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a b s t r a c t

This paper studies the p-Laplacian equation

−∆pu + λVλ(x) |u|p−2 u = f (x, u) in RN ,

where 1 < p < N, λ ≥ 1 and Vλ(x) is a nonnegative continuous function. Under some con-
ditions on f (x, u) and Vλ(x), we prove the existence of nontrivial solutions for λ sufficiently
large.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper, we consider the following p-Laplacian equation

−∆pu + λVλ(x)|u|p−2u = f (x, u), x ∈ RN , (1.1)

where 1 < p < N, λ ≥ 1, Vλ ∈ C(RN ,R) and f ∈ C(RN
× R,R).

We assume that the potential Vλ(x) and f (x, u) satisfy the following conditions.

(V1) 0 ≤ Vλ(x) for all x ∈ RN and λ ≥ 1.
(V2) There existsM > 0 such that for all λ ≥ 1, |ΩM,λ| < ∞, where

ΩM,λ =

x ∈ RN/Vλ(x) ≤ M


.

(V3) limλ→∞ Vλ(0) = 0.

There exist a positive functionm(x) ∈ L∞

loc(R
N) and constants C0, R0 > 0, α > 1 such that

(V4) m(x) ≤ C0

1 + (Vλ(x))1/α


for all |x| ≥ R0 and λ ≥ 1.

(f1) There exists q ∈ (p, p♯), with p♯ := p⋆ −
p2

α(N−p) and p⋆ :=
Np
N−p , such that

|f (x, t)| ≤ C0m(x)(1 + |t|q−1) for all x ∈ RN and t ∈ R.
(f2)

f (x,t)
m(x) = o(|t|p−1) as t → 0 uniformly in x.

(f3) There exist µ0, µ > p and a positive continuous function γ0(x) such that
F(x, t) ≥ γ0(x)|t|µ0 and µF(x, t) ≤ tf (x, t) for all x ∈ RN and t ∈ R,

where F(x, t) =
 t
0 f (x, s)ds.
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An example of functions satisfying the assumptions (f1)–(f3) is given by

f (x, u) = m0(x)|u|s−2u,

wherem0(x) is a positive continuous function and p < s < p♯.
Set

F =


δ > p/there exists a positive continuous function γ (x) such that F(x, t) ≥ γ (x)|t|δ for x ∈ RN , t ∈ R


.

By (f1) and (f3), we see that µ0 ∈ F and δ ≤ q for all δ ∈ F .
The investigation of equations of the form (1.1) has been motivated by searching wave solutions for the nonlinear

Schrödinger equations; see [1–3]. Many works have been devoted to the case p = 2; see [4–9]. The quasilinear case
p ∈ (1,N) appears in a variety of applications, such as non-Newtonian fluids, image processing, nonlinear elasticity and
reaction–diffusion; see [10] for more details. In the paper [11], Liu consider the p-Laplacian equation (1 < p < N)

−∆pu + V (x)|u|p−2u = f (x, u), x ∈ RN , (1.2)

with a potential which is periodic or has a bounded potential well. Without assuming the Ambrosetti–Rabinowitz type
condition and themonotonicity of the function t →

f (x,t)
|t|p−1 , the author proved the existence of ground states of (1.2). Another

p-Laplacian equation with potential was considered by Wu and Yang [12]

−∆pu + λV (x)|u|p−2u = |u|q−2u, x ∈ RN , (1.3)

where 2 ≤ p < q < p⋆ and the potential V (x) is bounded. Using a concentration-compactness principle from critical point
theory, they proved existence, multiplicity and concentration of solutions of (1.3). For more results we refer the reader to
[13,14,12,15] and references therein. In the present paper, we are going to study the existence of nontrivial solutions of (1.1).
The results of this paper may be considered as generalization of the results obtained by Sirakov [8]. Here we consider the
situation when the potential is sufficiently large at infinity. Our method is mainly based on variational arguments.

The main results of this paper are the following theorems.

Theorem 1.1. Assume that (f1)–(f3), (V1)–(V4) hold, and q ∈ F . Then there exists λ0 ≥ 1, depending only on the various
constants involved in the assumptions, such that (1.1) has a nontrivial solution, for any λ ≥ λ0.

