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a b s t r a c t

Many simulation algorithms (chemical reaction systems, differential systems arising from
the modelling of transient behaviour in the process industries etc.) contain the numerical
solution of systems of differential equations. For the efficient solution of the above
mentioned problems, linear multistep methods or Runge–Kutta single-step methods are
used. For the simulation of chemical procedures the radial Schrödinger equation is used
frequently. In the present paper we will study a class of linear multistep methods.
More specifically, the purpose of this paper is to develop an efficient algorithm for
the approximate solution of the radial Schrödinger equation and related problems. This
algorithm belongs in the category of the multistep methods. In order to produce an
efficient multistep method the phase-lag property and its derivatives are used. Hence
the main result of this paper is the development of an efficient multistep method for
the numerical solution of systems of ordinary differential equations with oscillating or
periodical solutions. The reason of their efficiency, as the analysis proved, is that the phase-
lag and its derivatives are eliminated. Another reason of the efficiency of the new obtained
methods is that they have high algebraic order

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many simulation algorithms (chemical reaction systems, differential systems arising from the modelling of transient
behaviour in process industries, etc.) contain the numerical solution of systems of differential equations. For the efficient
solution of the above mentioned problems, linear multistep methods or Runge–Kutta single-step methods are used.

One of the models used frequently for the simulation of chemical procedures is the radial Schrödinger equation.
The formula of the radial Schrödinger equation can be presented as:

y′′(x) = [l(l + 1)/x2 + V (x)− k2]y(x). (1)

It is known that Mathematical Models in theoretical physics and chemistry, material sciences, quantum mechanics and
quantum chemistry, electronics, etc., can be expressed via the above boundary value problem (see for example [1–4]).
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For the above Eq. (1) we have the following definitions:

• The functionW (x) = l(l + 1)/x2 + V (x) is called the effective potential. This satisfies W (x) → 0 as x → ∞.
• The quantity k2 is a real number denoting the energy.
• The quantity l is a given integer representing the angular momentum.
• V is a given function which denotes the potential.

The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of x, determined by physical considerations.
Large research on the algorithmic development of numerical methods for the solution of the Schrödinger equation has

been done in the last decades. The aim and scope of this research is the construction of fast and reliable algorithms for the
solution of the Schrödinger equation and related problems (see for example [5–24]).

The numerical methods for the approximate solution of the Schrödinger equation and related problems can be divided
into two main categories:

1. Methods with constant coefficients.
2. Methods with coefficients depending on the frequency of the problem.2

Themain result of this paper is the development of an efficientmultistepmethod for the numerical solution of systems of
ordinary differential equations with oscillating or periodical solutions. The reason of their efficiency, as the analysis proved,
is that the phase-lag and its derivatives are eliminated. Another reason of the efficiency of the new obtainedmethods is that
they have high algebraic order.

The purpose of this paper is to extend the methodology for the development of numerical methods for the approximate
solution periodic initial-value problems. The new methodology is based on the requirement of the phase-lag and its
derivatives vanishing. Based on this new methodology we will develop two methods:

• The first one will have phase-lag and its first and second derivatives vanishing.
• The second one will have phase-lag and its first, second and third derivatives vanishing.

We will apply the new developed methods on the numerical solution of the radial Schrödinger equation. We will study
the efficiency of the new obtained methods via:

• a comparative error analysis
• a comparative stability analysis and finally
• the numerical results produced from the numerical solution of the radial Schrödinger with application to the specific

potential.

More specifically, we will develop a family of implicit symmetric ten-step methods of twelfth algebraic order. The
development of the new family of methods is based on the requirement of the phase-lag and its first, second and third
derivative vanishing (see above).

We will give a comparative error analysis and a comparative stability analysis in order to study the efficiency of the two
new proposed methods of the family. Finally, we will apply both methods to the resonance problem. This is one of the most
difficult problems arising from the radial Schrödinger equation.

We have organized the paper as follows:

• In Section 2 we present the theory of the new methodology.
• In Section 3 we present the development of the new family of methods.
• A comparative error analysis is presented in Section 4.
• In Section 5 we will present a comparative stability analysis.
• The numerical results are presented in Section 6.
• Finally, in Section 7 remarks and conclusions are discussed.

2. Basic theory

2.1. Definitions

We consider the numerical solution of the initial value problem over the equally spaced intervals {ri}mi=0 ∈ [a, b] and
h = |ri+1 − ri|, i = 0(1)m − 1:

φ′′
= −ω2φ. (3)

2 When using a functional fitting algorithm for the solution of the radial Schrödinger equation, the fitted frequency is equal to:
|l(l + 1)/x2 + V (x)− k2|.
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The theoretical solution of Eq. (4) in an integration interval [ri, ri+1], is equal to

φ (v)th = e±iv (4)

where v = ωh, h is the step length.
Applying a numerical method for the approximate solution of (3), one can find the following numerical solution:

φ (v)appr = α (v) e±iθ(v). (5)

Definition 1 ([25]). The quantity:

ζ (v) = 1 − α (v) (6)

is called dissipation error or amplification factor.

Definition 2 ([25]). The quantity:

ϕ (v) =
θ (v)− v

v
(7)

is called dispersion or phase error or phase lag.

Remark 1. For the symmetric multistep methods it has been proved that the dissipation error is equal to zero.

2.2. Phase-lag analysis of symmetric multistep methods

We consider the multistep method withm steps which can be used over the equally spaced intervals {ri}mi=0 ∈ [a, b] and
h = |ri+1 − ri|, i = 0(1)m − 1, for the numerical solution of the initial value problem:

φ′′
= f (r, φ). (8)

If the method is symmetric then ai = am−i and bi = bm−i, i = 0(1)
m

2


.

When a symmetric 2k-step method, that is for i = −k(1)k, is applied to the scalar test equation (3) a difference equation
of the form

Ak(v)φn+k + · · · + A1(v)φn+1 + A0(v)φn + A1(v)φn−1 + · · · + Ak(v)φn−k = 0 (9)

is obtained, where v = ωh, h is the step length and A0(v), A1(v), . . . , Ak(v) are polynomials of v.
The characteristic equation associated with (9) is given by:

Ak(v)λk + · · · + A1(v)λ+ A0(v)+ A1(v)λ−1
+ · · · + Ak(v)λ−k

= 0. (10)

Theorem 1 ([22]). The symmetric 2k-stepmethodwith characteristic equation given by (10) has phase-lag order r and phase-lag
constant c given by

−cvr+2
+ O(vr+4) =

2Ak(v) cos

kv

+ · · · + 2Aj(v) cos


jv

+ · · · + A0(v)

2k2Ak(v)+ · · · + 2j2Aj(v)+ · · · + 2A1(v)
. (11)

The formula proposed from the above theorem gives us a direct method to calculate the phase-lag of any symmetric
2k-step method.

