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A new method is introduced for the computation of hyperterminants. It is based on
recurrence relations, and can also be used to compute the parameter derivatives of the
hyperterminants. These parameter derivatives are needed in hyperasymptotic expansions
in exceptional cases. Numerical illustrations and an application are included.
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1. Hyperterminants

In the last two decades hyperasymptotic expansions were constructed for solutions of differential equations and
difference equations, and for integrals with saddles. See [1–12]. In this way exponentially small phenomena were
incorporated in the expansions, and it gave a powerful method to compute the so-called Stokes multipliers, or connection
coefficients, to arbitrary precision [8]. Hyperasymptotic expansions also incorporate the higher-order Stokes phenomenon,
which seems to play an important role in some partial differential equations, [13,6].
Hyperasymptotic expansions are in terms of hyperterminants. In [14] the hyperterminants are defined and a new integral

representation is used to obtain convergent expansions for the hyperterminants in series of confluent hypergeometric
functions. For the coefficients in these expansions a recursive scheme is given. These expansions can be used to compute
the hyperterminants to any given accuracy.
In the papersmentioned above, the asymptotic approximations are of the formwj(z) ∼ eλjzzµj , j = 1, . . . , n, as |z| → ∞.

It is usually assumed that λj 6= λk, whenever j 6= k. In the case that there are j, k such that j 6= k, λj = λk and µj − µk is an
integer, extra logarithmic factors, ln z, appear in the expansions, and newmethods are needed to compute the corresponding
hyperterminants. For examples see [1,3] and the main application in this paper. Note that ddµ z

µ
= ln(z)zµ. Hence, the new

logarithmic factor can be seen as the result of a µ-derivative of the original expansion.
In this paper we construct an alternative method based on recurrence relations for the computation of the

hyperterminants. As is shown in [15], the computation of parameter derivatives of solutions of recurrence relations is not
a big problem. Taking a parameter derivative of a linear recurrence relation does not change the shape of the recurrence
relation itself. Hence, if it is possible to use the recurrence relation to compute its solutions numerically, then it is also
possible to use the recurrence relation to compute the parameter derivatives of its solutions.
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The definition of the hyperterminants is

F (0) (z) = 1

F (1)
(
z;
M0
σ0

)
=

∫
[π−θ0]

0

eσ0t0 tM0−10

z − t0
dt0

F (`+1)
(
z;
M0, . . . ,M`
σ0, . . . , σ`

)
=

∫
[π−θ0]

0
· · ·

∫
[π−θ`]

0

eσ0t0+···+σ`t` tM0−10 · · · tM`−1`

(z − t0)(t0 − t1) · · · (t`−1 − t`)
dt` · · · dt0,

(1.1)

where we use the notation θj = ph σj and
∫
[η]
=
∫
∞eiη . In [14] we also give an alternative integral representation. From

integral representation (1.1) it is obvious that the hyperterminants are multi-valued functions with respect to z, but also
with respect to σj. Connection relations with respect to all these variables are given in [14].
In exceptional cases (see for example [1] and [3]) extra factors

(
ln tj

)n appear in the integrand, and these new functions
can be seen as parameter derivatives of the original hyperterminants:

∂n

∂Mnj
F (`+1)

(
z;
M0, . . . ,M`
σ0, . . . , σ`

)
=

∫
[π−θ0]

0
· · ·

∫
[π−θ`]

0

eσ0t0+···+σ`t` tM0−10 · · · tM`−1`

(
ln tj

)n
(z − t0)(t0 − t1) · · · (t`−1 − t`)

dt` · · · dt0. (1.2)

We could construct recurrence relations with respect to each of theMj parameters, but in applications one mainly needs
recurrence relations with respect to the finalMj parameter. In this paper we will use linear first-order recurrence relations
with respect to the M` parameter. Our method requires that this parameter is not an integer. Since it is always possible to
interchange theMj parameters, the method that we give in this paper will always work, except when all theMj are integers.
In section `+ 1, ` = 1, 2, 3, we discuss the computation of the level ` hyperterminant. Each of these sections is split in

two parts: First we deal with the case that the variable z = 0, and then we use these results and deal with the case z 6= 0.
In applications |z| is large, but for the computation of the Stokes multipliers we will need hyperterminants with z = 0. In
Section 3 we also give a numerical illustration.
Finally, in Section 5 we apply these results and discuss the hyperasymptotics of a linear third-order differential equation

in which logarithmic factors appear.

