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1. Introduction and main results

In this paper, we consider the following p-Laplacian equation
— Apu+ AV, OlulPPu = f(x,u), x€R, (1.1)

wherel <p <N, A>1, V, e CR",R)andf € C(RY x R, R).
We assume that the potential V; (x) and f (x, u) satisfy the following conditions.

(V1) 0 <V, (x) forallx e RN and A > 1.
('V,) There exists M > O such that forall A > 1, [£2y.,]| < oo, where

.{21\/1’)L = {X (S RN/V)L(X) < M} .
(V3) lim; o V;.(0) = 0.
There exist a positive function m(x) € L. (RM) and constants Cp, Ry > 0, o > 1 such that

(Va) m(x) < Co (14 (Vo.(x))"/*) forall [x| > Roand A > 1.
(f;) There exists q € (p, p*), with p* == p* — a(ﬁiz_p) and p* := N”—fp, such that
If(x, t)] < Com(x)(1+ |t|"") forallx e RV andt € R.

(f,) % =o(Jt|""!) ast — 0 uniformly in x.

(f3) There exist wo, ;4 > p and a positive continuous function y;(x) such that
F(x,t) > yo()|t|*® and wuF(x,t) <tf(x,t) forallx e RV andt e R,

where F(x, t) = fotf(x, s)ds.
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An example of functions satisfying the assumptions (f;)-(f3) is given by
Fxu) = mo@)lul*u,

where mg(x) is a positive continuous function and p < s < pf.
Set

F = {5 > p/there exists a positive continuous function y (x) such that F(x, t) > vyt forx e RV, t € R}.

By (f;) and (f3), we see that g € ¥ and § < qforall§ € F.

The investigation of equations of the form (1.1) has been motivated by searching wave solutions for the nonlinear
Schrédinger equations; see [1-3]. Many works have been devoted to the case p = 2; see [4-9]. The quasilinear case
p € (1, N) appears in a variety of applications, such as non-Newtonian fluids, image processing, nonlinear elasticity and
reaction—diffusion; see [10] for more details. In the paper [11], Liu consider the p-Laplacian equation (1 < p < N)

— Apu+V@uP?u=fxu, xeRY, (1.2)

with a potential which is periodic or has a bounded potential well. Without assuming the Ambrosetti-Rabinowitz type
condition and the monotonicity of the functiont — {t (lzf{ , the author proved the existence of ground states of (1.2). Another

p-Laplacian equation with potential was considered by Wu and Yang [12]

— Agu+ AVl 2u = u|9%u, xeRV, (1.3)
14

where 2 < p < q < p* and the potential V (x) is bounded. Using a concentration-compactness principle from critical point
theory, they proved existence, multiplicity and concentration of solutions of (1.3). For more results we refer the reader to
[13,14,12,15] and references therein. In the present paper, we are going to study the existence of nontrivial solutions of (1.1).
The results of this paper may be considered as generalization of the results obtained by Sirakov [8]. Here we consider the
situation when the potential is sufficiently large at infinity. Our method is mainly based on variational arguments.

The main results of this paper are the following theorems.

Theorem 1.1. Assume that (f;)-(f3), (V1)-(V4) hold, and q € ¥. Then there exists Ao > 1, depending only on the various
constants involved in the assumptions, such that (1.1) has a nontrivial solution, for any A > Xo.

In the next theorem we will remove the hypothesis ¢ € ¥ and strengthen (V3) by replacing it with a more precise
condition about the behaviour of V; (x) near the origin, for A sufficiently large.

Theorem 1.2. Assume that (f;)-(f3), (V1), (V2), (V4) hold, and ('Vs) there exist constants Cy, ng, & > 0 such that

K 1
V(%) < G (|x|“ + A‘m) forall |x| < nor” ©7

p < 8o N) q N
AN SR
k+p\So—p P q—p p

forsome &g € F.
Then there exists Ag > 1, depending only on the various constants involved in the assumptions, such that (1.1) has a nontrivial
solution, for any A > Ag.