3. The new family of ten-step methods

3.1. Development of the new methods

In order to obtain the new methods the following algorithm is applied:

1. General Requirements for the New Proposed Method.
We require the new proposed methods to have:
• the maximum algebraic order and
• a number of free parameters (for the first method of the family we require three free parameters while for the second

method of the family we require four free parameters).
2. Computation of the Difference Equation and the Associated Characteristic Equation.
3. Computation of the corresponding polynomials Ai(v), i = 0(1)5.
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4. Computation of the Corresponding Phase-lag.
5. Computation of the Corresponding Derivatives of the Phase-lag (First, Second, etc. Derivatives).
6. Demand for the satisfaction of the appropriate relations—Determination of the coefficients of the newproposedmethods.
7. Taylor series expansions of the obtained coefficients.
8. Computation of the Local Truncation Error.

We introduce the following family of methods to integrate p′′
= f (x, p):

5−
i=1

ai

φn+i + φn−i


+ a0φn = h2


5−

i=1

bi

φ′′

n+i + φ′′

n−i


+ b0φ′′

n


(12)

where a5 = 1.

3.2. First method of the family—a method with phase-lag and its first two derivatives vanishing

Requiring the abovemethod (12) to have themaximumalgebraic orderwith three free parameter, the following relations
are obtained:

a0 = 0, a1 = 0, a2 = −1, a3 = 2, a4 = −2,

b3 =
6937
960

−
9
4
b2 −

45
14

b1 −
25
14

b0,

b4 = −
497
90

+
64
21

b1 +
5
3
b2 +

25
14

b0,

b5 =
5173
2880

−
5
12

b2 −
5
6
b1 −

1
2
b0. (13)

The application of the above method to the scalar test equation (3) gives the following difference equation:

5−
i=1

Ai(v)

φn+i + φn−i


+ A0(v)φn = 0 (14)

where v = ωh, h is the step length and Ai(v), i = 0(1)5 are polynomials of v.
The characteristic equation associated with (14) is given by:

5−
i=1

Ai(v)

λi + λ−i

+ A0(v) = 0 (15)

where

A0(v) = v2b0, A1(v) = v2b1

A2(v) = −1 + v2b2, A3(v) = 2 + v2

6937
960

−
9
4
b2 −

45
14

b1 −
25
14

b0


A4(v) = −2 + v2


−

497
90

+
64
21

b1 +
5
3
b2 +

25
14

b0


A5(v) = 1 + v2


5173
2880

−
5
12

b2 −
5
6
b1 −

1
2
b0


. (16)

By applying k = 5 in the formula (11), we have that the phase-lag is equal to:

phl =
T0
T1

(17)

T0 = 2


1 + v2


5173
2880

−
5
12

b2 −
5
6
b1 −

1
2
b0


cos (5v)

+ 2


−2 + v2


−

497
90

+
64
21

b1 +
5
3
b2 +

25
14

b0


cos (4v)

+ 2


2 + v2


6937
960

−
9
4
b2 −

45
14

b1 −
25
14

b0


cos (3v)+ 2


−1 + v2b2


cos (2v)+ 2v2b1 cos (v)+ v2b0
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T1 = 14 + 50v2

5173
2880

−
5
12

b2 −
5
6
b1 −

1
2
b0


+ 32v2


−

497
90

+
64
21

b1 +
5
3
b2 +

25
14

b0



+ 18v2

6937
960

−
9
4
b2 −

45
14

b1 −
25
14

b0


+ 8v2b2 + 2v2b1.

The phase-lag’s first and second derivatives can be produced from the above relation.
Demanding the phase-lag and the first and second derivatives of the phase to vanish we find out that:

b0 =
1

480
T8

v4T9
(18)

T8 = −4680 − 150480 sin (v) cos (v)3 v + 46680 sin (v) v cos (v)+ 76800 sin (v) cos (v)7 v
+ 261120 sin (v) cos (v)6 v + 25920 sin (v) cos (v)5 v − 38400 sin (v) cos (v)8 v
− 310080 sin (v) cos (v)4 v + 97320 sin (v) v cos (v)2 − 8880 sin (v) v + 27720 cos (v) v2

− 19257v4 cos (v)− 42840 cos (v)2 v2 + 53760 cos (v)7 v2 + 48076 cos (v)7 v4

+ 182952 cos (v)6 v4 + 141120 cos (v)6 v2 + 277081 cos (v)5 v4

+ 78960 cos (v)5 v2 − 110880 cos (v)4 v2 + 182574 cos (v)4 v4

− 160440 cos (v)3 v2 + 11620 cos (v)3 v4 − 45234 cos (v)2 v4

− 57600 cos (v)8 − 15480 cos (v)− 151200 cos (v)4 − 272160 cos (v)5

+ 161280 cos (v)6 + 12600v2 − 2772v4 + 52200 cos (v)2

− 115200 cos (v)9 + 299520 cos (v)7 + 103320 cos (v)3

T9 = cos (v)7 − 3 cos (v)6 + cos (v)5 + 5 cos (v)4 − 5 cos (v)3 − cos (v)2 + 3 cos (v)− 1

b1 = −
1

960
T10
v4T9

(19)

T10 = −8280 − 276960 sin (v) cos (v)3 v + 82200 sin (v) v cos (v)+ 88320 sin (v) cos (v)7 v
+ 452160 sin (v) cos (v)6 v + 106080 sin (v) cos (v)5 v
− 57600 sin (v) cos (v)8 v − 550800 sin (v) cos (v)4 v + 172440 sin (v) v cos (v)2

− 15840 sin (v) v + 47880 cos (v) v2 − 39102v4 cos (v)− 78120 cos (v)2 v2 + 73920 cos (v)7 v2

+ 66528 cos (v)7 v4 + 291186 cos (v)6 v4 + 231840 cos (v)6 v2 + 467292 cos (v)5 v4

+ 164640 cos (v)5 v2 − 176400 cos (v)4 v2 + 318451 cos (v)4 v4

− 286440 cos (v)3 v2 + 34482 cos (v)3 v4 − 77210 cos (v)2 v4

− 126720 cos (v)8 − 27000 cos (v)− 292320 cos (v)4 − 448560 cos (v)5

+ 332640 cos (v)6 + 22680v2 − 3227v4 + 94680 cos (v)2

− 172800 cos (v)9 + 469440 cos (v)7 + 178920 cos (v)3

b2 =
1

240
T11
v4T9

(20)

