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Abstract

In this paper a two-dimensional quasi-variational inequality arising in elastohydrodynamic
lubrication is studied for non-constant viscosity. So far, existence results for such piezo–viscous
problems require anL∞ property for an auxiliary problem. For the usual pressure–viscosity
relations, this property needs small data assumptions which are not observed in experimental
conditions. In the present work, such small data assumptions are proved unnecessary for exis-
tence results. Besides well-established monotonicity behavior for the viscosity–pressure relation,
the only condition used here is on the asymptotic behavior for this law as the pressure tends to
infinity. If the procedure used here, namely the introduction of a reduced pressure by Grubin
transform followed by a regularization procedure, appears somewhat classical, the way in which
an upper bound is obtained is completely new.
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1. Introduction

A basic problem in the theory of hydrodynamic lubrication is the determination of the
pressure in a thin film of lubricant when the fluid is surrounded by two close surfaces in
relative motion. One of these surfaces is usually a domain� of the (x, y,0) plane and
the second one is the graph(x, y, h(x, y)) of a strictly non-negative functionh(x, y). It
is well known [5,14,28] that ifh(x, y) is small (with respect of the dimensions of�),
then the pressurep does not rely on the variablez. Thenp(x, y) obeys the Reynolds
equation

Q(p) ≡ − div

(
1

�
h3∇p

)
+ ��h

�x
= 0, (1)

where � = u�0 and �0 is some physical constant,u is the relative tangential velocity
between the two surfaces, assumed to be primarily along thex direction, and� is the
viscosity of the fluid.

Most of the time, Eq. (1) is only valid on an unknown part�+ of the domain� where
the pressure is greater than a critical valuepc. On the complementary part,�−�+, the
pressure is equal topc. This free boundary phenomenon is called cavitation. Although
not completely satisfactory from a mechanical point of view, see [4], the following
variational inequality model is often proposed to give a mathematical description of
the problem and will be retained in this paper (withpc = 0).

Find p in H = {� in W1,2
0 (�), ��0 a.e.} such that:

Q(p)�0, p�0, pQ(p) = 0. (2)

Implicit assumptions in this kind of problem are thath is a given known function
of (x, y) and � is a real, positive constant. However, for large values of the pressure,
these two conditions are not fulfilled. First, the surrounding surfaces can be deformed
due to the pressure, so thath is no longer a datum, but is one of the unknowns of the
problem. Furthermore, chemical and physical modifications take place in the lubricant
so that the viscosity is no longer constant and becomes also a function of the pressure.

For devices like ball bearings, the deformation induced by the hydrodynamic pressure
p can be described from an initial given smooth gapf (x, y) between the two surfaces
by

h(p)(X) = f (X)+
∫ ∫

�
k(Z)p(X − Z)dZ with f (x, y) = h0 + x2 + y2. (3)

Here h0 > 0 is a given constant andk is a kernel given by

k(Z) = k0√
z2

1 + z2
2

,

wherek0 is a given nonnegative constant.
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For given constant�, the non-local nonlinear problem (2) in which h is given by (3)
is called the iso-viscous elastohydrodynamic problem and has been studied in [18,23].
Existence results have been obtained by fixed-point methods or by using a pseudo-
monotone variational inequality, while uniqueness has required data (such as�) to be
small.

When the viscosity is allowed to depend on the pressure, the problem is said to be
piezoviscous. Taking piezoviscosity� = �(p) into account dramatically increases the
difficulty of problem (2).

It has been known at least since the early 1900s that the film thickness predicted by
the constant viscosity model can be about 100 times smaller than what is observed in
experiments, see [21,13, p. 355] [28, p. 269].

The usual practice, both for mathematical study and for numerical computations, is
to work with an auxiliary quantity called the reduced pressure instead of the pressure
itself. The reduced pressure is obtained from the pressure by performing a transform
(sometimes called the Grübin transform)

v =
∫ p(x)

0

1

�(s)
ds. (4)

One can then rewrite the partial differential equation (2) in terms of the new unknown
function v. It turns out that this equation is more manageable than (2).