and

2. Preliminary results

We look for solutions of (1.1) in the following subspace

X, = {u € W“’(]RN)// V, (%) |ulPdx < oo} ,
RN

endowed with the norm

1/p
lull, = (/ [VulP +)LVA(X)|u|de> .
RN

Remark 2.1. It follows from (V;), (V) and Poincaré’s inequality for the set £2y;, that there exists C, > 0 such that
llullip < Gllull, forallu € X;,

where ||.||1,p is the standard norm on WP (RN). Then the space (X;, ||.||;.) is continuously embedded into (WP (RN), ||.[l1.p)-
Moreover, (X;, |.||+) is a reflexive Banach space.
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We consider the energy functional J, : X — R, given by
1
L) = *f [Vul? +}\VA(X)|u|de_/ F(x, u)dx, (2.1)
P JrN RN
and the following weighted Lebesgue space

Lo ®RY) = {u : measurable function //N m(x)|ul’dx < oo} ,
R

with the norm
1/s
_ s
lulles, ey = ( fR melul dx) :

Lemma 2.1. Assume that (V;), (V) and (V) hold. Then for every s € [p, p*) and A > 1 there exists C, > 0 such that

N N
”u”LISTI(X)(RN) E C)»”u”}L forallu € X)L'

Proof. By (V1) and ('V,) for u € X;, we have

/ m(x)|ul*dx :/ m(x)|u|‘dx+/ m(x)|ul*dx
RN |x|=Ro x| <Ro

1
Co(/ ufdx + / vx(x>a|u|$dx)+||m||Loo<BR> / ufdx
RN RN RN

1 a—1
o m o
(Co+||m||Loo<BR>)/ IulsderCo(/ VA(X)|u|de> X(/ Iula—ldX>
RN RN RN
a—1
as—p o b
c(/ |u|sdx+</ |u|ﬁdx) ||u||;). (2.2)
RN RN

Since X; is continuously embedded into W'?(R") andp < s < £ < p*,

IA

IA

IA

b as—p
/N mX)|uf’dx < G, (Ilulli A [lufl ffull;, > :
R

Hence

f m)lulfdx < Glull}. O
RN

Lemma 2.2. Assume that (V1), (V,), (V4) and (f))-(f3) hold. Then for A > 1, the functional J; is well defined and of class C'!
on X,.. Furthermore, for all ¢ > 0 there exists C, > 0 such that

/ F(x, wydx < ellull’ + Cllull] forallu € X;. (2.3)
RN

Proof. By (f;) and (f;), for all ¢ > 0 there exists C; > 0 such that
F(x,t) < m@) (et + C|t]7). (24)

Since p, q € [p, p*), (2.3) follows from Lemma 2.1. It is standard to see that ], isof C' onX;. O

Lemma 2.3. For A > 1, there exist r > 0 and uy € X, such that ||ugl||, > r and

J(ug) <0=J,(0) < ||ui||r;f=rh(u)‘
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Proof. It follows from (2.3) that

1
L) = Ellulli —ellully — Cellull.

_ 1
Choose ¢ = L thus

L@ = Gllull} — Gslull.

Since p < g, we can find r > 0 such that infj, = /(1) > p > 0.
Let ¢ € C5°(RN) such that || ¢yll;, = 1. By (f3), for t > 0 we have

Ju(to) < ~t7 — o f
p

Yo(X)|¢ho | dx.
RN

Therefore J; (t¢pg) — —o0 ast — +00, so choose 1y = t¢g with ¢ large enough. O
Set
I'={¢ € C([0, 1], X,) /¢(0) = O and J; (¢(1)) < 0}.
By Lemma 2.3, we see that I" # (J. We take
G = ;gﬁ g&)ﬁbw(t))-
Using a version of the mountain pass theorem without (PS) condition, there exists a sequence (u;}) C X;, such that
Jw) — ¢ and J(u)) — 0 inX]asn— oo.
Moreover, by Lemma 2.3 we see that ¢; > 0.

Lemma 2.4. Let A > 1. Then,

(i) there exists a constant o > 0 independent of A such that

: A
limsup |[u} |} < oc;.
n—oo

(ii) there exists a weak solution u” of (1.1) such that a subsequence of (uﬁ) converges to u* weakly in X;..