2. Level 1

We will assume thatM is not an integer and z 6= 0. The definition of the first hyperterminant reads

F (1)
(
z;
M
σ

)
=

∫
[π−θ ]

0

eσ t tM−1

z − t
dt

= eMπ iσ 1−M
∫
∞

0

e−τ τM−1

zσ + τ
dτ = eMπ i+σ zzM−1Γ (M)Γ (1−M, σ z), (2.1)

when |ph (σ z)| < π , where Γ (a, z) is the incomplete gamma function (see Section 11.2 in [16]). The integrals in (2.1)
converge forRM > 0. We use analytical continuation via the recurrence relation below to define this function forRM 6 0.
It follows that

F (1)
(
0;
M
σ

)
= eMπ iσ 1−MΓ (M − 1). (2.2)

Hence,
∂

∂M
F (1)

(
0;
M
σ

)
= (π i− ln(σ )+ ψ(M − 1)) F (1)

(
0;
M
σ

)
, (2.3)

where ψ(z) is the logarithmic derivative of the gamma function (see Section 3.4 in [16]).
For r = 0, 1, 2, . . ., let

yr = F (1)
(
z;
M + r
σ

)
and y′r =

∂yr
∂M

, (2.4)

then we have the recurrence relation

yr+1 − zyr = F (1)
(
0;
M + r + 1

σ

)
, (2.5)

with normalising condition
∞∑
r=0

(−σ)r yr
r!

= F (1)
(
z;
M
0σ

)
= eMπ izM−1Γ (M)Γ (1−M) =

πeMπ izM−1

sinMπ
, RM < 1. (2.6)

These two results follow from the first integral representation in (2.1), where we need 0 < RM < 1 for the proof of
(2.6), and use analytic continuation to extend the result to RM < 1. Note that in the definitions (1.1) the phase of the
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σ -variables determines the direction of integration. Since the hyperterminants are multi-valued functions with respect to
the σ -variables we write 0σ in (2.6) to indicate the direction of integration.
From the second integral representation in (2.1) it follows that yr = σ−rΓ (M + r)O(1) as r →∞. The complementary

solutions of recurrence relation (2.5) are Czr . Hence, the yr are dominant solutions and the use of (2.5) to evaluate the yr in
the forward direction is numerically stable.
The computation of the y0 is no problem at all and using (2.5) is useful when many yr are needed. However, we can

compute the yr also directly from (2.5) and (2.6) without the correct initial value y0 as follows: Let ỹr satisfy (2.5) with initial
value ỹ0 = 0. Then there exists a constant C such that yr = ỹr + Czr . Combining this relation with (2.6) we obtain that

∞∑
r=0

(−σ)r ỹr
r!

+ Ce−σ z =
πeMπ izM−1

sinMπ
. (2.7)

Hence,

C =
πeMπ i+σ zzM−1

sinMπ
− eσ z

∞∑
r=0

(−σ)r ỹr
r!

. (2.8)

By decreasing RM the convergence speed of the infinite series in (2.8) can be increased substantially. In practice, one
probably wantsRM 6 −5. Note that since we have (2.5) we can replaceM by M̃ = M − r̃ , where r̃ is a positive integer, use
the methods described above to compute the y0 corresponding to M̃ , and then use (2.5) to compute yr̃ .
Combining (2.3) with theM-derivatives of (2.5) and (2.6) we obtain that

y′r+1 − zy
′

r = (π i− ln(σ )+ ψ(M + r)) F
(1)
(
0;
M + r + 1

σ

)
, (2.9)

with normalising condition
∞∑
r=0

(−σ)r y′r
r!

=

(
π i+ ln z −

π cosMπ
sinMπ

)
πeMπ izM−1

sinMπ
, RM < 1. (2.10)

As in the case of the yr the parameter derivatives y′r can be computed directly from these two results.
Note that the restriction thatM is not an integer is critical here, and that when we letM approach an integer, the results

will become useless.