The idea is then to get an existence theorem for this reduced pressure equation.
There are several existence results for the piezo-viscous two-dimensional problem (see
[6,8,18,20,23,30] and the references therein). However, in dealing with the usual phys-
ical piezo-viscous law (�(s) = �0e

�s), they all require that the data of the problem be
small. The precise statement (see equation (3.15) of [23]) is too technical to be given
here, but suffice it to say that the requirement of small data is equivalent to saying that
the relative motion of the two surfaces is required to be at small speed. This restriction
on the speed seems more one of expediency rather than of physical or mathematical
necessity. This requirement for small data is used to establish a crucial upper bound
for the reduced pressure. One of the open questions listed by A. Friedman in [17] is
to prove existence without thesmall dataassumptions of [18,23].

The goal of this paper is to prove that such small data assumptions are not always
necessary for some realistic piezo-viscosity law. The plan is as follows: A precise
statement of the problem and recollection of classical results appears in Section 2. Under
minimal assumptions of the piezo-viscous law�, in Section 3, using a regularization
procedure, we start by showing that the pressure is bounded inL1. This bound has
a physical interpretation that the total force exerted on the bodies is finite. We will
also establish anL∞ estimate for the reduced pressure. If the regularized problem is
somewhat classical, the upper bounds obtained are completely new and contrary to
previous results: Ours do not require any small data assumptions. Then, in Section 4,
assuming a particular, although realistic, pressure–viscosity law, we gainLp estimates
for the pressure. We finally show that these estimates yield sufficient regularity results
to obtain a solution for the reduced problem. Theorem 3.1 and the regularity results of
Section 4 make it easy to see how to obtain a solution to the original problem.
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Our approach is partly inspired by the approach of Bellout in[7]. However, Bellout
[7] dealt only with the one-space dimension case. There is a major difference in that
in one dimension,W1,2 functions are continuous, while this is not true in two-space
dimension. This creates major complications here and several new ideas are required
to overcome them.

For additional results on mathematical problems arising in lubrication theory see
[10,11,16,19] and the references therein.

2. Statement of the problem

Let f (x, y) be a given continuous, bounded, strictly non-negative function and� a
real constant, and let a pressure–viscosity relation be defined by way of a function�
such that:

�(p) is a continuous, increasing function, (5)

�(0) = �0 > 0. (6)

The physical problem is to findp in H such that for any� ∈ H :

∫ ∫
�

(
h(p)3

�(p)
∇p · ∇(� − p)+ �

�h
�x
(� − p)

)
dx dy�0, (7)

where

h(p)(X) = f (X)+
∫ ∫

�
k(Z)p(X − Z) dZ (8)

with

f = h0 + x2 + y2 and h0 > 0. (9)

Here k is a kernel given by

k(Z) = k0√
z2

1 + z2
2

, (10)

wherek0 is a given nonnegative constant. To define the problem for the reduced pressure
we introduce the function

a(s) =
∫ s

0

ds

�(s)
. (11)
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Under assumptions (5), (6) on� it follows that the functiona is increasing and has an
inverse� such that

�(a(s)) = a(�(s)) = s. (12)

The reduced pressurev(x, y) is defined by

v(x, y) = a(p(x, y)) and p(x, y) = �(v(x, y)). (13)

The problem satisfied by the reduced pressure is then to findv ∈ H such that for any
� ∈ H :

∫ ∫
�
(h(v)3∇v · ∇(� − v)+ �

�h(v)
�x

(� − v)) dx dy�0, (14)

where

h(v)(X) = f (X)+
∫ ∫

�
k(Z)�(v(X − Z)) dZ (15)

and f and k are as before.
An important physical quantity in applications is known as thereciprocal iso-viscous

pressure(see[2,3,9] and the references therein). It is given by

�∗ =
[∫ ∞

0

�(0)
�(s)

ds

]−1

. (16)

We will find it more convenient to use a related quantity, namely,

A =
∫ ∞

0

1

�(s)
ds = 1

�0�∗ . (17)

The existence of a solution to problem (14)–(15) was established in [23] under the
assumption thatA = +∞ (�∗ = 0).