In the next theorem we will remove the hypothesis q ∈ F and strengthen (V3) by replacing it with a more precise
condition about the behaviour of Vλ(x) near the origin, for λ sufficiently large.

Theorem 1.2. Assume that (f1)–(f3), (V1), (V2), (V4) hold, and (V5) there exist constants C1, η0, κ > 0 such that

Vλ(x) ≤ C1


|x|κ + λ

−
κ
κ+p


for all |x| ≤ η0λ
−

1
κ+p ,

and
p

κ + p


δ0

δ0 − p
−

N
p


<

q
q − p

−
N
p
,

for some δ0 ∈ F .
Then there exists λ0 ≥ 1, depending only on the various constants involved in the assumptions, such that (1.1) has a nontrivial

solution, for any λ ≥ λ0.

2. Preliminary results

We look for solutions of (1.1) in the following subspace

Xλ =


u ∈ W 1,p(RN)


RN

Vλ(x)|u|pdx < ∞


,

endowed with the norm

∥u∥λ =


RN

|∇u|p + λVλ(x)|u|pdx
1/p

.

Remark 2.1. It follows from (V1), (V2) and Poincaré’s inequality for the setΩM,λ that there exists Cλ > 0 such that

∥u∥1,p ≤ Cλ∥u∥λ for all u ∈ Xλ,

where ∥.∥1,p is the standard normonW 1,p(RN). Then the space (Xλ, ∥.∥λ) is continuously embedded into (W 1,p(RN), ∥.∥1,p).
Moreover, (Xλ, ∥.∥λ) is a reflexive Banach space.
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We consider the energy functional Jλ : Xλ → R, given by

Jλ(u) =
1
p


RN

|∇u|p + λVλ(x)|u|pdx −


RN

F(x, u)dx, (2.1)

and the following weighted Lebesgue space

Lsm(x)(R
N) =


u : measurable function


RN

m(x)|u|sdx < ∞


,

with the norm

∥u∥Lsm(x)(R
N ) =


RN

m(x)|u|sdx
1/s

.

Lemma 2.1. Assume that (V1), (V2) and (V4) hold. Then for every s ∈ [p, p♯) and λ ≥ 1 there exists Cλ > 0 such that

∥u∥s
Lsm(x)(R

N )
≤ Cλ∥u∥s

λ for all u ∈ Xλ.

Proof. By (V1) and (V4) for u ∈ Xλ, we have
RN

m(x)|u|sdx =


|x|≥R0

m(x)|u|sdx +


|x|<R0

m(x)|u|sdx

≤ C0


RN

|u|sdx +


RN

Vλ(x)
1
α |u|sdx


+ ∥m∥L∞(BR)


RN

|u|sdx

≤

C0 + ∥m∥L∞(BR)

 
RN

|u|sdx + C0


RN

Vλ(x)|u|pdx
 1
α

×


RN

|u|
αs−p
α−1 dx

 α−1
α

≤ C


RN

|u|sdx +


RN

|u|
αs−p
α−1 dx

 α−1
α

∥u∥
p
α
λ


. (2.2)

Since Xλ is continuously embedded intoW 1,p(RN) and p ≤ s ≤
αs−p
α−1 < p⋆,

RN
m(x)|u|sdx ≤ Cλ


∥u∥s

λ + ∥u∥
p
α
λ ∥u∥

αs−p
α

λ


.

Hence
RN

m(x)|u|sdx ≤ Cλ∥u∥s
λ. �

Lemma 2.2. Assume that (V1), (V2), (V4) and (f1)–(f3) hold. Then for λ ≥ 1, the functional Jλ is well defined and of class C1

on Xλ. Furthermore, for all ε > 0 there exists Cε > 0 such that
RN

F(x, u)dx ≤ ε∥u∥p
λ + Cε∥u∥

q
λ for all u ∈ Xλ. (2.3)

Proof. By (f1) and (f2), for all ε > 0 there exists Cε > 0 such that

F(x, t) ≤ m(x)(ε|t|p + Cε|t|q). (2.4)

Since p, q ∈ [p, p♯), (2.3) follows from Lemma 2.1. It is standard to see that Jλ is of C1 on Xλ. �

Lemma 2.3. For λ ≥ 1, there exist r > 0 and u0 ∈ Xλ such that ∥u0∥λ > r and

Jλ(u0) < 0 = Jλ(0) < inf
∥u∥λ=r

Jλ(u).
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Proof. It follows from (2.3) that

Jλ(u) ≥
1
p
∥u∥p

λ − ε∥u∥p
λ − Cε∥u∥

q
λ.