Proof. (i) Using (f3), for n large enough we have

1
C+ llupll = Ju(uy) — ;Uﬁ(uﬁ), up)

1 1
> <f - —) I3
p M

This shows that uﬁ is bounded in X;, and the desired result follows from the following inequality
1 1 1
<B - ;) < Ji(up) — ;Wuﬁ), up) = ¢,

(ii) Since u} is bounded in X;, up to a subsequence, we may assume that

A A ;
uy, = u*  weakly in X,,
u: — u* ae.inR",
b A . s N *
ur — vt inL (RY), s €[p,p").

LetR > 0and 0 < ¢ € C;°(RY), ¥ = 1o0nBg. Then,

L) — L@, vy —ut)) = ox(1).

It is well known that the following inequality

(51726 = nl" ) —m) > 0

(2.5)

(2.6)

(2.7)

(2.8)
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holds forany t > 1and &, n € RN with & # 5. Thus by using the fact that 1 = 1 on B, we get
(|VurP=2vu! — VU P2 Vi) V(@ — u?)dx
B
< /N YX)(|VurlP~2vul — VUt P2 VetV uh — ut)dx
R
= () — L, W), ¥ () —uh)) — /N Vb P2V Vi (x) (ufy — u*)dx
R
+ fN VU P2Vut Vi (x) (ul — ut)dx — & /N Vi (0 |u P~ 2ul (uh — ™)y (x)dx
R R
+ / VWP — )y dx + f LG ) = F(x w) = uHy ). (2.9)
R R
By Hélder’s inequality and using the fact that u?, is bounded, ¥ € C°(RY) and u} — u* in I} (RV), it is easy to see that
/RN | VUl P2 Vul Vi (x) (ul — ut)dx — 0,
/N VUt P2Vt Vi (x) (u) — ut)dx — 0,
R

(2.10)
[ vecolrr 2w~y wax - o
RN

/ Vi (0 |u* P 2ut (uh — vy (x)dx — 0.
RN
By (f;) and (f;), for all ¢ > 0 there exists C; > 0 such that

If (x, )] < mE)(et]P" + CoJt]7 ). (2.11)

Therefore

/ |(fF (%, up) — f(x, uM)) () — uM)yr (x)|dx
]RN
< Il/floo/ m(x) [e (Jup P~ + WP + C (Iuﬁqu + u*77)] |ut — u*|dx
suppy

< el¥|oo /N m(x) (|ug|P + [P+ kPt + |ul|p*1|uﬁ|) dx
R

+ Cel¥ oo ([ m(x) |ul |9 uk — ut|dx + / m@out |7 ) — uﬂdx) : (2.12)
suppy suppy
Using the fact that u? is bounded in X;, it follows from Lemma 2.1 that
a = sup/ m(x)|u}[Pdx < oco. (2.13)
n RN
By Holder’s inequality and (2.13) we also have
a = supf m(x) [} [P~ u*|dx < oo
n RN
and
as = supf m(x)[u* [P~ |ul|dx < oo
n RN
It follows from (2.12) that

/ 1 (o) — £ ) — wP ) (ldx < 9 |oo <a1+az+a3+ / m<x>|u*|*’>
RN RN

q—1 q-1

+Co Yoo [(f m(x)|u§|qu>T + (/ m(x)|u*|qu) ! ] (/ m(x)|u} —uﬂqu)q. (2.14)
RN RN suppys
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Using again Lemma 2.1 we have

sup/ m(x)|u}|9dx < oo. (2.15)
RN
Since u} — u*in L] (RV),
m(x)|uf — u*|%dx < ||m]| h—ut|d
n = L (suppyy) lu, — u*|%dx — 0. (2.16)

suppyr suppyr
Hence, it follows from (2.14)—(2.16) that

/ Fx, ub) — fx, uh) Wt — uh)y(x)dx — 0. (2.17)

Combining (2.9), (2.10) and (2.17) we deduce that

(VUi P2 vul — VU P2Vt V(udh — ut)dx — 0. (2.18)
B

Now we recall the following result.
Lemma 2.5 (Lemma 2.7 in [16]). Suppose that p > 1, 2 is an open setin RN and a(x, &) € C°(£2 x RN, RN) is such that
aoléP < a(x, §).§
la(x, §)| < a1]EP,
for some g, 1 > 0, and
(a(x,§) —alx, m)(E —n) >0,

forany £, n € RN with& # 1.
Suppose that u,, u € WHP(2),n=1,2, ..., then

lim [a(x Vu,) —a(x, Vu)] (Vu, — Vu)dx =0

n—oo
if and only if Vu,., — VuinI?(R2).