Although various formulas have been used for the viscosity pressure relation, all ex-
perimental measures (see [2,3,29] and the references therein) reflect two characteristics:

• The viscosity is an increasing function of the pressure.
• The reciprocal iso-viscous pressure�∗ is non-zero. i.e.,A is finite.

The most common forms of the function� used in engineering applications are the
Roelands formula (Viscosity–Pressure)

�(p) = exp(C[−1 + (1 + cp)z]), (18)
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whereC, z, c are constants, and the simpler, more popular, Barus relation

�(p) = �0 exp(�p), (19)

where� and �0 are positive constants.
The Roelands formula is relatively recent (1966) and has been tested for pressures

between zero and 0.5 Gpa . See[2,3,24].
For the case whereA was assumed to be finite (non-zero�∗) existence results

were established for problem (14)–(15) assuming that� follows Barus’s law (19) (see
[18,23,30]). But in all of those cases, the existence was proved under the small data
assumption.

We will prove existence of a solution to problem (14)–(15) without restriction on
the size of the data. In Section 3 our results are proved for any function� which
satisfies conditions (5) and (6). In the last section, we will make further assumptions
on the function�. The additional restriction is asymptotic in nature. We will essentially
assume that for values ofp larger than an arbitrary valuep∗, we have�(p) = (p+Q)�,
whereQ is a positive constant and� ∈ (1,3/2). Notice that such a function� could
agree with the Roelands formula over any range ofp for which the Roelands formula
has been tested. Also, since� > 1, such a function� would yield a finite value forA
(nonzero�∗). This kind of pressure–viscosity relations were used in [12].

3. The approximate problem and first related estimates

In this section we will first consider a cut-off approximation of� by way of a small
parameter�, so defining an approximate problem of 14. ClassicalW1,2 estimates of
the reduced pressure (independent of�) are established. We also prove anL∞ estimate
of the reduced pressure and anL1 estimate of the pressure. These estimates are proved
without any assumption on the size of the data.

For � > 0 fixed, we define

��(s) =
{

�(s); 0< s�A− �,

�(A− �); s�A− �.

We start by stating the existence of a solution to the approximate problem.

Proposition 1. For � > 0 fixed, there exists av� in H such that

∫ ∫
�

(
h3

�∇v� · ∇(� − v�)+ �
�h�

�x
(� − v�)

)
dx dy�0, (20)

∀� ∈ H, (21)
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where

h� = f + d� (22)

and

d� =
∫ ∫

��(v�(x − s, y − t)) ds dt√
s2 + t2 . (23)

Furthermore, v� ∈ C0,�(�).

Proof. This proposition is proved in[18,23]. For the convenience of the reader we will
give an outline of the proof. First, consider the following linear free boundary value
problem: Given a positive functionu we geth�(u) by substitutingu to v� in (23). For
such anh� we solve the free boundary value problem (20) using classical results from
[15,19], for example. To finish the proof it is enough to show that the operator maps
u to v� has a fixed point. �

Proposition 2. (1) There exists a positive constant C such that

‖v�‖W1,2
0 (�)�C. (24)

(2) There exists av in H such that a subsequencev�n (which will henceforth be
denotedv�) weakly converges towardsv for theW1,2

0 (�) norm.

Proof. Part 2 of the proposition follows directly from part 1 and from compactness
results inW1,2. Next we prove part 1.