T11 = −1440 − 2880 sin (v) v + 8280 cos (v) v2 − 5712v4 cos (v)− 16200 cos (v)2 v2 + 5280 cos (v)7 v2

+ 5453 cos (v)7 v4 + 32718 cos (v)6 v4 + 29520 cos (v)6 v2 + 68432 cos (v)5 v4

+ 35520 cos (v)5 v2 − 17280 cos (v)4 v2 + 56490 cos (v)4 v4 − 49080 cos (v)3 v2

+ 7427 cos (v)3 v4 − 12684 cos (v)2 v4 + 28080 sin (v) v cos (v)2 + 67680 sin (v) cos (v)6 v
+ 14640 sin (v) v cos (v)+ 41520 sin (v) cos (v)5 v − 53880 sin (v) cos (v)3 v
− 87480 sin (v) cos (v)4 v − 5760 sin (v) cos (v)8 v − 1920 sin (v) cos (v)7 v
− 4320 cos (v)− 58680 cos (v)4 − 57960 cos (v)5 + 71280 cos (v)6

− 28800 cos (v)8 + 3960v2 − 924v4 + 17640 cos (v)2

− 17280 cos (v)9 + 53280 cos (v)7 + 26280 cos (v)3 .

For small values of |v| the formulae given by (18)–(20) are subject to heavy cancellations. In this case the following Taylor
series expansions should be used:

b0 =
18117277
5702400

−
547336457
494208000

v2 +
3988544723
17791488000

v4 −
1060584330623
47636709120000

v6 +
15195486142211

14481559572480000
v8

−
591171853921499

19115658635673600000
v10 +

14086630076582821
36931452484121395200000

v12 −
17472592514198011

423625484376686592000000
v14



I. Alolyan, T.E. Simos / Computers and Mathematics with Applications 62 (2011) 3756–3774 3761

−
687773753293267

197530511572215005184000
v16 + · · ·

b1 = −
10081177
11404800

+
547336457
593049600

v2 −
6282683567
35582976000

v4 +
883305239

53299814400
v6

−
23203291679119

28963119144960000
v8 +

166718764256269
7646263454269440000

v10 −
33093001392989737

73862904968242790400000
v12

+
5766401516897381

480108882293578137600000
v14 +

146491245110064629
345678395251376259072000000

v16 + · · ·

b2 =
6056249
2851200

−
547336457
1037836800

v2 +
741144379
8895744000

v4 −
61856925943

9527341824000
v6

+
813790337461

2413593262080000
v8 −

95050599920501
13380961044971520000

v10 +
6876481251874229

18465726242060697600000
v12

+
45637774138658389

2520571632041285222400000
v14 +

1512288260037651989
604937191689908453376000000

v16 + · · · . (21)

The behaviour of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method is given by:

LTE = −
547336457h14

373621248000


y(14)n + 3ω2y(12)n + 3ω4y(10)n + ω6y(8)n


. (22)

3.3. Second method of the family—a method with phase-lag and its first three derivatives vanishing

Requiring themethod (12) to have themaximum algebraic order with four free parameters, the following relations hold:

a0 = 0, a1 = 0, a2 = −1, a3 = 2, a4 = −2

b4 =
791
108

−
25
18

b0 −
16
9

b3 −
7
3
b2 −

8
3
b1,

b5 = −
413
108

+
8
9
b0 +

7
9
b3 +

4
3
b2 +

5
3
b1. (23)

The application of the above method to the scalar test equation (3) gives the difference equation (14). The characteristic
equation associated with (14) is given by (15) with:

A0(v) = v2b0, A1(v) = v2b1
A2(v) = −1 + v2b2, A3(v) = 2 + v2b3

A4(v) = −2 + v2

791
108

−
25
18

b0 −
16
9

b3 −
7
3
b2 −

8
3
b1


A5(v) = 1 + v2


−

413
108

+
8
9
b0 +

7
9
b3 +

4
3
b2 +

5
3
b1


. (24)

By applying k = 5 in the formula (11), we have that the phase-lag is equal to:

phl =
T12
T13

(25)

T12 = 2
[
1 + v2


−

413
108

+
8
9
b0 +

7
9
b3 +

4
3
b2 +

5
3
b1

]
cos (5v)

+ 2
[
−2 + v2


791
108

−
25
18

b0 −
16
9

b3 −
7
3
b2 −

8
3
b1

]
cos (4v)

+ 2

2 + v2b3


cos (3v)+ 2


−1 + v2b2


cos (2v)+ 2v2b1 cos (v)+ v2b0

T13 = 14 + 50v2


−
413
108

+
8
9
b0 +

7
9
b3 +

4
3
b2 +

5
3
b1


+ 32v2


791
108

−
25
18

b0 −
16
9

b3 −
7
3
b2 −

8
3
b1


+ 18v2b3 + 8v2b2 + 2v2b1.

The phase-lag’s first, second and third derivatives can be produced from the above relation.
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Demanding the phase-lag and the first, second and third derivatives of the phase-lag to vanish we find out
that:

b0 = −
1
48

T21
v5T22

(26)

T21 = −396v − 288 sin (v)− 147v5 − 252v3 + 20216 (cos (v))6 v5

− 9216 sin (v) (cos (v))9 + 26496 sin (v) (cos (v))7 + 1584 sin (v) v2 − 8064 sin (v) (cos (v))6

+ 18432 sin (v) (cos (v))8 − 3024 sin (v) (cos (v))4 − 27648 (cos (v))9 v
+ 672 (cos (v))8 v3 − 36288 (cos (v))8 v + 1736 (cos (v))8 v5 + 2688 (cos (v))7 v3

+ 8960 (cos (v))7 v5 + 27360 (cos (v))7 v + 4704 (cos (v))6 v3

+ 68544 (cos (v))6 v + 3780 (cos (v))5 v + 3696 (cos (v))5 v3 + 26180 (cos (v))5 v5

− 1092 (cos (v))4 v3 − 46728 (cos (v))4 v + 20363 (cos (v))4 v5

+ 8078 (cos (v))3 v5 − 4872 (cos (v))3 v3 − 13932 (cos (v))3 v
+ 168 (cos (v))2 v5 − 9216 sin (v) (cos (v))10 − 26208 sin (v) (cos (v))5

+ 10224 sin (v) (cos (v))3 + 2160 sin (v) (cos (v))2 + 6912 (cos (v))11 v
+ 4608 (cos (v))10 v + 3528v cos (v)+ 10260v (cos (v))2 − 882v5 cos (v)− 1512 cos (v) v3