Choose ε =
1
2p , thus

Jλ(u) ≥ C2∥u∥
p
λ − C3∥u∥

q
λ.

Since p < q, we can find r > 0 such that inf∥u∥λ=r Jλ(u) ≥ ρ > 0.
Let φ0 ∈ C∞

0 (R
N) such that ∥φ0∥λ = 1. By (f3), for t > 0 we have

Jλ(tφ0) ≤
1
p
tp − tµ0


RN
γ0(x)|φ0|

µ0dx.

Therefore Jλ(tφ0) → −∞ as t → +∞, so choose u0 = tφ0 with t large enough. �

Set

Γ = {φ ∈ C ([0, 1], Xλ) /φ(0) = 0 and Jλ(φ(1)) < 0} .

By Lemma 2.3, we see that Γ ≠ ∅. We take

cλ = inf
φ∈Γ

max
t∈[0,1]

Jλ(φ(t)).

Using a version of the mountain pass theorem without (PS) condition, there exists a sequence (uλn) ⊂ Xλ such that

J(uλn) → cλ and J ′(uλn) → 0 in X ′

λ as n → ∞. (2.5)

Moreover, by Lemma 2.3 we see that cλ > 0.

Lemma 2.4. Let λ ≥ 1. Then,

(i) there exists a constant σ > 0 independent of λ such that

lim sup
n→∞

∥uλn∥
p
λ ≤ σ cλ.

(ii) there exists a weak solution uλ of (1.1) such that a subsequence of (uλn) converges to uλ weakly in Xλ.

Proof. (i) Using (f3), for n large enough we have

C + ∥uλn∥λ ≥ Jλ(uλn)−
1
µ

⟨J ′λ(u
λ
n), u

λ
n⟩

≥


1
p

−
1
µ


∥uλn∥

p
λ.

This shows that uλn is bounded in Xλ, and the desired result follows from the following inequality
1
p

−
1
µ


∥uλn∥

p
λ ≤ Jλ(uλn)−

1
µ

⟨J ′λ(u
λ
n), u

λ
n⟩ → cλ,

(ii) Since uλn is bounded in Xλ, up to a subsequence, we may assume thatuλn ⇀ uλ weakly in Xλ,
uλn → uλ a.e. in RN ,

uλn → uλ in Lsloc(R
N), s ∈ [p, p⋆).

(2.6)

Let R > 0 and 0 ≤ ψ ∈ C∞

0 (R
N), ψ ≡ 1 on BR. Then,

⟨J ′λ(u
λ
n)− J ′λ(u

λ), ψ(uλn − uλ)⟩ = on(1). (2.7)

It is well known that the following inequality

(|ξ |t−2ξ − |η|t−2η)(ξ − η) > 0 (2.8)
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holds for any t > 1 and ξ, η ∈ RN with ξ ≠ η. Thus by using the fact that ψ ≡ 1 on BR, we get
BR
(|∇uλn|

p−2
∇uλn − |∇uλ|p−2

∇uλ)∇(uλn − uλ)dx

≤


RN
ψ(x)(|∇uλn|

p−2
∇uλn − |∇uλ|p−2

∇uλ)∇(uλn − uλ)dx

= ⟨J ′λ(u
λ
n)− J ′λ(u

λ), ψ(uλn − uλ)⟩ −


RN

|∇uλn|
p−2

∇uλn∇ψ(x)(u
λ
n − uλ)dx

+


RN

|∇uλ|p−2
∇uλ∇ψ(x)(uλn − uλ)dx − λ


RN

Vλ(x)|uλn|
p−2uλn(u

λ
n − uλ)ψ(x)dx

+ λ


RN

Vλ(x)|uλ|p−2uλ(uλn − uλ)ψ(x)dx +


RN
(f (x, uλn)− f (x, u))(uλn − uλ)ψ(x)dx. (2.9)

By Hölder’s inequality and using the fact that uλn is bounded, ψ ∈ C∞

0 (R
N) and uλn → uλ in Lploc(R

N), it is easy to see that


RN

|∇uλn|
p−2

∇uλn∇ψ(x)(u
λ
n − uλ)dx → 0,

RN
|∇uλ|p−2

∇uλ∇ψ(x)(uλn − uλ)dx → 0,
RN

Vλ(x)|uλn|
p−2uλn(u

λ
n − uλ)ψ(x)dx → 0,

RN
Vλ(x)|uλ|p−2uλ(uλn − uλ)ψ(x)dx → 0.