Setting� = 0 in the equality20 we find∫ ∫
�
h3

� |∇v�|2 dx dy � −�
∫ ∫

�

�h�
�x
v� dx dy (25)

= �
∫ ∫

�
h�

�v�
�x
dx dy (26)

= �
∫ ∫

�

1√
h�
h

3/2
�

�v�
�x
dx dy. (27)

Using the Cauchy–Schwartz inequality and Young inequality we get that the last ex-
pression above satisfy

�

∣∣∣∣
∫ ∫

�

(
1√
h�

)(
h

3/2
�

�v�
�x

)
dx dy

∣∣∣∣
��

(∫ ∫
�

1

h�
dx dy

)1/2
(∫ ∫

�
h3

�

(
�v�
�x

)2

dx dy

)1/2

� �2

2

∫ ∫
�

1

h�
dx dy + 1

2

∫ ∫
�
h3

� (∇v�)2 dx dy. (28)
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It then follows from (27) that

∫ ∫
�
h3

� |∇v�|2 dx dy��2
∫ ∫

�

dx dy

h�
� �2

h0
|�|.

Sinceh�(x, y)�h0 ∀(x, y) ∈ � and ∀� > 0 it follows from the above inequality that

∫ ∫
�

|∇v�|2 dx dy� �2

h4
0

|�|, (29)

where|�| is the measure of�. From this estimate we deduce that there exists av ∈ H
and a subsequencev�n such that

v�n −→ v weakly inW1,2
0 (�) as �n → 0. �

Now, we will prove a somewhat technical proposition by using the same approach
as in the Lemma of Stampacchia[26, p. 93], or [19] to getL∞ estimates for solutions
of variational inequalities.

Proposition 3. The following estimate is valid:

‖v�‖L∞(�)�c0|�|1/229

[
�2

h4
m�

]3/2

�c0|�|1/229

[
�2

h4
0

]3/2

(30)

with hm� = min(x,y)∈� h�(x, y) and c0 a positive constant independent of�.

Proof. We will temporarily drop the subscript�. We will resume it at the end of this
section. Fork ∈ R we set

vk =
{
v − k; v�k,

0; v�k

and

Bk = {(x, y) ∈ �; v(x, y)�k}. (31)

Notice that if v ∈ H then ∀k�0, vk ∈ H . Setting� = vk + v� in (20) and using once
again the Cauchy–Schwartz inequality and Young inequality and proceeding as we did
in the proof of (24) we get that

∫ ∫
Bk

h3
∣∣∣∇v(k)∣∣∣2 dx dy��2

∫ ∫
Bk

dx dy

h
. (32)
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Using thath�hm ≡ min� h(x, y), we get that

∫ ∫
Bk

h3
∣∣∣∇v(k)∣∣∣2 dx dy� �2

hm
|Bk|, (33)

where |Bk| is the measure of the setBk. We get from (33) that

∫ ∫
Bk

∣∣∣∇v(k)∣∣∣2 dx dy� �2

hmh3
m

|Bk|. (34)

Using embedding theorems we see that there exists a constantC > 0 which depends
only on � such that:

∫ ∫
Bk

∣∣∣∇v(k)∣∣∣2 dx dy =
∫ ∫

�

∣∣∣∇v(k)∣∣∣2 dx dy
� C

(∫ ∫
�

∣∣∣v(k)∣∣∣3 dx dy)2/3

= C

(∫ ∫
Bk

∣∣∣v(k)∣∣∣3 dx dy)2/3

. (35)

Hence

(∫ ∫
Bk

∣∣∣v(k)∣∣∣3 dx dy)2/3

� �2

Chmh3
m

|Bk|� �2

Ch4
m

|Bk|. (36)

Let l > k. Then we have that

∫ ∫
Bk

∣∣∣v(k)∣∣∣3 dx dy�
∫ ∫

Bl

∣∣∣v(k)∣∣∣3 dx dy�
∫ ∫

Bl

(l − k)3 dx dy�(l − k)3|Bl |, (37)

and by (36), ∀l�k > 0 we have that

(l − k)2|Bl |2/3� �2

Ch4
m

|Bk|. (38)

Setting�(s) = |Bs | we then have that

�(l)� c̄0
1

(l − k)3 (�(k))
3/2 where c̄0 =

(
�2

Ch4
m

)3/2

. (39)
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By a Lemma of Stampacchia (see[26, p. 93]) we then have

