here we briefly review the definition of our model. For a more
complete treatment, see Ref. [9]. We employ a lattice discretization
of the Standard Model Higgs-fermion sector which exactly respects
a chiral symmetry at finite lattice spacing. As the dynamics of the
complex scalar (Higgs) doublet are expected to be dominated by
its interactions with the heaviest fermions, we consider a single
degenerate quark doublet only. By the same reasoning, as well as
for computational simplicity, we also neglect gauge fields.

One of the defining features of the Standard Model is the chiral
structure of the scalar-fermion interactions. In order to reproduce
this structure in a lattice discretization it is crucial to maintain
a chiral symmetry at finite lattice spacing. This has been a long-
standing obstacle to the lattice regularization of Higgs–Yukawa
models and was finally overcome by employing the Neuberger
‘overlap’ [15,22,23] discretization of the fermion action.

Following the proposition in Ref. [15] we can therefore con-
struct a lattice Higgs–Yukawa model with a global SU(2)L × U (1)Y

symmetry. Specifically, the fields included in our model are a scalar
doublet ϕ and two fermions, the left-handed components of which
are paired into an SU(2) doublet. The lattice action can thus be
written as

S = S F + SΦ, S F =
∑
xy

ψ̄xMxyψy,

SΦ = −κ
∑
x,μ

ΦT
x [Φx+μ + Φx−μ] +

∑
x

ΦT
x Φx

+ λ̂
∑

x

(
ΦT

x Φx − 1
)2

,

Mxy = D(ov)
xy 12×2 + y

(
P+φ

†
x P̂+ + P−φx P̂−

)
δxy, (1)

where ψ is a doublet of four-component spinor fields, D(ov) is the
free overlap Dirac operator with a Wilson kernel, Φ

μ
x ∈ R

4, and
φx = Φ

μ
x τμ , with τμ = (1,−i �σ ). The left- and right-handed pro-

jection operators P± and the modified projectors P̂± are given by

P± = 1 ± γ5

2
, P̂± = 1 ± γ̂5

2
,

γ̂5 = γ5

(
1 − 1

ρ
D(ov)

)
. (2)

The action introduced above obeys an exact global SU(2)L ×
U (1)Y lattice chiral symmetry. For ΩL ∈ SU(2) and θ ∈ [0,2π ] the
action is invariant under the transformation

ψ → U Y P̂+ψ + U Y ΩL P̂−ψ,

ψ̄ → ψ̄ P+Ω
†
L U †

Y + ψ̄ P−U †
Y ,

φ → U Y φΩ
†
, φ† → ΩLφ

†U † (3)
L Y
with U Y ≡ exp(iθY ), where Y labels the representation of the
global hypercharge symmetry group U (1)Y . It should be noted that
in the continuum limit the (global) continuum SU(2)L × U(1)Y chi-
ral symmetry is recovered.

This formulation enables a numerical study of the limit λ̂ = ∞
on the lattice by simply enforcing the constraint ΦT

x Φx = 1, ∀x.
Also, we can relate the parameters and fields appearing in Eqs. (1)
to those appearing in the standard scalar complex doublet contin-
uum Lagrangian (L= |∂μϕ|2 + 1

2 m2
0|ϕ|2 + λ|ϕ|4) by

ϕx = √
2κ

(
Φ2

x + iΦ1
x

Φ0
x − iΦ3

x

)
,

λ = λ̂

4κ2
, m2

0 = 1 − 2λ̂ − 8κ

κ
.

3. Computational strategy

The cutoff in our model is provided by the inverse lattice spac-
ing (Λ = 1/a) and we set the physical value of Λ using the phe-
nomenological Higgs field vacuum expectation value (v R ),

(
√

2G F )−
1
2 ∼ 246 GeV = v R

a
≡ v√

ZG · a
, (4)

where ZG denotes the Goldstone boson field renormalization con-
stant and v the bare scalar field vacuum expectation value. We tar-
get a mass range for the degenerate fermion doublet of 175 GeV �
m f � 700 GeV, while fixing the cutoff at Λ ≈ 1.5 TeV. Although
the masses of the fermion doublet are degenerate in this work, we
plan to assess the effect of a mass splitting in the near future. At
m f = mt = 175 GeV the splitting mb − mt has been taken into ac-
count and found to have a small effect on the lower Higgs boson
mass bound which, moreover, can be taken into account by the
effective potential evaluated in lattice perturbation theory [7].