− 4032 (cos (v))2 v3 − 1296 cos (v) sin (v)+ 13248 sin (v) (cos (v))6 v2

− 8604 sin (v) v2 (cos (v))2 + 1536 sin (v) (cos (v))10 v2 − 2784 sin (v) (cos (v))7 v2

− 4608 sin (v) (cos (v))8 v2 + 768 sin (v) (cos (v))9 v2 + 2232 sin (v) v2 cos (v)
− 3048 sin (v) (cos (v))4 v2 − 20796 sin (v) (cos (v))3 v2 + 20472 sin (v) (cos (v))5 v2

T22 = (cos (v))8 − 2 (cos (v))7 − 2 (cos (v))6 + 6 (cos (v))5 − 6 (cos (v))3 + 2 (cos (v))2 + 2 cos (v)− 1

b1 =
1
96

T23
v5T22

(27)

T23 = −756v − 528 sin (v)− 420v3 − 19968 sin (v) (cos (v))9 + 52608 sin (v) (cos (v))7

+ 2860 sin (v) v2 − 12096 sin (v) (cos (v))6 + 26112 sin (v) (cos (v))8 − 5376 sin (v) (cos (v))4

− 42624 (cos (v))9 v + 672 (cos (v))8 v3 − 75456 (cos (v))8 v + 2072 (cos (v))8 v5

+ 4032 (cos (v))7 v3 + 12432 (cos (v))7 v5 + 45360 (cos (v))7 v + 8400 (cos (v))6 v3

+ 124992 (cos (v))6 v + 32620 (cos (v))6 v5 + 7056 (cos (v))5 v + 6720 (cos (v))5 v3

+ 45920 (cos (v))5 v5 − 1596 (cos (v))4 v3 − 79776 (cos (v))4 v
+ 35399 (cos (v))4 v5 + 13454 (cos (v))3 v5 − 7896 (cos (v))3 v3 − 25668 (cos (v))3 v
+ 924 (cos (v))2 v5 − 12288 sin (v) (cos (v))10 − 47712 sin (v) (cos (v))5 + 17328 sin (v) (cos (v))3

+ 4176 sin (v) (cos (v))2 + 9216 (cos (v))11 v + 13824 (cos (v))10 v + 6660v cos (v)+ 17172v (cos (v))2

− 1246v5 cos (v)− 2856 cos (v) v3 − 7056 (cos (v))2 v3 − 2256 cos (v) sin (v)+ 37400 sin (v) (cos (v))5 v2

+ 23904 sin (v) (cos (v))6 v2 + 2048 sin (v) (cos (v))10 v2 − 8192 sin (v) (cos (v))8 v2

− 16560 sin (v) v2 (cos (v))2 − 9056 sin (v) (cos (v))7 v2 + 2944 sin (v) (cos (v))9 v2

− 35348 sin (v) (cos (v))3 v2 + 4096 sin (v) v2 cos (v)− 4096 sin (v) (cos (v))4 v2 − 455v5

b2 = −
1
24

T24
v5T22

(28)

T24 = −144v − 800 sin (v) (cos (v))8 v2 + 4140 (cos (v))5 v − 60v3 − 49v5 + 2712 sin (v) (cos (v))6 v2

− 3032 sin (v) (cos (v))7 v2 + 7604 sin (v) (cos (v))5 v2 + 128 sin (v) (cos (v))10 v2

− 6080 sin (v) (cos (v))3 v2 + 832 sin (v) (cos (v))9 v2 + 712 sin (v) v2 cos (v)
− 3168 sin (v) v2 (cos (v))2 + 572 sin (v) (cos (v))4 v2 − 96 sin (v)− 3840 sin (v) (cos (v))9

+ 9696 sin (v) (cos (v))7 + 520 sin (v) v2 + 432 sin (v) (cos (v))6 + 1344 sin (v) (cos (v))8

− 1776 sin (v) (cos (v))4 − 3600 (cos (v))9 v − 24 (cos (v))8 v3 − 15120 (cos (v))8 v
+ 384 (cos (v))7 v3 + 1036 (cos (v))7 v5 + 2844 (cos (v))7 v + 1224 (cos (v))6 v3 + 22320 (cos (v))6 v
+ 4046 (cos (v))6 v5 + 1200 (cos (v))5 v3 + 6664 (cos (v))5 v5 + 84 (cos (v))4 v3

− 13356 (cos (v))4 v + 5929 (cos (v))4 v5 + 2674 (cos (v))3 v5 − 1032 (cos (v))3 v3

− 5184 (cos (v))3 v + 154 (cos (v))2 v5 − 768 sin (v) (cos (v))10 − 8400 sin (v) (cos (v))5

+ 2928 sin (v) (cos (v))3 + 864 sin (v) (cos (v))2 + 576 (cos (v))11 v + 3456 (cos (v))10 v + 1224v cos (v)
+ 2844v (cos (v))2 − 294v5 cos (v)− 552 cos (v) v3 − 1224 (cos (v))2 v3 − 384 cos (v) sin (v)



I. Alolyan, T.E. Simos / Computers and Mathematics with Applications 62 (2011) 3756–3774 3763

b3 =
1

192
T25

v5T22
(29)

T25 = −684v + 3072 sin (v) (cos (v))8 v2 + 2304 sin (v) (cos (v))9 v2 − 14616 sin (v) v2 (cos (v))2

− 6336 sin (v) (cos (v))6 v2 − 26460 sin (v) (cos (v))3 v2 + 2640 sin (v) v2 cos (v)
− 14592 sin (v) (cos (v))7 v2 + 15600 sin (v) (cos (v))4 v2 + 36000 sin (v) (cos (v))5 v2

− 9216 sin (v) (cos (v))9 + 27648 sin (v) (cos (v))7 + 2388 sin (v) v2

+ 21888 sin (v) (cos (v))6 − 9216 sin (v) (cos (v))8 − 16992 sin (v) (cos (v))4 + 6912 (cos (v))9 v
− 384 (cos (v))8 v3 − 48384 (cos (v))8 v + 768 (cos (v))7 v3 − 32544 (cos (v))7 v
+ 2784 (cos (v))6 v3 + 80064 (cos (v))6 v + 6216 (cos (v))6 v5 + 49464 (cos (v))5 v
+ 19936 (cos (v))5 v5 + 3108 (cos (v))4 v3 − 52200 (cos (v))4 v
+ 23023 (cos (v))4 v5 + 11158 (cos (v))3 v5 − 888 (cos (v))3 v3 − 29268 (cos (v))3 v
+ 1456 (cos (v))2 v5 − 28800 sin (v) (cos (v))5 + 11952 sin (v) (cos (v))3

+ 4752 sin (v) (cos (v))2 + 9216 (cos (v))10 v + 5436v cos (v)
+ 11988v (cos (v))2 − 854v5 cos (v)− 2952 cos (v) v3 − 5472 (cos (v))2 v3

− 1584 cos (v) sin (v)− 455v5 − 36v3 + 3072 (cos (v))5 v3 − 432 sin (v) .