�(s) = 0 ∀s�D = c̄0|�|1/229. (40)

Restating in terms of our earlier notation, we see that

sup
�
v��D�, whereD� =

(
�2

Ch4
m

)3/2

|�|1/229�
(

�2

Ch4
0

)3/2

|�|1/229. � (41)

It easily follows from what we have done that the limitv of the sequencev� is in
L∞; but, in fact,v satisfies a better estimate inL∞(�). We will show next that in fact
v is bounded byA. For this purpose we will start by establishing that the sequence
of “pressures" associated with the reduced pressuresv� forms a sequence bounded in
L1(�). This L1 estimate of the pressure is of independent interest and of physical
significance. Indeed theL1 norm of the pressure represents the load.

Proposition 4. There exists a constant C independent of� such that

∫ ∫
�

��(v�)dx�C .

Proof. From the definitions ofD� and hm�, we have

hm��
∫ ∫

�
��(v�(s, t)) ds dt

hm� =
(

�2

C

)1/4

|�|1/(12)23/2D
−1/6
� = c1D

−1/6
� ,

wherec1 is a constant which does not depend on�.
Now from (30), we get

‖v�‖−1/6
L∞(�)�D

−1/6
� � 1

c1

∫ ∫
�

��(v�(s, t)) ds dt. (42)

Let us assume now that
∫∫

� ��(v�) ds dt tends to infinity as� tends to zero. Then by
(42) |v�|L∞(�) would tend to zero. Thus, as� tends to zero,|v�|L∞(�)� A

2 < A− �, so
the monoticity of� and the definition of�� imply that

∫ ∫
�

��(v�(s, t)) ds dt =
∫ ∫

�
�(v�(s, t)) ds dt�

∫ ∫
�

�
(
A

2

)
ds dt < +∞,
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which contradicts the assumption that
∫∫

� ��(v�) ds dt tends to infinity and finishes the
proof. �

We will need the following technical result.

Lemma 5. Let E ⊂ R2 be the ball centered at the origin of finite radiusR > 0.
Assume thatun�0 is a sequence of radial functions converging strongly inL2(E)

toward a radial functionu�0. We will assume that the sequenceun converges almost
everywhere in E to u. Assume also that for n fixed and for allr1 and r2 such that
0�r1�r2�R we have thatun(r1)�un(r2). Let 	 be a positive number.
Set �	 = {(x, y) ∈ E: u(x, y)�A + 	}. Assume that�	 has a non-zero mea-

sure. Set�n	 = {(x, y) ∈ E : uk(x, y)�A}. Then there existsn0 > 0 such that
∀n�n0, |�n	 |� 1

2|�	|.

Proof. Since the functionu is also radially decreasing it follows that�	 is a ball
centered at the origin of radiusr	 > 0. Further, there existsr∗ ∈ (r	/

√
2, r	) such

that un(r∗) converges tou(r∗). Since u is decreasing andr∗ �r	 it follows that
u(r∗)�u(r	)�A + 	 > A. It then follows from the convergence ofun(r∗) that there
exists n0 such that for alln�n0 un(r

∗)�A. Sinceun is radially decreasing it then
follows that |�n	 | contains the ball centered at the origin of radiusr∗. Using the fact
that r∗ �r	/

√
2 it follows that |�n	 |� 1

2r
2
	 
� 1

2|�	|. This proves the Lemma.�

Lemma 6. Let E = (−M,+M) × (−M,+M) ⊂ R2 and let vn be a sequence of
functions ofL2(E) which converges almost everywhere tov. If

�	 = {(x, y) ∈ E, v(x, y)�A+ 	},
�n	 = {(x, y) ∈ E, vn(x, y)�A}

and |�	| �= 0 then there existsn0 > 0 such that∀n�n0, |�n	 |�
1

2
|�	|.