(2.10)

By (f1) and (f2), for all ε > 0 there exists Cε > 0 such that

|f (x, t)| ≤ m(x)(ε|t|p−1
+ Cε|t|q−1). (2.11)

Therefore
RN

|(f (x, uλn)− f (x, uλ))(uλn − uλ)ψ(x)|dx

≤ |ψ |∞


suppψ

m(x)

ε

|uλn|

p−1
+ |uλ|p−1

+ Cε

|uλn|

q−1
+ |uλ|q−1

|uλn − uλ|dx

≤ ε|ψ |∞


RN

m(x)

|uλn|

p
+ |uλ|p + |uλn|

p−1
|uλ| + |uλ|p−1

|uλn|

dx

+ Cε|ψ |∞


suppψ

m(x)|uλn|
q−1

|uλn − uλ|dx +


suppψ

m(x)|uλ|q−1
|uλn − uλ|dx


. (2.12)

Using the fact that uλn is bounded in Xλ, it follows from Lemma 2.1 that

a1 := sup
n


RN

m(x)|uλn|
pdx < ∞. (2.13)

By Hölder’s inequality and (2.13) we also have

a2 := sup
n


RN

m(x)|uλn|
p−1

|uλ|dx < ∞

and

a3 := sup
n


RN

m(x)|uλ|p−1
|uλn|dx < ∞

It follows from (2.12) that
RN

|(f (x, uλn)− f (x, uλ))(uλn − uλ)ψ(x)|dx ≤ ε|ψ |∞


a1 + a2 + a3 +


RN

m(x)|uλ|p


+ Cε|ψ |∞


RN

m(x)|uλn|
qdx
 q−1

q

+


RN

m(x)|uλ|qdx
 q−1

q


suppψ
m(x)|uλn − uλ|qdx

 1
q

. (2.14)
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Using again Lemma 2.1 we have

sup
n


RN

m(x)|uλn|
qdx < ∞. (2.15)

Since uλn → uλ in Lqloc(R
N),

suppψ
m(x)|uλn − uλ|qdx ≤ ∥m∥L∞(suppψ)


suppψ

|uλn − uλ|qdx → 0. (2.16)

Hence, it follows from (2.14)–(2.16) that
RN
(f (x, uλn)− f (x, uλ))(uλn − uλ)ψ(x)dx → 0. (2.17)

Combining (2.9), (2.10) and (2.17) we deduce that
BR
(|∇uλn|

p−2
∇uλn − |∇uλ|p−2

∇uλ)∇(uλn − uλ)dx → 0. (2.18)

Now we recall the following result.

Lemma 2.5 (Lemma 2.7 in [16]). Suppose that p > 1, Ω is an open set in RN and a(x, ξ) ∈ C0(Ω × RN ,RN) is such that

α0|ξ |
p

≤ a(x, ξ).ξ
|a(x, ξ)| ≤ α1|ξ |

p−1,

for some α0, α1 > 0, and

(a(x, ξ)− a(x, η))(ξ − η) > 0,

for any ξ, η ∈ RN with ξ ≠ η.
Suppose that un, u ∈ W 1,p(Ω), n = 1, 2, . . . , then

lim
n→∞


Ω

[a(x,∇un)− a(x,∇u)] (∇un − ∇u)dx = 0

if and only if ∇un → ∇u in Lp(Ω).

By Lemma 2.5, (2.8) and (2.18) we see that ∇un → ∇u in Lp(BR). Since R > 0 is arbitrary, we see that ∇un → ∇u a.e. in RN .
Then, by Vitali’s theorem, (2.6) and (2.11), it is easy to see that for every ϕ ∈ C∞

0 (R
N)we have


RN

|∇uλn|
p−2

∇uλn∇ϕ(x)dx →


RN

|∇uλ|p−2
∇uλ∇ϕ(x)dx

RN
Vλ(x)|uλn|

p−2uλnϕ(x)dx →


RN

Vλ(x)|uλ|p−2uλϕ(x)dx
RN

f (x, uλn)ϕ(x)dx →


RN

f (x, uλ)ϕ(x)dx.