By Lemma 2.5, (2.8) and (2.18) we see that Vu, — Vu in I’ (Bg). Since R > 0 is arbitrary, we see that Vu, — Vu a.e.in RV,
Then, by Vitali’s theorem, (2.6) and (2.11), it is easy to see that for every ¢ € (g° (RV) we have

/ VUt P2Vul Vo (x)dx — / VUt P2Vt Ve (x)dx
/ V, 00 P2 g (e — / V, (0 P2 (o) e

/ F@x, up)p()dx — fo(x, uM)p(x)dx.
R
Therefore
s T e —

UL, @) = lim ;). ) =0,

hence u* is a weak solution of (1.1). O
Now we show that u* is nontrivial for A sufficiently large.

Lemma 2.6. Suppose that the assumptions of either Theorem 1.1 or Theorem 1.2 hold. Then

. N__q
lim AP aPpc, =0.
L—00

Proof. We use the technique presented in [8]. Note that

¢, < inf maxJ,(tu). (2.19)
ueX; \{0} t>0
Let § € #.Then
c. < inf max®,(tu), (2.20)

ueX; \{0} t>0
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where
1
@, (1) = —/ |Vu|p+)\VA(x)|u|pdx—/ y (%) |ul’dx.
D JrN RN

By a direct calculation, we see that

5%
S [VUP + 2V; 0 lufPdx |
8 4

8

pé 5> (fan v ®|ul?dx)

=

max @; (tu) = (2.21)
t>0

Set
Jan IVUlP + AV, () |ulPdx
5 .
ueX; \{0} (fRN Y (%) |u|’3dx) 5

From (2.20) and (2.21) we deduce that

g() =

8
o < CgM)sr. (2.22)
Using the change of variables y = A%x we get

_1
inf Jen [VulP +V, (AP y)[ulPdy
uex; \(0) 5

(Jon O plulidy)’

N_N
&) =20

N@—p)

=27 hs(h), (2.23)

where
_1
Jun IV 4 VoG By)luPdy
Pay
_1 K
(o v Py lupdy)”

Suppose that ¢ € # (Theorem 1.1). We have the following claim.

hs(0) = inf
s UE)I(?\{O}

Claim 2.1.
lim hy(2) = 0.
A—00

Proof of Claim. Set

E, = {u eXA// y(k’%y)lul"dy = 1}-
RN

Then

hy(h) = inf/ IVul® + V, (AP y)|ulPdy.
]RN

uek;,
Suppose by contradiction that there exists a sequence A,;, — o0 as m — o0, such that

hq(Am) > do > 0. (2.24)
Choose u,, € C5°(RV) such that

nll)ngo IVunllpeny =0 and  lugllggy) = 1. (2.25)

Let

Up
Vnm = -

(fRN y(k?y)lunlqdy> '
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Clearly v, € Ej,,. Using the fact that u, € C°(RV) and y (x) € C(RY), we have

_1 _1 _1
/ Y (Am” ¥) |uq|dy > y(km”yo)f un|dy = y (Am"” yo),
RN RN

LT

.

Since y()»n_fyo) — y(0) asm — o0, it follows that for every n there exists m, such that for m > m,

_1 0
/ y O ) altdy > L2
RN 2

_1 _
where V()»mp)’o) = minyesuppun J/()\m
1

So, in view of (2.25) we can find ng such that for m > m,,
do
Vo, mlPdy < —.
[ by < 5
Hence by using (2.24) we obtain
-1 do
Vin Am” ¥) |Ung,m [Pdy > 5 form > my,. (2.26)
RN

By (V3) (Theorem 1.1), for m > m,, we have

A

_1 _1
/ Vs, O P ngmldy < Vi, Gony1) / oy m Py
RN RN

p
_1 0)\ ¢
Vi, Cn? 1) (%) ’

IA

/N [upy|Pdy — 0 asm — oo,
R

_1 1
where V;, (An" y1) = MaXyesuppuy, Vin (Am”y). This contradicts with (2.26), and the claim follows. O