Proof. First we extendvn and v by zero to all of the ball centered at the origin of
radiusM. Now we will take the Schwarz decreasing rearrangement of these functions
and call themun and u respectively. It is well known (see Kawholl in[9, p. 23], for
example) thatun will converge strongly inL2(B(0,M)) to the functionu. �

Now we can take a subsequence ofun which converges tou almost everywhere in
the ball. We then have all the conditions of the lemma above. By definition of the
rearrangement we have that the measure of the set on whichv is greater than or equal
to A+ 	 is the same as the measure of the set on whichu is greater than or equal to
A + 	. Similarly the measure of the set on whichvn is greater than or equal toA is
the same as the measure of the set whereun is greater than or equal toA. Hence, the
results of Lemma 1 apply also to sets wherev and vn are greater thanA + 	 and A
respectively.
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Theorem 7. The limit v of the sequencev� satisfies‖v‖L∞(�)�A.

Proof. We will once again proceed by contradiction. Let us assume that there is a
positive number	 such that�	 = {(x, y) ∈ � : v(x, y)�A + 	} has a non-zero
measure.

Applying Lemma (6) to a sequencev� which converges almost everywhere tov, it
follows that there exists�0 such that if � < �0, then v�(x, y)�A on a set��

	 with

|��
	|�

1

2
|�	|. This would induce from the definition of�� that if ���0, then ��(v�) =

�(A− �) on ��
	. Hence,∫ ∫

�
��(v�) dx dy� 1

2
|�	|�(A− �). �

This last term goes to infinity as� goes to zero and this contradicts our
Proposition (4).

Proposition 8. The limitv of the sequencev� satisfies�(v) ∈ L1(�) and
∫∫

� �(v) dx dy
��.

Proof. Let 	 be a positive number and introducev	� (xy) = inf (v�(x, y), A− 	). Since
v� converges strongly inL2 to v, it can easily be verified thatv	� converges strongly
in L2 to the functionv	 given by v	(x, y) = inf (v(x, y), A − 	). Now, for 	 fixed,
v	� �v�∀�. Therefore��(v

	
� )���(v�)∀� and from Proposition4,∫ ∫
��(v

	
� ) dx dy�

∫ ∫
��(v�) dx dy�c, (43)

for some constantc. Since v	� �A − 	 it follows that for � small enough��(v
	
� ) =

�(v	� )��(A− 	)�c. From this and the fact thatv	� converges tov	 in L2 we deduce
that ��(v

	
� ) converges to�(v	) in L1(�). �

From this and the above inequality it follows that
∫∫

�(v	) dx dy�c, ∀	. Next we
will let 	 go to zero. The sequence�(v	) → �(v) as 	 goes to zero. It then follows
from the monotone convergence theorem that

∫∫
� �(v) dx dy�c.

4. Existence result for the reduced problem

To prove thatv is a solution of the reduced problem, we need supplementary con-
vergence results forh�. To get them, we will consider additional restrictions on the
behavior of the piezo-viscosity law forp near infinity. Specifically, we will assume that
there exists a positive numberp∗ such that

�(p) = (p +Q)� � > 1, Q > 0 for p�p∗, (44)

whereQ and � are constants.
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An easy calculation shows that in this case we have that

A =
∫ ∞

0

1

�(s)
ds =

∫ p∗

0

1

�(s)
ds + (p∗ +Q)(1−�)

� − 1
. (45)

Also, for s�a1 ≡ ∫ p∗
0

1
�(s) ds,

�(s) = ((� − 1)(A− s)) 1
1−� −Q. (46)

Remark 9. In fact, what follows remains valid if we simply require that�(p) �
(p+Q)� (in the sense that is�(p)− (p+Q)� = o(p)), whenp � +∞. In particular,
we can allow� to follow either Barus formula or Roelands formula for finite values
of p and simply require asymptotic behavior of the precedent type.