For small values of |v| the formulae given by (26)–(29) are subject to heavy cancellations. In this case the following Taylor
series expansions should be used:

b0 =
18117277
5702400

−
547336457
370656000

v2 +
3962346469
8895744000

v4 −
116550460207
1488647160000

v6

+
83803131439129

9654373048320000
v8 −

420395172804467
682702094131200000

v10 +
607852721579988701

18465726242060697600000
v12

−
361940606600619341

360081661720183603200000
v14 +

27619257622207333
448932980845943193600000

v16 + · · ·

b1 = −
10081177
11404800

+
547336457
444787200

v2 −
18717059431
53374464000

v4 +
27383413801
476367091200

v6

−
1035327626828773

173778714869760000
v8 +

4645144731473
10923233506099200

v10 −
770986892016568637

36931452484121395200000
v12

+
261424539473820839

308641424331585945600000
v14 −

5710129260292811569
345678395251376259072000000

v16 + · · ·

b2 =
6056249
2851200

−
547336457
778377600

v2 +
1403003699
8491392000

v4 −
2021599429
95273418240

v6 +
536896133041987

304112751022080000
v8

−
26719018155653

223016017416192000
v10 +

3323984311926673
710220240079257600000

v12 −
76743438942516257

236303590503870489600000
v14

−
7108094900546776489

604937191689908453376000000
v16 + · · ·

b3 = −
8790917
22809600

+
547336457
2075673600

v2 −
9959676119

249080832000
v4 +

757223293
272209766400

v6 −
44881181749919

270322445352960000
v8

−
1147417492703

5352384417988608000
v10 −

6888378190068871
10551843566891827200000

v12 −
33024377725008451

438360283833266995200000
v14

−
7084715188436265629

691356790502752518144000000
v16 + · · · . (30)

The behaviour of the coefficients is given in the following Fig. 2.
The local truncation error of the new proposed method is given by:

LTE = −
547336457h14

373621248000


y(14)n + 4ω2y(12)n + 6ω4y(10)n + 4ω6y(8)n + ω8y(6)n


. (31)

4. Comparative error analysis

We will study the following methods:
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Fig. 1. Behaviour of the coefficients of the new proposed method developed in Section 3.2 for several values of v.

• The eight-step tenth algebraic order method developed by Quinlan and Tremaine [21] which is indicated as
QT10.

• The ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] which is indicated as QT12.
• The twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21] which is indicated as

QT14.
• The classical ten-step method of the family of methods mentioned in paragraph 3 which is indicated as CL.
• The method with vanished phase-lag produced by Alolyan and Simos [23] which is indicated as PF.
• The method with vanished phase-lag and its first derivative produced by Alolyan and Simos [23] which is indicated as

PFDF.
• The new developed ten-step method with phase-lag and its first and second derivatives equal to zero obtained in

paragraph 3.2 which is indicated as PFDF12.
• The new developed ten-step method with phase-lag and its first, second and third derivatives equal to zero obtained in

paragraph 3.3 which is indicated as PFDF123.
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Fig. 2. Behaviour of the coefficients of the new proposed method developed in Section 3.3 for several values of v.

The error analysis is based on the following steps:

• The one-dimensional time independent Schrödinger equation is of the form

y′′(x) = f (x)y(x). (32)

• The function f (x) is written in the form (based on the paper of Ixaru and Rizea [26]):

f (x) = g(x)+ G (33)

where g(x) = V (x)− Vc = g , where Vc is the constant approximation of the potential and G = v2 = Vc − E.
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• Our analysis is also based on the expression of the derivatives y(i)n , i = 2, 3, 4, . . . , which are terms of the local truncation
error formulae, in terms of Eq. (32). The expressions are presented as polynomials of G.

• Finally, we substitute the expressions of the derivatives, produced in the previous step, into the local truncation error
formulae.

Based on the procedure mentioned above and on the formulae:

y(2)n = (V(x)− Vc + G)y(x)

y(4)n =


d2

dx2
V(x)


y(x)+ 2


d
dx

V(x)


d
dx

y(x)


+ (V(x)− Vc + G)


d2

dx2
y(x)


y(6)n =


d4

dx4
V(x)


y(x)+ 4


d3

dx3
V(x)


d
dx

y(x)


+ 3


d2

dx2
V(x)


d2

dx2
y(x)


+ 4


d
dx

V(x)
2

y(x)

+ 6(V(x)− Vc + G)


d
dx

y(x)


d
dx

V(x)


+ 4(U(x)− Vc + G)y(x)


d2

dx2
V(x)


+ (V(x)− Vc + G)2


d2

dx2
y(x)


. . .

we obtain the expressions mentioned below.
We consider two cases in terms of the value of E:

• The Energy is close to the potential, i.e. G = Vc − E ≈ 0. So only the free terms of the polynomials in G are considered.
Thus for these values of G, the methods are of comparable accuracy. This is because the free terms of the polynomials in
G, are the same for the cases of the classical method and of the new developed methods.

• G ≫ 0 or G ≪ 0. Then |G| is a large number.
So, we have the following asymptotic expansions of the equations produced from the Local Truncation errors and based
on the above procedure.
The eight-step tenth algebraic order method developed by Quinlan and Tremaine [21]—for the analysis of the Local Truncation
Error see [24]

LTEQT10 = h10


−

45767
725760

y(x)G5
+ · · ·


. (34)

The ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21]—for the analysis of the Local Truncation
Error see [24]

LTEQT12 = h12


−

52559
912384

y(x)G6
+ · · ·


. (35)

The twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21]—for the analysis of the Local
Truncation Error see [24]

LTEQT14 = h14


−

16301796103
290594304000

y(x)G7
+ · · ·


. (36)

The Classical Case of the Family3 [23] which is indicated as CL

LTECL = h14


−

547336457
373621248000

y(x)G7
+ · · ·


. (37)

The method with vanished phase-lag produced by Alolyan and Simos [23] which is indicated as PF

LTEPF = h14


−

547336457
373621248000

g(x)y(x)G6
+ · · ·


. (38)

3 Classical method of the family is the method of the family with constant coefficients which has the same algebraic order.
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The method with vanished phase-lag and its first derivative produced by Alolyan and Simos [23] which is indicated as PFDF