From (2.22) and (2.23) we get

q

N
G < CATP 7 (hg(R) T,
in view of Claim 2.1 we obtain
. N__q
lim AP aPc, =0.
r—>00

Now, suppose that (Vs) holds (Theorem 1.2). Then

Jus 190+ Cy (AP Iyl + 2775 ) juPPdy

hs,(}) = inf 7
P ! %
ueW, P (Bo)\(0) ( Jun y(x‘ﬁy)|u|aody) "
Joa 190+ (AP Iyl + 2755 ) juPdy
<C inf p ’
uewy ™ (B)\(0) (Jiun lulPody)®

where o = ngi ) . By making the change of variables z = ARG y we obtain

A (-p+ig Vul + (12| + 1) JulPdz
by < F05E) e Ja VWP H T D
ueWg? (B,)\(0) (Jux lupodz)%
—k_(1_NGo—p) YulP p 1 rd
< et (1-55) inf Jan 1Vl + (ng + p) lulPdz
ueWg ™ (B,)\(0) (v lufiodz)%
—K N(8g—p)
< C)\WO_ Dgop)
This and (2.23) imply

N(g—p)
g, () = AP (17 557)
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Hence, it follows from (2.22) that

(3% 5) (e~

+\~a
o=z

).

)Lp 7-p pc)\ < CA¥
Consequently by (Vs),

,L
-p

e

N
lim AP

r—00

C, =
The proof of Lemma 2.6 is complete. O

Lemma 2.7. For every A > 1 there exists R(A) > Ry, with Rq given by ('V4), such that

iCA

lim sup ||u ”lP(RN\BR( )= O'I,

n—o00

where o > 0 is a constant independent of \.

Proof. In view of Lemma 2.4(i), for R > 0 we have

o6, + 0,(1) > / |VUt|P + AV, (%) ul [Pdx
]RN

3/ |Vut|Pdx + 1M [u [Pdx
]RN

RN\ 2y 1

> / |Vu|Pdx + kM/ [ul[Pdx — AM [ut|Pdx — AM
RN RN

2,5 NBR

> / |Vul Pdx + AM ut(Pdx — AM [u?|Pdx.
RN RN\Bg 2pm .3 \BR

On the other hand, by Hélder and Sobolev inequalities

[ e = 12\ Bl F 1
2m,,\Br

IA

Cl2u \ Bel' 7 IV D, .

so, we can find R = R(A) > Rq such that

f W Pdx <~ VP
M, \Br " T 2AM P&’

From (2.27) we conclude

1 A D AD
oC, +0,(1) > [Vug [Pdx + AM [ur [Pdx
2 JgnN RN\Bg

> AM [u|Pdx,
RN\Bg

and the desired result follows. The proof of Lemma 2.7 is complete. O

681

(2.27)

Now, we turn to show that u* = 0 for X sufficiently large. Suppose by contradiction that there exists a sequence A,, — 00

as m — oo, such that u*m = 0. Then

_ 1
Gy = lim (Jxm (ujm) — E(I;m (upm), uﬁ”))

1
= lim (7/ uimf(x, uﬁ”’)dx—/ F(x, uﬁ’”)dx)
=00 \ P JrN RN

1 : : A A
— liminf up™f (x, up™)dx
]RN

p n—oo

IA

IA

1 P Am |P Am |4
liminf [ em()|u;™ P 4+ Com(x)|u,™[Tdx
p n—oo JpN
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< [Im||reo gy lim inf/ s|uf;'”|1’ + Cg|uﬁ"‘|qu
n—o0o BR
+ lim Sup/ sm(x)|ugm P+ Cgm(x)|u2m |9dx. (228)
n—co  JRN\Bg

Since u}m — u*m = 0inX;,,, utm — 0inL_

(RM) for s € {p, q}. It follows from (2.28) that

A

Gy < lim sup/ emx)[uim P + Com(x)|uim |9dx
RN\Bg

n—oo

IA

n—oo n—oo

¢ lim sup / m(x)|uim Pdx + C, lim sup / m(x)|uim|9dx. (2.29)
RN\Bg RN\Bg
By (V) and the Gagliardo-Nirenberg inequality, for s € {p, q} and R = R(}\;;;), we have