3. Level 2

Wewill assume thatM1 is not an integer. First we will deal with the special values at z = 0, which will be needed when
we create the recurrence relation for the case z 6= 0. In integral representation (1.1) with ` = 1 take t1 = t0τ

F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
=

∫
[π−θ0]

0

∫
[θ0−θ1]

0

et0(σ0+σ1τ)tM0+M1−20 τM1−1

τ − 1
dτ dt0

= e(M0+M1−1)π iΓ (M0 +M1 − 1)
∫
[θ0−θ1]

0

τM1−1

(σ0 + σ1τ)
M0+M1−1 (τ − 1)

dτ . (3.1)

In this section and in applications it is more natural to add 1 to theM0 parameter in the case z = 0. The final integral in (3.1)
is of hypergeometric type and can be identified (via 3.6(2) in [17]) as

F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
=
e(M0+M1)π iΓ (M0)Γ (M1)

σ
M0−1
0 σ

M1
1 (M0 +M1 − 1)

2F1

(
1,M1
M0 +M1

; 1+
σ0

σ1

)
. (3.2)

Although this identification could be used to evaluate the left-hand side and its parameter derivatives, we will also give a
method that is based on recurrence relations which can be generalised to higher levels.
Use the first line of (3.1) and let

vr = F (2)
(
0;
M0 + 1,
σ0,

M1 + r
σ1

)
=

∫
[π−θ0]

0

∫
[θ0−θ1]

0

et0(σ0+σ1τ)tM0+M1+r−20 τM1+r−1

τ − 1
dτ dt0. (3.3)

Using integration by parts we obtain the recurrence relation

(σ0 + σ1) vr+1 + (M0 +M1 + r − 1) vr = σ0F (1)
(
0;
M0 + 1
σ0

)
F (1)

(
0;
M1 + r + 1

σ1

)
, (3.4)

with the complementary solution

(M0 +M1 − 1)r
(−σ0 − σ1)

r , (3.5)
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and normalising condition

∞∑
r=0

(σ̃1 − σ1)
r
vr

r!
= F (2)

(
0;
M0 + 1,
σ0,

M1
σ̃1

)
. (3.6)

Note that in the case that σ1 = 0 the double integral in (3.1) de-couples and we obtain as a special case the normalising
condition

∞∑
r=0

(−σ1)
r vr

r!
= F (1)

(
0;
M0 +M1
σ0

)∫
[θ0−θ1]

0

τM1−1

1− τ
dτ

= F (1)
(
0;
M0 +M1
σ0

)
πe∓M1π i

sinM1π
, θ0 ≶ θ1, (3.7)

wherewe take the− signwhen θ0 < θ1 and+ signwhen θ0 > θ1. For the intermediate result in (3.7)we need the restriction
0 < RM1 < 1 and the final result holds forRM1 < 1.
Now let us discuss the convergence of the infinite series in (3.6) and (3.7). From, for example, (3.2) it follows that

vr = σ−r1 Γ (M1 + r − 1)O(1) as r → ∞. Assuming that RM1 < 1 it follows that the infinite series (3.6) is absolutely
convergent as long as |σ̃1 − σ1| 6 |σ1| and infinite series (3.7) is absolutely convergent.
Comparing the asymptotic behaviour of vr with the complementary solution in (3.5) it follows that in the case that

|σ1| < |σ0 + σ1| our function vr is a dominant solution of recurrence relation (3.4) and in the case that |σ1| > |σ0 + σ1| it is
the recessive solution. There are three cases that we should consider: (1) |1+ (σ0/σ1)| < 1− ε, (2) |1+ (σ0/σ1)| > 1+ ε,
and (3) ||1+ (σ0/σ1)| − 1| 6 ε. In practice, this ε is positive, but not very small, say ε = 0.3.
In case (1) vr is the recessive solution. Take N large, ṽN = 0, and compute the other ṽr via backward recursion in (3.4).

Then there is a constant C such that

vr = ṽr + C
(M0 +M1 − 1)r
(−σ0 − σ1)

r , (3.8)

for r = 0, . . . ,N . Since vr is the recessive solution and ṽN = 0 it follows that C is approximately zero, and vr ≈ ṽr for
r � N .
In case (2) vr is a dominant solution, andwe can copy themethod of Section 2: Let ṽr satisfy (3.4)with initial value ṽ0 = 0.