LTEPFDF = h14


−

547336457
17791488000


d2

dx2
g(x)


y(x)−

547336457
373621248000

(g(x))2 y(x)

−
547336457

186810624000


d
dx

g(x)


d
dx

y(x)


G5

+ · · ·


. (39)

The method with vanished phase-lag and its first and second derivatives developed in Section 3.2

LTEPFDF12 = h14


−

547336457
93405312000


d2

dx2
g(x)


y(x)


G5

+ · · ·


. (40)

The method with vanished phase-lag and its first, second and third derivatives developed in Section 3.3

LTEPFDF123 = h14


−

547336457
6227020800


d4

dx4
g(x)


y(x)−

547336457
46702656000

×


d3

dx3
g(x)


d
dx

y(x)−
547336457

31135104000


d
dx

g(x)
2

y(x)

−
547336457

23351328000
g(x)y(x)

d2

dx2
g(x)


G4

+ · · ·


. (41)

From the above equations and Table 1 we have the following theorem:

Theorem 2. • For the eight-step tenth algebraic order method developed by Quinlan and Tremaine [21] the error increases as
the fifth power of G.

• For the ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] the error increases as the sixth power
of G.

• For the twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21] the error increases as the
seventh power of G.

• For the twelfth algebraic order Classical Method of the Family (see [23] for more details) the error increases as the seventh
power of G.

• For the twelfth algebraic order ten-step method PF produced by Alolyan and Simos [23] the error increases as the sixth power
of G.

• For the twelfth algebraic order ten-stepmethod PFDF produced by Alolyan and Simos [23] the error increases as the fifth power
of G.

• For the twelfth algebraic order ten-step method PFDF12 produced in this paper (Section 3.2) the error increases as the fifth
power of G.

• For the twelfth algebraic order ten-step method PFDF123 produced in this paper (Section 3.3) the error increases as the fourth
power of G.

So, for the numerical solution of the time independent radial Schrödinger equation the new proposed method produced in this
paper (Section 3.3) is the most accurate Method, especially for large values of |G| = |Vc − E|, since it is of a twelfth algebraic
order method for which the error increases as the fourth power of G.

5. Stability analysis

In this section we will present the stability analysis for the new method which is based on the following algorithm:

1. Application of the Proposed Method to the Scalar Test Equation.
2. Definition of the Difference Equation and the Corresponding Characteristic Equation.
3. Development of the s − v Plane and production of the appropriate diagrams.
4. Remarks and Conclusions.

Based on the above algorithm we have the following analysis:
The method developed in Section 3.2 or the method obtained in Section 3.3, is applied to the scalar test equation:

ψ ′′
= −t2ψ, (42)

where t ≠ ω.
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Fig. 3. s − v plane of the new proposed method of the family developed in Section 3.1 (mentioned as PFDF12).

We obtain the following difference equation:

Ak(s, v)ψn+k + · · · + A1(s, v)ψn+1 + A0(s, v)ψn + A1(s, v)ψn−1 + · · · + Ak(s, v)ψn−k = 0 (43)

where s = th, h is the step length and A0(s, v), A1(s, v), . . . , Ak(s, v) are polynomials of s and v = ωh and k = 5.
The characteristic equation associated with (43) is given by:

Ak(s, v)ϑk
+ · · · + A1(s, v)ϑ + A0(s, v)+ A1(s, v)ϑ−1

+ · · · + Ak(s, v)ϑ−k
= 0. (44)

Definition 3 (See [27]).A symmetric 2k-stepmethodwith the characteristic equation given by (44) is said to have an interval
of periodicity


0, s20


if, for all s ∈


0, s20


, the roots zi, i = 1, 2 satisfy

z1,2 = e±iζ (th), |zi| ≤ 1, i = 3, 4 (45)

where ζ (th) is a real function of th and s = th.

Definition 4 (See [27]). A method is called P-stable if its interval of periodicity is equal to (0,∞).

Definition 5. A method is called singularly almost P-stable if its interval of periodicity is equal to (0,∞) − S4 only when
the frequency of the phase fitting is the same as the frequency of the scalar test equation, i.e. v = s.

In Figs. 3 and 4 we present the s − v plane for the methods developed in this paper. A shadowed area denotes the s − v
region where the method is stable, while a white area denotes the region where the method is unstable.

Remark 2. For the solution of the Schrödinger equation the frequency of the exponential fitting is equal to the frequency of
the scalar test equation. So, it is necessary to observe the surroundings of the first diagonal of the s − v plane.

In the case that the frequency of the scalar test equation is equal with the frequency of phase fitting, i.e. in the case that
v = s (i.e. see the surroundings of the first diagonal of the s − v plane), it is easy to see that the interval of periodicity of
the new methods is equal to: (0, 6.6) for the method developed in Section 3.2 and (0, 3.6) for the method developed in
Section 3.3.

From the above analysis we have the following theorem:

Theorem 3. • The method developed in Section 3.2 is of twelfth algebraic order, has the phase-lag and its first and second
derivatives equal to zero and has an interval of periodicity equal to: (0, 6.6).

• The method developed in Section 3.3 is of twelfth algebraic order, has the phase-lag and its first, second and third derivatives
equal to zero and has an interval of periodicity equal to: (0, 3.6).

Based on the analysis presented above, we studied the interval of periodicity of the eight methods mentioned in the
previous paragraph. The results are presented in Table 2.

4 Where S is a set of distinct points.
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Table 1
Comparative error analysis for the methods mentioned in
Section 4. We note that CFAE is the coefficient of the maximum
power of G in the asymptotic expansion and Order of G is the
order of G in the asymptotic expansion of the Local Truncation
Error.

Method Algebraic order Order of G CFAE

QT10 8 5 −
45767
725760

QT12 10 6 −
52559
912384

QT14 12 7 −
16301796103
290594304000

CL 12 7 −
547336457

373621248000

PF 12 6 −
547336457

373621248000

PFDF 12 5 −
547336457

17791488000

PFDF12 12 5 −
547336457

93405312000

PFDF123 12 4 −
547336457
6227020800

Table 2
Comparative stability analysis for the methods mentioned in
Section 5.

Method Interval of periodicity

QT10 (0, 0.52)
QT12 (0, 0.17)
QT14 (0, 0.046)
CL (0, 0.8)
PF (see [23]) (0, 1.2)
PFDF (see [23]) (0, 1.5)
PFDF12 (see Section 3.2) (0, 6.6)
PFDF123 (see Section 3.3) (0, 3.6)

6. Numerical results—conclusion

The illustration of the efficiency of the new proposed methods obtained in Section 3 is examined by their application to
the one-dimensional time independent Schrödinger equation.