1
/ m@)|u" dx < Colluy™ I o 5oy + Co/ Vi ) 1™ [*dx
RN\Bg RN\Bg

Am 1) (1-0), A
< Clm oy IV 1S

LP(RN\BR)
1 =1
o M o
+G (/ Vi, () |ukm |de> X (/ [ulm | a=1 dx)
RN\Bg RN\Bg
Am 1) (1=6)s A 116
S C“unm ”LP(RN\BR) ”Vunm ”L;(]RN\BR)
1
o | D% o O TE A “
I gty IV I Vi (0|12 Pdx (2.30)
RN\Bg
where 6 = N(S P and 6 = ’;’E’(Ss 1’;)) Using Lemma 2.4(i) and Lemma 2.7, we see that
C

lim sup ”V”ﬁm”mw\a y =S < 0Cuyy» lim sup/ Vim (x)|uﬁm|pdx < o 2m

n—00 n—oo JRN\Bg m
and

. _G

Am (|P < F_om

lllr;isolip ”un ||Lp(]RN\BR) =0 }\m

By (2.30) we obtain

(1-=6)s (1= (as—p) 1
p s Cy. ap 0(as—p) G, o
c p + m c ap m
Am X m X
m m

<Chp 7 . (2.31)

n—oo

lim sup/ m(x)|ubm Sdx <
RN\Bg

A
(@)
S
> O
§‘§

So, it follows from (2.29) that

N@=p)—pg ¢
-1 p? b
Cam = C 6)\”, Cam + Cg)“m C)Lm s

and hence
N(g— I;)*Pq q
(1—Ce)ey,, < CCehm * c,\”m. (2.32)
Choose ¢ sufficiently small in (2.32), we get
N(q—g)—l’q q
Cm < Chm 7 ],
thus
N_ o
0<C<xrp o,
and consequently
N_ g
limsupin “c,, > 0.

m—0o0

This contradicts with Lemma 2.6, and the proof of Theorems 1.1 and 1.2 is complete.



M. Massar et al. / J. Math. Anal. Appl. 395 (2012) 673-683 683

References

[1] A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrédinger equations with potentials vanishing at infinity, ]. Eur. Math. Soc. 7 (2005)
117-144.
[2] W.Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrodinger equation, Adv. Differential Equations 3 (1998)
441-472.
[3] B.Sirakov, Standing wave solutions of the nonlinear Schrédinger equation in RV, Ann. Mat. 181 (2002) 73-83.
[4] T.Bartsch, Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on R, Comm. Partial Differential Equations 20 (910)
(1995) 1725-1741.
[5] Y. Ding, A. Szulkin, Bound states for semilinear Schrodinger equations with sign-changing potential, Calc. Var. Partial Differential Equations 29 (2007)
397-419.
[6] L.]Jeanjean, K. Tanaka, A positive solution for asymptotically linear elliptic problem on RN autonomous at infinity, ESAIM Control Optim. Calc. Var. 7
(2002) 597-614.
[7] P.H. Rabinowitz, On a class of nonlinear Schrédinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291.
[8] B.Sirakov, Existence and multiplicity of solutions of semi-lineair elliptic equations in RV, Calc. Var. 11 (2000) 119-142.
[9] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162.
[10] J.I. Daz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations, in: Res. Notes Math., vol. 106, Pitman, Boston, MA, 1985,
p.323.
[11] S.Liu, On ground states of superlinear p-Laplacian equations in RV, ]. Math. Anal. Appl. 361 (2010) 48-58.
[12] M. Wu, Z. Yang, Existence and concentration of soluions for a p-Laplace equation with potentials in R¥, Electron. J. Differential Equations (ISSN: 1072-
6691) 2010 (96) (2010) 1-11.
[13] C.0. Alves, G.M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation in RV, Differential Integral Equations 19 (2006)
143-162.
[14] C.O. Alves, G.M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth
in RV, ]. Differential Equations 246 (2009) 1288-1311.
[15] J. Yang, X. Zhu, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains, Acta Math. Sci. 7
(1987) 341-359.
[16] G.B.Li, O. Martio, Stability in obstacle problem, Math. Scand. 75 (1994) 87-100.



	Existence of weak solutions for a quasilinear equation in  RN 
	Introduction and main results
	Preliminary results
	References