Then there exists a constant C such that (3.8) holds for all r . We compute the constant C via the normalising condition (3.7),
that is, via the identity

C
(

σ0

σ0 + σ1

)1−M0−M1
+

∞∑
r=0

(−σ1)
r ṽr

r!
= F (1)

(
0;
M0 +M1
σ0

)
πe∓M1π i

sinM1π
, θ0 ≶ θ1. (3.9)

Finally, in case (3) we ‘walk’ in the σ1-space, to end up with one of the other two cases. There is some freedom in this
case. We choose σ̃1 relatively close to σ1 such that |1 + (σ0/σ̃1)| is either larger or smaller than |1 + (σ0/σ1)|. The ṽr are
computed in the backward or forward direction, depending on whether |1+ (σ0/σ1)| ≶ 1. The corresponding constant C in
(3.8) follows from normalising condition (3.6), thus

C
(
σ0 + σ̃1

σ0 + σ1

)1−M0−M1
+

∞∑
r=0

(σ̃1 − σ1)
r
ṽr

r!
= F (2)

(
0;
M0 + 1,
σ0,

M1
σ̃1

)
. (3.10)

Note that the right-hand side of (3.10) is similar to v0. The right-hand side of (3.10) should be easier to compute than v0.
Ideally, it is already of case (1) or (2) and we can use the methods given above to evaluate it. It might take several steps in
the σ1-space, but we will end up with a σ̃1 such that we are in case (1) or (2), that is, such that ||1+ (σ0/σ̃1)| − 1| > ε.
In implementations of this method one should, of course, use recursive procedures. In the σ1-space one should ‘walk’ in

the direction of either σ̃1 = −σ0, such that 1+ (σ0/σ̃1) = 0, or, say, σ̃1 = σ0, such that 1+ (σ0/σ̃1) = 2. Some care has to
be taken: the hyperterminants are multi-valued functions with respect to σ1, and in the σ1-space they have the branch-cut
{xσ0 | x > 0}. Hence, it is better not to cross this half-line.
The method described above is, again, ideal for the computation of the parameter derivatives. When we take v′r =

∂vr/∂M0 then we obtain from (3.4) for v′r the recurrence relation

(σ0 + σ1) v
′

r+1 + (M0 +M1 + r − 1) v
′

r = −vr + σ0
∂

∂M0
F (1)

(
0;
M0 + 1
σ0

)
F (1)

(
0;
M1 + r + 1

σ1

)
, (3.11)

with as normalising conditions theM0-derivatives of (3.6) and (3.7). Note that the left-hand sides of (3.4) and (3.11) are the
same. Hence, the method given above can also be used to compute the v′r , assuming that we already know the vr . Similarly
for theM1-derivative of the vr .
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One identity that might be useful in implementing this method is

F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
+ F (2)

(
0;
M1 + 1,
σ1,

M0
σ0

)
= 0. (3.12)

Now we are able to compute the level 2 hyperterminants with z = 0, we will use these results to compute the level 2
hyperterminants with z 6= 0. Let

yr = F (2)
(
z;
M0,
σ0,

M1 + r
σ1

)
. (3.13)

Substituting t1 = z − (z − t0)− (t0 − t1) into definition (1.1) we obtain the recurrence relation

yr+1 − zyr = vr + F (1)
(
z;
M0
σ0

)
F (1)

(
0;
M1 + r + 1

σ1

)
, (3.14)

with normalising condition
∞∑
r=0

(−σ1)
r yr

r!
= F (2)

(
z;
M0,
σ0,

M1
0σ1

)
= F (1)

(
z;
M0 +M1 − 1

σ0

)∫
[θ0−θ1]

0

τM1−1

1− τ
dτ

= F (1)
(
z;
M0 +M1 − 1

σ0

)
πe∓M1π i

sinM1π
, θ0 ≶ θ1, (3.15)

where in the integral representation (1.1) with ` = 1 of the F (2) function we have used the substitution t1 = t0τ . The final
result is valid forRM1 < 1.
As in Section 2 we can use these results to compute the dominant solution yr of recurrence relation (3.14): Let ỹr satisfy

(3.14) with initial value ỹ0 = 0. Then there exists a constant C such that yr = ỹr + Czr . Combining this relation with (3.15)
we can compute C via the identity