We now briefly discuss the simulation algorithm. More details
can be found in Ref. [9]. The Monte-Carlo simulations are carried
out using a variant [24] of the Hybrid Monte Carlo (HMC) algo-
rithm [25] in which the integration over the Grassman fields is
done analytically at the expense of introducing the determinant
of the fermion action in the updating. Therefore, our remaining
degrees of freedom in the Monte Carlo integration are the scalar
fields.

Due to the absence of gauge fields, the overlap operator of
Eqs. (1) can be constructed exactly in momentum space. However
as the Yukawa coupling is local in position space, Fast-Fourier-
Transforms (FFT’s) are employed to efficiently apply this term.
Finally, Fourier acceleration [26] is used to propagate the low mo-
mentum modes using coarser time-steps along the HMC evolution,
which effectively reduces the autocorrelation between successive
scalar field configurations.

It has been demonstrated [7] that the Higgs boson mass is a
monotonically increasing function of the bare quartic coupling λ̂.
Therefore, the lower bound for the Higgs boson mass at fixed cut-
off and m f is obtained at λ̂ = 0, while the upper bound is obtained
at λ̂ = ∞ [8].

Since we work in a finite volume with no external symmetry
breaking source, the naively defined vacuum expectation value is
zero in an ensemble average. We therefore resort to a special tech-
nique, pioneered in Ref. [27] and employed in Refs. [28–30], of
rotating a given scalar field configuration to a preferred direction.
It can be shown that in infinite volume this leads to the same
vacuum expectation value as obtained in the standard procedure
involving the limit of vanishing external source [30].

The determination of the Goldstone boson renormalization con-
stant ZG , the Higgs boson mass mH , and the fermion mass m f
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have been discussed in detail in Ref. [8] and are briefly reviewed
here. The renormalization constant ZG is computed from the slope
of the inverse Goldstone boson propagator at vanishing Euclidean
four-momentum transfer, in the standard on-shell scheme. Oper-
ationally, this constant is obtained from fits to the propagator at
small momenta.

Due to the existence of massless Goldstone modes in the spon-
taneously broken phase of our theory, the Higgs boson is unstable
and can decay to final states containing an even number of Gold-
stone bosons. We employ two definitions of the Higgs boson mass
which both ignore this finite decay width. The Higgs boson propa-
gator mass mP

H is derived from fits to the momentum space Higgs
propagator defined as

G̃ H (p) = 〈h̃ph̃−p〉, h̃p = 1√
L3

s · Lt

∑
x

e−ipxhx

while the correlator mass mC
H is derived from fits to the Higgs tem-

poral correlation function. Although finite decay width corrections
to these formulae are quite different, the mass extracted from both
of these procedures typically differs by less than 10%, lending cre-
dence to our approximation of a stable Higgs boson. Furthermore,
a rigorous study of the Higgs boson decay width at non-vanishing
external source has been performed at m f = mt ∼ 175 GeV in
Ref. [10] which obtained a narrow decay width for all values of
the bare quartic coupling, further supporting the validity of the
stable Higgs boson approximation. For this work we quote mP

H as
the central value as it is typically the lowest estimate of mH .

Finally, we compute the quark mass from the exponential decay
of the temporal correlation function C f (t) at large Euclidean time
separations t , defined as

C f (t) = 1

L6
s

∑
�x,�y

Re Tr(ψL,(0,�x) · ψ̄R,(t,�y)), (5)

where the left- and right-handed spinors are defined using the
projection operators in Eqs. (2).

4. Numerical results

As mentioned above, massless Goldstone excitations are present
in the spontaneously broken phase of our model. Since we work
at zero external symmetry breaking source, finite size effects are
not exponentially suppressed but rather algebraic in nature and
proportional to inverse even powers of the linear extent of the lat-
tice, i.e. O(1/L2

s ) at leading order [28–30]. These finite size effects
can be quite substantial and an infinite volume extrapolation of
our results for the renormalized vacuum expectation value and all
masses is required.

Finite volume data for the Higgs boson propagator mass (mP
H )

are shown in Fig. 1 as an example of our infinite volume extrap-
olations. The lattice data are plotted versus 1/L2

s and extrapolated
to the infinite volume limit by means of a linear fit ansatz ac-
cording to the aforementioned leading order behaviour. Due to the
observed curvature arising from the non-leading finite volume cor-
rections, only those volumes with Ls � 16 have been included. One
also finds that the infinite volume extrapolation can be reliably
performed at ranges of lattice volumes from 123 × 32 to 243 × 32
if subleading corrections are considered.