Therefore

⟨J ′λ(u
λ), ϕ⟩ = lim

n→∞
⟨J ′λ(u

λ
n), ϕ⟩ = 0,

hence uλ is a weak solution of (1.1). �

Now we show that uλ is nontrivial for λ sufficiently large.

Lemma 2.6. Suppose that the assumptions of either Theorem 1.1 or Theorem 1.2 hold. Then

lim
λ→∞

λ
N
p −

q
q−p cλ = 0.

Proof. We use the technique presented in [8]. Note that

cλ ≤ inf
u∈Xλ\{0}

max
t≥0

Jλ(tu). (2.19)

Let δ ∈ F . Then

cλ ≤ inf
u∈Xλ\{0}

max
t≥0

Φλ(tu), (2.20)
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where

Φλ(u) =
1
p


RN

|∇u|p + λVλ(x)|u|pdx −


RN
γ (x)|u|δdx.

By a direct calculation, we see that

max
t≥0

Φλ(tu) =
δ − p

pδ
δ
δ−p

RN |∇u|p + λVλ(x)|u|pdx
RN γ (x)|u|δdx

 p
δ

 δ
δ−p

. (2.21)

Set

gδ(λ) = inf
u∈Xλ\{0}


RN |∇u|p + λVλ(x)|u|pdx

RN γ (x)|u|δdx
 p
δ

.

From (2.20) and (2.21) we deduce that

cλ ≤ C (gδ(λ))
δ
δ−p . (2.22)

Using the change of variables y = λ
1
p xwe get

gδ(λ) = λ
1+ N

δ
−

N
p inf

u∈Xλ\{0}


RN |∇u|p + Vλ(λ

−
1
p y)|u|pdy

RN γ (λ
−

1
p y)|u|δdy

 p
δ

= λ
1− N(δ−p)

pδ hδ(λ), (2.23)

where

hδ(λ) = inf
u∈Xλ\{0}


RN |∇u|p + Vλ(λ

−
1
p y)|u|pdy

RN γ (λ
−

1
p y)|u|δdy

 p
δ

.

Suppose that q ∈ F (Theorem 1.1). We have the following claim.

Claim 2.1.

lim
λ→∞

hq(λ) = 0.

Proof of Claim. Set

Eλ =


u ∈ Xλ


RN
γ (λ

−
1
p y)|u|qdy = 1


.

Then

hq(λ) = inf
u∈Eλ


RN

|∇u|p + Vλ(λ
−

1
p y)|u|pdy.

Suppose by contradiction that there exists a sequence λm → ∞ asm → ∞, such that

hq(λm) ≥ d0 > 0. (2.24)

Choose un ∈ C∞

0 (R
N) such that

lim
n→∞

∥∇un∥Lp(RN ) = 0 and ∥un∥Lq(RN ) = 1. (2.25)

Let

vn,m :=
un

RN γ (λ
−

1
p

m y)|un|
qdy
 1

q
.
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Clearly vn,m ∈ Eλm . Using the fact that un ∈ C∞

0 (R
N) and γ (x) ∈ C(RN), we have

RN
γ (λ

−
1
p

m y)|un|
qdy ≥ γ (λ

−
1
p

m y0)


RN
|un|

qdy = γ (λ
−

1
p

m y0),

where γ (λ
−

1
p

m y0) = miny∈suppun γ (λ
−

1
p

m y).

Since γ (λ
−

1
p

m y0) → γ (0) as m → ∞, it follows that for every n there existsmn such that form > mn
RN
γ (λ

−
1
p

m y)|un|
qdy >

γ (0)
2
.

So, in view of (2.25) we can find n0 such that form > mn0
RN

|∇vn0,m|
pdy <

d0
2
.