The aim here is to show that there exists a constantc independent of� such that
there existss > 1 with

∫ ∫
�
(��(v�))

sdx�c, (47)

so that in turn we get

‖h�‖W1,s (�)�c. (48)

The basic idea is to find�, with ��0, such that‖��(v�)
�‖W1,2(�)�c, which implies

that ‖��(v�)
�‖Lr(�)�c for any r > 1. The required convergence will be obtained for

any s = �r. The proof will be a two-step procedure. First, we introduce the function

��(v�) = (Q+ ��(v�))
�
(v�),

with 
 a cut-off function defined in Lemma (11) and� a parameter chosen such that

‖∇v� ·
√

�′
�(v�)‖L2(�) is bounded.

Secondly,� is chosen such that∇v� ·
√

�′
�(v�) behaves like∇(��(v�))

� when v� is
nearA.

Remark 10. Recall that��(v�) is uniformly bounded forv� away fromA. The main
purpose of what follows is to show that (47) holds forv� nearA.

Lemma 11. Let a2 = A − a1 and 
(s) be a function inC2(R) with 
(t) = 0 if t <

a1 + a2

3
, 
(t) = 1 if t > a1 + 2a2

3
, 
′(t)�0. Then for� > 0, �� = (Q+ ��(v�))

�
(v�)

lies in W1,2
0 (�), for all ��0.
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Proof. This is obvious, since��(v�) is bounded and
�0. The introduction of
 is
necessary to ensure that�� vanishes on the boundary.�

Lemma 12. The following inequality is valid:

∫ ∫
�
h3

� |∇v�|2 �′
�(v�) dx dy�c

∫ ∫
�

�′
�(v�) dx dy,

where c is a positive constant independent of�.

Proof. Using � = v� + �� as test function in (44), we obtain

∫ ∫
�
h3

� |∇v�|2 �′
�(v�) dx dy��

∫ ∫
�
h�

∣∣∣∣�v��x

∣∣∣∣ �′
�(v�) dx dy.

As ���0, 
�0, 
′ �0 and�′
��0 the inequality above can be rewritten in the form

∫ ∫
�
h3

� |∇v�|2 �′
�(v�) dx dy��

∫ ∫
�

[
h

3/2
�

√
�′
�(v�)

∣∣∣∣�v��x

∣∣∣∣
]

·


√

�′
�(v�)√
h�


 dx dy

Applying the Cauchy–Schwartz inequality, we obtain the result.�

Lemma 13. Assume that
 can be chosen such that


′(s)�c∗
(s) ∀s > a1 + A− a1

2
(49)

and that2 − � − ��0. Then there exist positive numbers C and M, independent of�,
such that

�′
�(s)�M + C(Q+ ��(s))
(s) ∀s. (50)

First, assumption (49) would easily be satisfied by any
 which is C1 and satisfies
the conditions of Lemma (11).

Set

B�(v�) = Q+ ��(v�) =



((� − 1)(A− v�))1/(1−�) if a1�v��A− �,

1

(�(� − 1))1/(�−1)
if v��A− �
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so that forv��a1, �′
�(v�) = �B�−1

� (v�) B
′
�(v�)
(v�) + B�

� (v�)

′(v�). We will consider

the various possibilities (assuming� small with respect toa2/3).

• For v�(s)�a1 + a2
3 , then �′

�(v�) ≡ 0 the required inequality holds.

• For a1 + a2
3 �v�(s)�a1 + 2

a2

3
, then due to the definition ofB�(v�), we have that

B ′
�(v�) = B�

� (v�) and therefore

�′
�(v�) = � · B�−1

� (v�) · B ′
�(v�) · 
(v�)+ 
′(v�)B�

� (v�)

�
[
�B�−1+�

� (v�)+ c∗B�
� (v�)

]

(v�).

As B�(v�) is bounded uniformly with respect to� the proof is finished.

• For a1 + 2
a2

3
�v�(s)�A, then

�′
�(v�) =


 �((� − 1)(A− v�))

�−1+�
1−� if v��A− �,

0 if v��A− �

and

(Q+ ��(v�))
(v�) =



((� − 1)(A− v�))1/(1−�) if v��A− �,

1

(�(� − 1))
1

(�−1)

if v��A− �.