∞∑
r=0

(−σ1)
r ỹr

r!
+ Ce−σ1z = F (1)

(
z;
M0 +M1 − 1

σ0

)
πe∓M1π i

sinM1π
, θ0 ≶ θ1. (3.16)

By decreasingRM1 the convergence speed of the infinite series in (3.16) can be increased substantially.
The results above can be used to compute theMj-derivative of yr . We omit the details since they are obvious.
Note, again, that the restriction that M1 is not an integer is critical here, and that when we let M1 approach an integer,

the results will become useless. Identity (3.12) and

F (2)
(
z;
M0,
σ0,

M1
σ1

)
+ F (2)

(
z;
M1,
σ1,

M0
σ0

)
= F (1)

(
z;
M0
σ0

)
F (1)

(
z;
M1
σ1

)
, (3.17)

might be usefulwhenM1 is an integer andM0 is not, andwhen the computation of the right-hand side of (3.17) is no problem.
Identity (3.17) follows from the observation that

1
(z − t0)(t0 − t1)

+
1

(z − t1)(t1 − t0)
=

1
(z − t0)(z − t1)

.

Example. We will use the methods above withM0 = 11/2 andM1 = −17/4. The ‘exact’ values are computed via (3.2), in
the case z = 0, and via the alternative methods in [14] in the case z 6= 0.
When σ0 = 1+ i/10 and σ1 = −1+ i/2 then |1+ (σ0/σ1)| =

√
36/125. Hence, we deal with case (1). Take N = 10 and

ṽN = 0. Compute the other ṽr via (3.4). Then

ṽ0 = 10.355613+ 18.676504i and F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
= 10.355606+ 18.676501i. (3.18)

Hence, even with this relatively small N we already obtain 6 correct digits.
Next take σ0 = 1+ i/10 and σ1 = (1+ i)/2 then |1+ (σ0/σ1)| =

√
261/50. Hence, we deal with case (2). Take N = 15

and ṽ0 = 0. Compute the other ṽr via (3.4). Then

C ≈
(

σ0

σ0 + σ1

)M0+M1−1 (
F (1)

(
0;
M0 +M1
σ0

)
πe−M1π i

sinM1π
−

N∑
r=0

(−σ1)
r ṽr

r!

)
. (3.19)

The result is

C = 1.282848+ 14.116590i and F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
= 1.282848+ 14.116594i. (3.20)

The first 7 digits are correct.
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Finally σ0 = 1 + i/10 and σ1 = −11/20 + i/2 then |1 + (σ0/σ1)| =
√
225/221. Hence, we deal with case (3). Take

σ̃1 = −1+ i/2 (see the first example), N = 10 and ṽN = 0. Compute the other ṽr via (3.4). Then

C ≈
(
σ0 + σ̃1

σ0 + σ1

)M0+M1−1 (
F (2)

(
0;
M0 + 1,
σ0,

M1
σ̃1

)
−

N∑
r=0

(σ̃1 − σ1)
r
ṽr

r!

)
, (3.21)

where we know from the first example that F (2) (0; . . .) ≈ 10.355613+ 18.676504i. The result is

C + ṽ0 = 4.289404+ 16.706475i and F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
= 4.289397+ 16.706471i. (3.22)

Again, the first 6 digits are correct.

We return to the first example and take z = 5/2, σ0 = 1 + i/10 and σ1 = −1 + i/2. Let N = 15, vN = 0 and ỹ0 = 0.
Compute the other vr via (3.4) and use these results in (3.14) to compute the other ỹr . Then

C ≈ eσ1z
(
F (1)

(
z;
M0 +M1 − 1

σ0

)
πe−M1π i

sinM1π
−

N∑
r=0

(−σ1)
r ỹr

r!

)
. (3.23)

The result is

C = −2.2796687− 7.0256327i and F (2)
(
z;
M0,
σ0,

M1
σ1

)
= −2.2796691− 7.0256332i. (3.24)

The first 7 digits are correct.