Hence by using (2.24) we obtain
RN

Vλm(λ
−

1
p

m y)|vn0,m|
pdy ≥

d0
2

for m > mn0 . (2.26)

By (V3) (Theorem 1.1), form > mn0 we have
RN

Vλm(λ
−

1
p

m y)|vn0,m|
pdy ≤ Vλm(λ

−
1
p

m y1)


RN
|vn0,m|

pdy

≤ Vλm(λ
−

1
p

m y1)

γ (0)
2

−
p
q


RN
|un0 |

pdy → 0 as m → ∞,

where Vλm(λ
−

1
p

m y1) = maxy∈suppun0
Vλm(λ

−
1
p

m y). This contradicts with (2.26), and the claim follows. �

From (2.22) and (2.23) we get

cλ ≤ Cλ
q

q−p −
N
p (hq(λ))

q
q−p ,

in view of Claim 2.1 we obtain

lim
λ→∞

λ
N
p −

q
q−p cλ = 0.

Now, suppose that (V5) holds (Theorem 1.2). Then

hδ0(λ) ≤ inf
u∈W1,p

0 (Bϱ)\{0}


RN |∇u|p + C1


λ

−
κ
p |y|κ + λ

−
κ
κ+p


|u|pdy
RN γ (λ

−
1
p y)|u|δ0dy

 p
δ0

≤ C inf
u∈W1,p

0 (Bϱ)\{0}


RN |∇u|p +


λ

−
κ
p |y|κ + λ

−
κ
κ+p


|u|pdy
RN |u|δ0dy

 p
δ0

,

where ϱ = η0λ
κ

p(κ+p) . By making the change of variables z = λ
−

κ
p(κ+p) y we obtain

hδ0(λ) ≤ Cλ
−κ
κ+p


1− N

p +
N
δ0


inf

u∈W1,p
0 (Bη0 )\{0}


RN |∇u|p + (|z|κ + 1) |u|pdz

RN |u|δ0dz
 p
δ0

≤ Cλ
−κ
κ+p


1− N(δ0−p)

pδ0


inf

u∈W1,p
0 (Bη0 )\{0}


RN |∇u|p +


ηκ0 + 1


|u|pdz

RN |u|δ0dz
 p
δ0

≤ Cλ
−κ
κ+p


1− N(δ0−p)

pδ0


.

This and (2.23) imply

gδ0(λ) ≤ Cλ
p
κ+p


1− N(δ0−p)

pδ0


.
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Hence, it follows from (2.22) that

λ
N
p −

q
q−p cλ ≤ Cλ

p
κ+p


δ0
δ0−p −

N
p


−


q

q−p −
N
p


.

Consequently by (V5),

lim
λ→∞

λ
N
p −

q
q−p cλ = 0.

The proof of Lemma 2.6 is complete. �

Lemma 2.7. For every λ ≥ 1 there exists R(λ) ≥ R0, with R0 given by (V4), such that

lim sup
n→∞

∥uλn∥
p
Lp(RN\BR(λ))

≤ σ
cλ
λ
,

where σ > 0 is a constant independent of λ.

Proof. In view of Lemma 2.4(i), for R > 0 we have

σ cλ + on(1) ≥


RN

|∇uλn|
p
+ λVλ(x)|uλn|

pdx

≥


RN

|∇uλn|
pdx + λM


RN\ΩM,λ

|uλn|
pdx

≥


RN

|∇uλn|
pdx + λM


RN

|uλn|
pdx − λM


ΩM,λ∩BR

|uλn|
pdx − λM


ΩM,λ\BR

|uλn|
pdx

≥


RN

|∇uλn|
pdx + λM


RN\BR

|uλn|
pdx − λM


ΩM,λ\BR

|uλn|
pdx. (2.27)

On the other hand, by Hölder and Sobolev inequalities
ΩM,λ\BR

|uλn|
pdx ≤ |ΩM,λ \ BR|

1− p
p⋆ ∥uλn∥

p
Lp⋆ (RN )

≤ C |ΩM,λ \ BR|
1− p

p⋆ ∥∇uλn∥
p
Lp(RN )

,

so, we can find R = R(λ) ≥ R0 such that
ΩM,λ\BR

|uλn|
pdx ≤

1
2λM

∥∇uλn∥
p
Lp(RN )

.