The results of the Higgs boson masses for the lower and up-
per Higgs boson mass bounds as a function of the quark mass
at a fixed cutoff of Λ = 1.5 TeV are finally presented in Fig. 2.
All data for the upper bound have been extrapolated to infi-
nite volume, as have the lower Higgs boson mass bounds at
m f ≈ 160,192,420 GeV Only lower Higgs boson mass bounds at
Fig. 1. Infinite volume extrapolation of the Higgs boson mass extracted from fits
to the momentum space Higgs propagator (mP

H ). The data are for the Higgs boson

mass relevant for the upper bound (λ̂ = ∞) and a range of bare Yukawa couplings
corresponding to fermion masses from the physical top quark mass to ∼ 700 GeV.
The infinite volume extrapolation is performed by fitting the data to a linear func-
tion in 1/L2

s taking only data with Ls � 16 into account. Such fits are shown as
solid lines, while quadratic fits which extend over the entire range of volumes are
shown as dotted lines.

Fig. 2. The lower and upper Higgs boson mass bounds as a function of the fermion
mass m f for a fixed cutoff of Λ = 1.5 TeV. The solid line represents a perturbative
lattice effective potential calculation for the lower Higgs boson mass bound.

m f ≈ 305,500,685 GeV are taken on our presently largest lattice
of size 243 ×32. However, the finite size corrections of these points
will only provide a small change and the behaviour of the lower
Higgs boson mass bound as a function of the fermion mass will
not be significantly altered.

We find that the upper Higgs boson mass bound is only mod-
erately shifted by about 20% when the fermion mass is increased
from 175 GeV to 700 GeV. On the contrary, the lower Higgs boson
mass bound increases drastically with increasing quark mass. Such
a significant shift of the lower bound has already been observed
in [7,8] for a quark mass of m f ≈ 700 GeV. We also show in Fig. 2
a lattice perturbative computation of the lower Higgs boson mass
bound using the effective potential. The result of this calculation,
which is discussed in the next section, is represented by the solid
line in Fig. 2. Even up to fermion masses of m f ≈ 700 GeV the lat-
tice perturbative calculation qualitatively describes the simulation
data rather well. This observation allows us to test the stability of
the lower bound against the addition of a higher dimensional op-
erator within the framework of the perturbative lattice effective
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potential. Moreover, direct Monte Carlo simulations with such a
term were found to be well described by perturbation theory [9]
within a small range of couplings of this higher dimensional oper-
ator.

5. Effective potential

In addition to non-perturbative numerical data, it is instruc-
tive to calculate the lower Higgs boson mass bound perturbatively
using the effective potential. To this end we follow Ref. [9] and cal-
culate the effective potential to 1-loop in the large-N f expansion.

It should be noted that these calculations are performed with
the same lattice regularization used in the simulations maintain-
ing finite spatial and temporal extents. Thus, the loop corrections
are calculated numerically, by explicitly performing sums over the
lattice momenta. An infinite volume extrapolation of these pertur-
bative results is also performed.

The vacuum expectation value and lower Higgs boson mass
bound are obtained from this effective potential in the usual way,
namely

d

dφ̄
V (φ̄)|φ̄=v = 0,

d2

dφ̄2
V (φ̄)|φ̄=v = m2

H , (6)

where φ̄ denotes the average value of the scalar field. The results
of such a determination are shown in Fig. 2. Although quanti-
tatively different, the numerical data agree with the qualitative
behaviour of the perturbative result even for rather large fermion
masses.

Based on this agreement, we estimate the effect of an addi-
tional higher dimensional operator in the scalar field potential us-
ing the perturbative expansion discussed above. To this end we add
to Eqs. (1) the term λ6φ

6. It has been demonstrated [9] that per-
turbation theory successfully describes non-perturbative numerical
results for the range λ6 = [0,0.01]. Therefore, at this preliminary
stage we examine couplings in this range only. Furthermore, in the
presence of such a term we must modify the stability criterion of
the effective potential.