In order to apply the new methods to the radial Schrödinger equation the value of parameter v is needed. For every
problem of the radial Schrödinger equation given by (1) the parameter v is given by

v =


|q(x)| =


|V (x)− E| (46)

where V (x) is the potential and E is the energy.
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6.1. Woods–Saxon potential

In our example the well knownWoods–Saxon potential given by

V (x) =
u0

1 + z
−

u0z
a(1 + z)2

(47)

is used, with z = exp[(x − X0)/a], u0 = −50, a = 0.6, and X0 = 7.0.
The behaviour of the Woods–Saxon potential is shown in Fig. 5.
It is well known that for some potentials, such as the Woods–Saxon potential, the definition of parameter v is not given

as a function of x but it is based on some critical points which have been defined from the investigation of the appropriate
potential (see for details [28]).

For the purpose of obtaining our numerical results it is appropriate to choose v as follows (see for details [28]):

v =



√
−50 + E, for x ∈ [0, 6.5 − 2h],

√
−37.5 + E, for x = 6.5 − h

√
−25 + E, for x = 6.5

√
−12.5 + E, for x = 6.5 + h

√
E, for x ∈ [6.5 + 2h, 15].

(48)

6.2. Radial Schrödinger equation—the resonance problem

We consider the numerical solution of the one-dimensional time independent Schrödinger equation (1) in the well-
known case of the Woods–Saxon potential (47). For the numerical solution of the above problem we need to approximate
the true (infinite) interval of integration by a finite interval. For the purpose of our numerical example we take the domain
of integration as x ∈ [0, 15]. We consider Eq. (1) in a rather large domain of energies, i.e. E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential dies away faster than the term l(l+1)
x2

and the Schrödinger equation
effectively reduces to

y′′(x)+


k2 −

l(l + 1)
x2


y(x) = 0 (49)

for x greater than some value X .
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx) where jl(kx) and nl(kx) are the spherical

Bessel and Neumann functions respectively. Thus the solution of Eq. (1) (when x → ∞) has the asymptotic form

y(x) ≃ Akxjl(kx)− Bkxnl(kx)

≃ AC


sin


kx −

lπ
2


+ tan δl cos


kx −

lπ
2


(50)
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Fig. 6. Accuracy (Digits) for several values of NFE for the eigenvalue E2 = 341.495874. The nonexistence of a value of Accuracy (Digits) indicates that for
this value of NFE, Accuracy (Digits) is less than 0.

where δl is the phase shift, that is calculated from the formula

tan δl =
y(x2)S(x1)− y(x1)S(x2)
y(x1)C(x1)− y(x2)C(x2)

(51)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right hand end point of the interval of integration
and x2 = x1 − h) with S(x) = kxjl(kx) and C(x) = −kxnl(kx). Since the problem is treated as an initial-value problem, we
need y0, yi, i = 1(1)9 before starting a ten-step method. From the initial condition we obtain y0. The other values can be
obtained using the Runge–Kutta–Nyström methods of Dormand et al. (see [29]). With these starting values we evaluate at
x1 of the asymptotic region the phase shift δl.

For positive energies we have the so-called resonance problem. This problem consists either of finding the phase-shift δl
or finding those E, for E ∈ [1, 1000], at which δl =

π
2 . We actually solve the latter problem, known as the resonance problem

when the positive eigenenergies lie under the potential barrier.
The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
√

Ex


for large x. (52)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance problem using:

• Numerov’s method which is indicated asMethod I.
• The Exponentially-fitted two-step method developed by Raptis and Allison [18] which is indicated asMethod II.
• The Exponentially-fitted two-step P-stable method developed by Kalogiratou and Simos [19] which is indicated as

Method III.
• The Exponentially-fitted four-step method developed by Raptis [20] which is indicated as Method IV.
• The eight-step tenth algebraic order method developed by Quinlan and Tremaine [21] which is indicated as Method V.
• The ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] which is indicated asMethod VI.
• The twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21] which is indicated as

Method VII.
• The classical ten-stepmethod of the family ofmethodsmentioned in paragraph 3 of [23]which is indicated asMethodVIII.
• The ten-step method with phase-lag equal to zero (phase-fitted) obtained in [23] which is indicated as Method IX.
• The ten-stepmethodwith phase-lag and its first derivative equal to zero obtained in [23] which is indicated asMethod X.
• The new developed ten-step method with phase-lag and its first and second derivatives equal to zero obtained in

paragraph 3.2 which is indicated asMethod XI.
• The new developed ten-step method with phase-lag and its first, second and third derivatives equal to zero obtained in

paragraph 3.3 which is indicated asMethod XII.

The computed eigenenergies are compared with exact ones. In Fig. 6 we present the maximum absolute error log10(Err)
where

Err = |Ecalculated − Eaccurate| (53)

the eigenenergy E2 = 341.495874, for several values of NFE = Number of Function Evaluations. In Fig. 7 we present the
maximum absolute error log10(Err)where

Err = |Ecalculated − Eaccurate| (54)

of the eigenenergy E3 = 989.701916, for several values of NFE = Number of Function Evaluations.
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Fig. 7. Accuracy (Digits) for several values of NFE for the eigenvalue E3 = 989.701916. The nonexistence of a value of Accuracy (Digits) indicates that for
this value of NFE, Accuracy (Digits) is less than 0.

7. Remarks – conclusions – summaries

7.1. Remarks and conclusions

The purpose of this paper was the development of two ten-step twelfth algebraic order methods with the following
characteristics:

• The first method is a ten-step twelfth algebraic order method with phase-lag and its first and second derivatives equal
to zero and with an interval of periodicity equal to: (0, 6.6).

• The secondmethod is a ten-step twelfth algebraic ordermethodwith phase-lag and its first, second and third derivatives
equal to zero and with an interval of periodicity equal to: (0, 3.6).

We have applied the new methods to the resonance problem of the one-dimensional Schrödinger equation.
Based on the results presented above we have the following conclusions:

• The Exponentially-fitted two-step method developed by Raptis and Allison [18] (denoted as Method II) is more efficient
than Numerov’s Method (denoted as Method I) and for a low number of function evaluations is more efficient than the
Exponentially-fitted two-step P-stable method developed by Kalogiratou and Simos [19] (denoted as Method III).

• The Exponentially-fitted two-step P-stable method developed by Kalogiratou and Simos [19] (denoted as Method III) is
more efficient than the Exponentially-fitted two-step method developed by Raptis and Allison [18] (denoted as Method
II) for a high number of function evaluations.