From (2.27) we conclude

σ cλ + on(1) ≥
1
2


RN

|∇uλn|
pdx + λM


RN\BR

|uλn|
pdx

≥ λM


RN\BR
|uλn|

pdx,

and the desired result follows. The proof of Lemma 2.7 is complete. �

Now,we turn to show that uλ ≠ 0 for λ sufficiently large. Suppose by contradiction that there exists a sequence λm → ∞

asm → ∞, such that uλm ≡ 0. Then

cλm = lim
n→∞


Jλm(u

λm
n )−

1
p
⟨J ′λm(u

λm
n ), u

λm
n ⟩


= lim

n→∞


1
p


RN

uλmn f (x, uλmn )dx −


RN

F(x, uλmn )dx


≤
1
p
lim inf
n→∞


RN

uλmn f (x, uλmn )dx

≤
1
p
lim inf
n→∞


RN
εm(x)|uλmn |

p
+ Cεm(x)|uλmn |

qdx
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≤ ∥m∥L∞(BR) lim inf
n→∞


BR
ε|uλmn |

p
+ Cε|uλmn |

qdx

+ lim sup
n→∞


RN\BR

εm(x)|uλmn |
p
+ Cεm(x)|uλmn |

qdx. (2.28)

Since uλmn ⇀ uλm ≡ 0 in Xλm , u
λm
n → 0 in Lsloc(R

N) for s ∈ {p, q}. It follows from (2.28) that

cλm ≤ lim sup
n→∞


RN\BR

εm(x)|uλmn |
p
+ Cεm(x)|uλmn |

qdx

≤ ε lim sup
n→∞


RN\BR

m(x)|uλmn |
pdx + Cε lim sup

n→∞


RN\BR

m(x)|uλmn |
qdx. (2.29)

By (V4) and the Gagliardo–Nirenberg inequality, for s ∈ {p, q} and R = R(λm), we have
RN\BR

m(x)|uλmn |
sdx ≤ C0∥uλmn ∥

s
Ls(RN\BR)

+ C0


RN\BR

Vλm(x)
1
α |uλmn |

sdx

≤ C∥uλmn ∥
(1−θ)s
Lp(RN\BR)

∥∇uλmn ∥
θs
Lp(RN\BR)

+ C0


RN\BR

Vλm(x)|u
λm
n |

pdx
 1
α

×


RN\BR

|uλmn |
αs−p
α−1 dx

 α−1
α

≤ C∥uλmn ∥
(1−θ)s
Lp(RN\BR)

∥∇uλmn ∥
θs
Lp(RN\BR)

+ C∥uλmn ∥
(1−θ̄ ) αs−p

α

Lp(RN\BR)
∥∇uλmn ∥

θ̄
αs−p
α

Lp(RN\BR)


RN\BR

Vλm(x)|u
λm
n |

pdx
 1
α

(2.30)

where θ =
N(s−p)

ps and θ̄ =
Nα(s−p)
p(αs−p) . Using Lemma 2.4(i) and Lemma 2.7, we see that

lim sup
n→∞

∥∇uλmn ∥
p
Lp(RN\BR)

≤ σ cλm , lim sup
n→∞


RN\BR

Vλm(x)|u
λm
n |

pdx ≤ σ
cλm
λm

and

lim sup
n→∞

∥uλmn ∥
p
Lp(RN\BR)

≤ σ
cλm
λm
.

By (2.30) we obtain

lim sup
n→∞


RN\BR

m(x)|uλmn |
sdx ≤ C

 cλm
λm

 (1−θ)s
p

c
θs
p
λm

+


cλm
λm

 (1−θ̄ )(αs−p)
αp

c
θ̄ (αs−p)
αp

λm


cλm
λm

 1
α


≤ Cλ

−
(1−θ)s

p
m c

s
p
λm
. (2.31)

So, it follows from (2.29) that

cλm ≤ C


ελ−1

m cλm + Cελ
N(q−p)−pq

p2
m c

q
p
λm


,

and hence

(1 − Cε)cλm ≤ CCελ
N(q−p)−pq

p2
m c

q
p
λm
. (2.32)

Choose ε sufficiently small in (2.32), we get

cλm ≤ Cλ
N(q−p)−pq

p2
m c

q
p
λm
,

thus

0 < C ≤ λ
N
p −

q
q−p

m cλm ,

and consequently

lim sup
m→∞

λ
N
p −

q
q−p

m cλm > 0.

This contradicts with Lemma 2.6, and the proof of Theorems 1.1 and 1.2 is complete.
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