Due to the triviality of the theory, the cutoff Λ cannot be com-
pletely removed while maintaining non-zero values of the renor-
malized quartic and Yukawa couplings. However, the existence of
a scaling regime suggests that predictions of the model are affected
only mildly by small cutoff effects provided that the cutoff is larger
than the relevant scales in the theory, namely v R ,m f ,mH . It has
been determined in the pure φ4 theory [31] that a suitable defini-
tion of the scaling regime is the situation where m/Λ < 0.5, where
m = v R ,mH . We adopt here this observation also for m f , keeping
m f /Λ < 0.5.

It is in this scaling regime only that results which are univer-
sal up to small cutoff effects can be obtained from our model.
Therefore, the vacuum stability criterion should ensure that a sta-
ble vacuum exists throughout the scaling regime. Indeed, the run-
ning of the renormalized quartic and Yukawa couplings (and thus
vacuum stability considerations) have been demonstrated to be
severely regularization dependent outside of the scaling regime de-
fined above [21]. Therefore, we choose as our stability criterion

d2

dφ̄2
V (φ̄) > 0, φ̄ < 0.5. (7)

In the λ6 = 0 case, this results in the well-known stability crite-
rion λ̂ � 0. We have examined the effect of a finite λ6 in the range
λ6 = [0.0,0.01] which results in a less than 1% difference in the
lower bound. However for larger values of λ6 ∼ 0.1, deviations as
large as 15% have been observed in the lower Higgs boson mass
bound. As we are unsure of the applicability of perturbation the-
ory in this region, further non-perturbative numerical simulations
must be performed to properly assess the effect of this higher di-
mensional operator for larger values of λ6.

6. Outlook and conclusions

In this Letter we have performed a non-perturbative lattice in-
vestigation of the lower and upper Higgs boson mass bounds in an
extension of the Standard Model with a heavy fourth quark gen-
eration. Since the heavy quark masses lead to large values of the
Yukawa coupling, such a non-perturbative computation is neces-
sary in order to have reliable results for the Higgs boson mass
bounds at large m f . We include only the dominant interactions,
which are expected to be the Higgs–Yukawa interactions of the
heavy fermions. In particular, we neglect all gauge fields.

Our chirally invariant lattice regularization of the Higgs–Yukawa
sector of the Standard Model (as proposed in Ref. [15]) obeys a
global SU(2)L × U (1)Y symmetry at finite lattice spacing, providing
a formulation that preserves the chiral nature of the Higgs-fermion
couplings. In this setup, for a fixed cutoff of Λ = 1.5 TeV, we have
studied a range of quark masses 175 GeV � m f � 700 GeV. We
find that the upper Higgs boson mass bound is only moderately
increased by about 20% for larger quark masses. The lower Higgs
boson mass bound however, changes quite substantially as is sum-
marized in Fig. 2 and assumes for e.g. m f ≈ 500 GeV a value of
mlow

H ≈ 500 GeV. Assuming mH ∼ 125 GeV, this puts severe con-
straints on the existence of a fourth generation of quarks given
the current status of direct searches [32,33], which typically quote
constraints mt′ ,mb′ � 400–500 GeV which are fully consistent with
the analysis of Ref. [3].

The cutoff dependence of this lower bound has been investi-
gated extensively in previous work both at m f ∼ 175 GeV and
m f ∼ 700 GeV in Refs. [7,11], and found to be weakly depen-
dent on the value of the cutoff. In particular, at m f ∼ 700 GeV,
the change in the lower bound was not statistically significant as
the cutoff was varied over the range 1.5–3.5 TeV. This is consis-
tent with the weak cutoff dependence of the lower Higgs boson
mass bound found in a lattice perturbative effective potential cal-
culation [7,11,14].

Confronting the non-perturbatively computed lower Higgs bo-
son mass bounds with a lattice perturbative calculation of the
effective potential, we found that the effective potential describes
the simulation data rather well, even for m f ≈ 700 GeV. Based on
this fact, as well as previous numerical work, we also used the per-
turbative effective potential to test the stability of the lower Higgs
boson mass bound against addition of a higher dimensional oper-
ator for a small range of couplings. We found that the lower Higgs
boson mass bound is quite insensitive against such an addition, al-
though more non-perturbative numerical simulations are required
to examine the effect of the higher dimension operator for larger
couplings. Nonetheless, this preliminary work provides some confi-
dence that the results for the lower bound are robust. Furthermore,
although we work with a mass degenerate quark doublet in this
work, the dependence of the lower bound on the mass splitting
was found to be small at m f = 175 GeV, but will investigated at
larger quark masses in the near future.
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