4. Level 3

As in the previous section we will assume that the finalMj-parameter, in this caseM2, is not an integer, and we will deal
first with the special values at z = 0. In integral representation (1.1) with ` = 2 take t1 = t0τ1 and t2 = t0τ2

F (3)
(
0;
M0 + 1,
σ0,

M1,
σ1,

M2
σ2

)
=

∫
[π−θ0]

0

∫
[θ0−θ1]

0

∫
[θ0−θ2]

0

et0(σ0+σ1τ1+σ2τ2)tM0+M1+M2−30 τ
M1−1
1 τ

M2−1
2

(τ1 − 1)(τ1 − τ2)
dτ2 dτ1 dt0. (4.1)

Integration by parts will give us a recurrence relation with respect to the M0-parameter. Combining that result with the
identity

F (3)
(
0;
M0 + 1,
σ0,

M1,M2
σ1, σ2

)
= F (3)

(
0;
M2 + 1,
σ2,

M1,
σ1,

M0
σ0

)
, (4.2)

leads to the recurrence relation
(σ0 + σ1 + σ2) vr+1 + (M0 +M1 +M2 + r − 2) vr

= (σ0 + σ1)F (2)
(
0;
M0 + 1,
σ0,

M1
σ1

)
F (1)

(
0;
M2 + r + 1

σ2

)
+ σ0F (1)

(
0;
M0 + 1
σ0

)
F (2)

(
0;
M1 + 1,
σ1,

M2 + r
σ2

)
, (4.3)

where

vr = F (3)
(
0;
M0 + 1,
σ0,

M1,
σ1,

M2 + r
σ2

)
. (4.4)

The normalising condition
∞∑
r=0

(σ̃2 − σ2)
r
vr

r!
= F (3)

(
0;
M0 + 1,
σ0,

M1,
σ1,

M2
σ̃2

)
, (4.5)

has the special case
∞∑
r=0

(−σ2)
r vr

r!
= F (2)

(
0;
M0 + 1,
σ0,

M1 +M2 − 1
σ1

)
πe∓M2π i

sinM2π
, θ1 ≶ θ2. (4.6)

The proof of this result is almost a copy of the proof of (3.7).
Let ṽr be another solution of recurrence relation (4.3) then there exists a constant C such that

vr = ṽr + C
(M0 +M1 +M2 − 2)r
(−σ0 − σ1 − σ2)

r . (4.7)

As in Section 3, we have the estimate vr = σ−r2 Γ (M2 + r − 1)O(1) as r →∞.
There are again three cases that we should consider: (1) |1+ (σ0+ σ1)/σ2| < 1− ε, (2) |1+ (σ0+ σ1)/σ2| > 1+ ε, and

(3) ||1+ (σ0+σ1)/σ2|−1| 6 ε. The following details are very similar to the ones in Section 3 and we give the main results.
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In case (1) vr is the recessive solution. Take N large, ṽN = 0, and compute the other ṽr via backward recursion in (4.3).
Then vr ≈ ṽr for r � N .
In case (2) vr is a dominant solution. Let ṽr satisfy (4.3) with initial value ṽ0 = 0. Then there exists a constant C such that

(4.7) holds for all r . We compute the constant C via the normalising condition (4.6), that is, via the identity

C
(

σ0 + σ1

σ0 + σ1 + σ2

)2−M0−M1−M2
+

∞∑
r=0

(−σ2)
r ṽr

r!
= F (2)

(
0;
M0 + 1,
σ0,

M1 +M2 − 1
σ1

)
πe∓M2π i

sinM2π
, θ1 ≶ θ2. (4.8)

Finally, in case (3) we ‘walk’ in the σ2-space, to end up with one of the other two cases. We choose σ̃2 relatively close to
σ2 such that |1 + (σ0 + σ1)/σ̃2| is either larger or smaller than |1 + (σ0 + σ1)/σ2|. The ṽr are computed in the backward
or forward direction, depending on whether |1 + (σ0 + σ1)/σ2| ≶ 1. The corresponding constant C in (4.7) follows from
normalising condition (4.5), thus

C
(
σ0 + σ1 + σ̃2

σ0 + σ1 + σ2

)2−M0−M1−M2
+

∞∑
r=0

(σ̃2 − σ2)
r
ṽr

r!
= F (3)

(
0;
M0 + 1,
σ0,

M1,
σ1,

M2
σ̃2

)
. (4.9)