• The Exponentially-fitted four-step method developed by Raptis [20] (denoted as Method IV) is more efficient than the
NumerovMethod (denoted as Method I), the Exponentially-fitted two-stepmethod developed by Raptis and Allison [18]
(denoted as Method II) and the Exponentially-fitted two-step P-stable method developed by Kalogiratou and Simos [19]
(denoted as Method III).

• The eight-step tenth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method V) is more
efficient than theNumerovMethod (denoted asMethod I), the Exponentially-fitted two-stepmethoddeveloped byRaptis
and Allison [18] (denoted asMethod II) and the Exponentially-fitted two-step P-stablemethod developed by Kalogiratou
and Simos [19] (denoted as Method III) and less efficient than the Exponentially-fitted four-step method developed by
Raptis [20] (denoted as Method IV).

• The ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method VI) is more
efficient than theNumerovMethod (denoted asMethod I), the Exponentially-fitted two-stepmethoddeveloped byRaptis
and Allison [18] (denoted asMethod II) and the Exponentially-fitted two-step P-stablemethod developed by Kalogiratou
and Simos [19] (denoted asMethod III) and the Exponentially-fitted four-stepmethod developed by Raptis [20] (denoted
as Method IV) for a small number of function evaluations.

• The twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method
VII) is more efficient than the Numerov Method (denoted as Method I), the Exponentially-fitted two-step method
developed by Raptis and Allison [18] (denoted as Method II) and the Exponentially-fitted two-step P-stable method
developed by Kalogiratou and Simos [19] (denoted as Method III), the Exponentially-fitted four-step method developed
by Raptis [20] (denoted as Method IV) for a small number of function evaluations, the eight-step tenth algebraic order
method developed by Quinlan and Tremaine [21] (denoted as Method V) for a small number of function evaluations and
the ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method VI) for a small
number of function evaluations.
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• The classical ten-step method of the family of methods mentioned in paragraph 3 (denoted as Method VIII) is more
efficient than the Numerov Method (denoted as Method I), the Exponentially-fitted two-step method developed by
Raptis and Allison [18] (denoted as Method II) and the Exponentially-fitted two-step P-stable method developed by
Kalogiratou and Simos [19] (denoted asMethod III). Themethod is alsomore efficient than the Exponentially-fitted four-
step method developed by Raptis [20] (denoted as Method IV) for small number of function evaluations, the eight-step
tenth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method V) for a small number of
function evaluations, the ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] (denoted as
Method VI) for a small number of function evaluations and the twelve-step fourteenth algebraic ordermethod developed
by Quinlan and Tremaine [21] (denoted as Method VII) for a small number of function evaluations.

• The ten-step phase-fitted method of the family of methods developed in [23] (denoted as Method IX) is more efficient
than the Numerov Method (denoted as Method I), the Exponentially-fitted two-step method developed by Raptis and
Allison [18] (denoted as Method II) and the Exponentially-fitted two-step P-stable method developed by Kalogiratou
and Simos [19] (denoted as Method III), the Exponentially-fitted four-step method developed by Raptis [20] (denoted as
Method IV), the eight-step tenth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method
V), the ten-step twelfth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method VI), the
twelve-step fourteenth algebraic order method developed by Quinlan and Tremaine [21] (denoted as Method VII) and
the classical ten-step method of the family of methods mentioned in paragraph 3 (denoted as Method VIII).

• The ten-stepmethod of the family ofmethodswith vanished phase-lag and its first derivative developed in [23] (denoted
as Method X) is more efficient than the Numerov Method (denoted as Method I), the Exponentially-fitted two-step
method developed by Raptis and Allison [18] (denoted as Method II) and the Exponentially-fitted two-step P-stable
method developed by Kalogiratou and Simos [19] (denoted as Method III), the Exponentially-fitted four-step method
developed by Raptis [20] (denoted as Method IV), the eight-step tenth algebraic order method developed by Quinlan
and Tremaine [21] (denoted as Method V), the ten-step twelfth algebraic order method developed by Quinlan and
Tremaine [21] (denoted as Method VI), the twelve-step fourteenth algebraic order method developed by Quinlan and
Tremaine [21] (denoted as Method VII) and the classical ten-step method of the family of methods mentioned in
paragraph 3 (denoted as Method VIII) and the ten-step phase-fitted method of the family of methods developed in [23]
(denoted as Method IX).

• The ten-step method of the family of methods with vanished phase-lag and its first and second derivatives developed
in paragraph 3.2 (denoted as Method XI) is more efficient than the Numerov Method (denoted as Method I), the
Exponentially-fitted two-stepmethoddevelopedbyRaptis andAllison [18] (denoted asMethod II) and the Exponentially-
fitted two-step P-stable method developed by Kalogiratou and Simos [19] (denoted as Method III), the Exponentially-
fitted four-step method developed by Raptis [20] (denoted as Method IV), the eight-step tenth algebraic order method
developed by Quinlan and Tremaine [21] (denoted as Method V), the ten-step twelfth algebraic order method developed
by Quinlan and Tremaine [21] (denoted as Method VI), the twelve-step fourteenth algebraic order method developed by
Quinlan andTremaine [21] (denoted asMethodVII) and the classical ten-stepmethodof the family ofmethodsmentioned
in paragraph 3 (denoted as Method VIII), the ten-step phase-fitted method of the family of methods developed in [23]
(denoted asMethod IX) and the ten-stepmethod of the family ofmethodswith vanished phase-lag and its first derivative
developed in [23] (denoted as Method X).

• Finally, the ten-step method of the family of methods with vanished phase-lag and its first, second and third derivatives
developed in paragraph 3.3 (denoted as Method XII) is much more efficient than all the other methods.

7.2. Summaries on the properties of the numerical methods

From the analysis presented above (comparative error analysis and comparative stability analysis) and from the
numerical results presented above, the following summaries on the importance of the properties of the numerical methods
are excluded:
• The dependence of the Algebraic Order of a Numerical Method and the parameter G = Vc − E (where Vc is the constant

approximation of the potential). For the same algebraic order it is important to have the minimal possible power of the
parameter G. This is because in this case we have the minimal Local Truncation Error.

• The Phase-Lag and its derivatives must be equal to zero since this leads to the reduction of the power of G in the terms
of the Local Truncation Error. Important is the phase-lag and as many as possible derivatives to vanish in order to have
at least one order lower of the power of the parameter G than the previous known method of the same family.

• The Large Interval of Periodicity, as we have mentioned previously, does not play an important role for the numerical
solution of this category of problems.

All computationswere carried out on a IBMPC-AT compatible 80486using double precision arithmeticwith 16 significant
digits accuracy (IEEE standard).
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