It might take several steps in the σ2-space, but we will end up with a σ̃2 such that we are in case (1) or (2).
Some care has to be taken: the hyperterminants are multi-valued functions with respect to σ2, and in the σ2-space they

have the branch-cut {xσ1 | x > 0}. In the case that one wants to cross this line, one has to use the connection formulae (2.7)
in [14].
Now we are able to compute the level 3 hyperterminants with z = 0, we will use these results to compute the level 3

hyperterminants with z 6= 0. Let

yr = F (3)
(
z;
M0,
σ0,

M1,
σ1,

M2 + r
σ2

)
. (4.10)

These functions are solutions of the recurrence relation (see (2.8) in [14])

yr+1 − zyr = vr + F (1)
(
z;
M0
σ0

)
F (2)

(
0;
M1 + 1,
σ1,

M2 + r
σ2

)
+ F (2)

(
z;
M0,M1
σ0, σ1

)
F (1)

(
0;
M2 + r + 1

σ2

)
, (4.11)

with normalising condition
∞∑
r=0

(−σ2)
r yr

r!
= F (3)

(
z;
M0,M1,
σ0, σ1,

M2
0σ2

)
= F (2)

(
z;
M0,
σ0,

M1 +M2 − 1
σ1

)
πe∓M2π i

sinM2π
, (4.12)

θ1 ≶ θ2, whereRM2 < 1.
Let ỹr satisfy (4.11) with initial value ỹ0 = 0. Then there exists a constant C such that yr = ỹr + Czr . Combining this

relation with (4.12) we can compute C via the identity
∞∑
r=0

(−σ2)
r ỹr

r!
+ Ce−σ2z = F (2)

(
z;
M0,
σ0,

M1 +M2 − 1
σ1

)
πe∓M2π i

sinM2π
, θ1 ≶ θ2. (4.13)

By decreasingRM2 the convergence speed of the infinite series in (4.13) can be increased substantially.
The results in this section can be used to compute the Mj-derivative of vr and yr . We omit the details since they are

obvious.
Note, again, that the restriction that M2 is not an integer is critical here, and that when we let M2 approach an integer,

the results will become useless. Identities like (4.2) and

F (3)
(
z;
M0,M1,M2
σ0, σ1, σ2

)
− F (3)

(
z;
M2,M1,M0
σ2, σ1, σ0

)
= F (1)

(
z;
M2
σ2

)
F (2)

(
z;
M0,M1
σ0, σ1

)
− F (1)

(
z;
M0
σ0

)
F (2)

(
z;
M2,M1
σ2, σ1

)
, (4.14)

might be useful when M2 is an integer. Many of these identities exist, but for the case in which all Mj are integers other
methods have to be constructed.

5. An application

Hyperasymptotic expansions and the computation of Stokes multipliers for linear differential equations are discussed
in [8].Wewill use these results in this section. The asymptotic approximations in that paper are of the formwj(z) ∼ e−λjzzµj ,
j = 1, . . . , n. In [8] it is assumed that λj 6= λk whenever j 6= k. In the case that, say, λ2 = λ3 andµ2−µ3 is not an integer, the
results in [8] are still valid, and the Stokes multipliers K23 = 0. When λ2 = λ3 and µ2 −µ3 is an integer an extra factor ln z
appears. See (5.2). Since d

dµ3
zµ3 = ln(z)zµ3 we can still use the results in [8], but we have to take parametric derivatives in
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the hyperterminants wheneverµ3 appears. However, this does not change the shape of the expansions, the optimal number
of terms, and the error estimates. For these details the reader is referred to [8].
As an example we will study the solutions of the third-order linear differential equation

w′′′(z)+
(
1+

1
4z

)
w′′(z)−

(
1
2z
+
13
16z2

)
w′(z)−

7
16z2

w(z) = 0, (5.1)

which has as formal series solutions

ŵ1(z) = e−z
∞∑
s=0

asz−s−
3
4 ,

ŵ2(z) =
∞∑
s=0

bsz−s−
1
4 ,

ŵ3(z) = ŵ2(z) ln(z)+
∞∑
s=−2

csz−s−
1
4 ,

(5.2)

where we take a0 = b0 = 1 and c0 = 0. It follows that c−1 = − 12827 , c−2 =
8192
2457 and for the other coefficients we have the

recurrence relations

sas =
1
2

(
1− 4s2

)
as−1 −

(
s2 +

1
4
s−
15
16

)(
s−
5
4

)
as−2,

s(s+ 2)bs =
(
s2 +

5
4
s−

9
16

)(
s−
3
4

)
bs−1,

s(s+ 2)cs =
(
s2 +

5
4
s−

9
16

)(
s−
3
4

)
cs−1 + 2(s+ 1)bs −

(
3s2 + s−

3
2

)
bs−1,

(5.3)

s = 1, 2, 3, . . .. By specifying sectors of validity we define unique solutions wj(z): Let w1(z) ∼ ŵ1(z) as |z| → ∞ in the
sector |ph (z)| < 3

2π , andw2(z) ∼ ŵ2(z),w3(z) ∼ ŵ3(z) as |z| → ∞ in the sector−
1
2π < ph (z) <

5
2π . We also have the

connection relation

w1(z) = iw1
(
e−2π iz

)
+ K21w2(z)+ K31w3(z), (5.4)

where the constants K21 and K31 are the Stokes multipliers.
In the case that ŵ3(z) = zM0ŵ2(z) +

∑
∞

s=−2 csz
−s− 14 we can obtain via the results in [8] asymptotic expansions for the

late coefficients an, as n → ∞, and hyperasymptotic expansions for w1(z). Taking the M0-derivative of these results and
thenM0 = 0 we obtain the following results.
The Stokes multipliers in (5.4) can be computed via the asymptotics of the late coefficients:

an ∼ −
K21
2π i

N−1∑
s=0

bsF (1)
(
0;
n− s+ 3

2

1

)
−
K31
2π i

N−1∑
s=−2

csF (1)
(
0;
n− s+ 3

2

1

)
−
K31
2π i

N−1∑
s=0

bs
∂

∂M0
F (1)

(
0;
n− s+ 3

2

1

)
,

(5.5)

as n→ ∞. Note the M0-derivative on the right-hand side of (5.5), which is a direct consequence of the logarithm in (5.2).
The hyperterminants in the first two series on the right-hand side of (5.5) are, according to (2.2), gamma functions, showing
that the coefficients an grow like a factorial.
Note also that the series on the right-hand side of (5.5) are divergent. The optimal number of terms in approximation

(5.5) is N ≈ n/2. Since the coefficients as, bs and cs can be computed via (5.3) the only unknowns in (5.5) are the Stokes
multipliers. Taking for example n = 19, n = 20 and N = 10 we obtain two equations with two unknowns, with solutions

K21 = 2.043754662− 1.373747812i, K31 = 0.4372775096. (5.6)
These results are needed in the level one hyperasymptotic expansion

ezw1(z) =
2N−1∑
s=0

asz−s−
3
4 + z

1
4−2N

{
K21
2π i

N−1∑
s=0

bsF (1)
(
z;
2N − s+ 1

2

1

)
+
K31
2π i

N−1∑
s=−2

csF (1)
(
z;
2N − s+ 1

2

1

)

+
K31
2π i

N−1∑
s=0

bs
∂

∂M0
F (1)

(
z;
2N − s+ 1

2

1

)}
+ O

(
e−2|z|z

5
4

)
, (5.7)

as |z| → ∞ in the sector |ph (z)| 6 π . Again, this result follows from [8]. The first series on the right-hand side is an
‘optimal’-truncated asymptotic expansion, and the re-expansions are in terms of hyperterminants.
For the numerical illustration we take z = 10i. In that case the optimal N = 10 on the right-hand side of (5.7), and the

Stokes multipliers in (5.6) are computed up to the required precision: 7 digits for K21 and 10 digits for K31. With these values
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for N and the Stokes multipliers we obtain the approximation

w1(z) ≈ 0.007254669078+ 0.172904229415i. (5.8)

By taking z = 40i and 40 terms in asymptotic expansion ŵ1(z) we can approximate w1(z) and its derivative up to a
much higher precision at z = 40i. These results can be used in a direct numerical integration (see for example [18]) of the
differential equation (5.1) in which we walk from z = 40i to z = 10i. The result shows that all 12 digits in approximation
(5.8) are correct.
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