Thus, as soon as� − 1 + ��1, the desired inequality is obtained.
Let us now prove

Proposition 14.With the assumptions of Lemmas(11) and (13),

∫ ∫
�

|∇v�|2 �′
� dx dy�c (independently of�).

Proof. From Lemma (12) and (13), we have

∫ ∫
�

|∇v�|2 �′
� dx dy � c

∫ ∫
�

�′
� dx dy

� c

∫ ∫
�
[M + c(Q+ ��(v�))
(v�)] dx dy.

Applying Proposition (4) and the assumptions for
, we get the result. �
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Proposition 15.With the assumptions of Lemma(11) and (13) for 
, if 1 < � <
3

2
and r > 1, then ��(v�) is bounded inLr(�) independently of�.

Proof. Set g�(v�) = (��(v�))
�
(v�). Then

∫ ∫
�

|∇g�|2 dx dy = �2
∫ ∫

�
(��(v�))

2(�−1) · (�′
�)

2 |∇v�|2 · 
2 dx dy

+2�
∫ ∫

�
(��(v�))

2�−1 · �′
� · 
 · |∇v�|2 · 
′ dx dy

+
∫ ∫

�
(��(v�))

2� · (
′)2 · |∇v�|2 dx dy.

Let us split each of these integrals into three parts. In the first part,v�(x, y)�a1 +
2
A− a1

3
, so that all terms involved are bounded independently of�. In the second

part, v�(x, y)�A − �. In this case,
 ≡ 1 and ��(v�) is constant, so∇g� = 0. In the

last one, we havea1 + 2
A− a1

3
�v�(x, y)�A− �. Recalling that in this range
 ≡ 1

and 
′ ≡ 0 we then get

∫ ∫
�

|∇g�|2 dx dy�c + �2
∫ ∫

�∗
��(v�)

2(�−1) · (�′
�)

2 |∇v�|2 dx dy, (51)

where�∗ is given by

�∗ =
{
� ∩

{
a1 + 2

A− a1

3
�v�(x, y)�A− �

}}
. (52)

Recalling now that for small�, a1+2
A− a1

3
< A−�, we then get forv��a1+2

A− a1

3
,

��(v�) = (Q+ ��(v�))
�

and

��(v�) = ��(v�)
1/� −Q.

Hence,

�′
�(v�) = 1

�
�

1−�
�

� · �′
�(v�) = 1

�
(Q+ ��(v�))

1−� · �′
�(v�).
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Moreover, from the definition of�� = � in (44), (45) and (46) we get

��(v�) = �(v�) = ((� − 1)(A− v�))
1

1−� −Q,
�′
�(v�) = ((� − 1)(A− v�))

�
1−� = (��(v�)+Q)�.

With a view toward applying Proposition (14), then (51) is rewritten as

∫ ∫
�

|∇g�|2 dx dy

�c + �2

�

∫ ∫
�∗

��(v�)
2(�−1)(��(v�)+Q)�(��(v�)+Q)1−��′(v�) |∇v�|2 dx dy

�c + �2

�

∫ ∫
�∗

[��(v�)+Q]2(�−1)+�+1−� · �′(v�) |∇v�|2 dx dy.

Choosing now� = � + 1 − �
2

> 0, we find that 2(� − 1)+ � + 1 − � = 0. This allows

us to use Proposition (14) and then deduce that‖g�‖W1,2(�) is bounded uniformly with
respect to�. This in turn implies that(��(v�)) is bounded inLr(�) for any r > 1.

Let us remark that the choice� <
3

2
is the best one to ensure each of� + 1 − ��0,

2 − � − ��0 and� > 1. �

Theorem 16. The limit v of the sequencev� is a solution of the reduced problem: Find
v ∈ H such that

∫ ∫
(h3∇v · ∇(� − v)+ �

�h
�x
(� − v)) dx dy�0 ∀� ∈ H and where (53)

h(x, y) = f + d (54)

where

f = h0 + x2 + y2

R2 (55)

and

d =
∫ ∫

�(v(x − s, y − t)) 1√
s2 + t2 ds dt (56)

with � defined by(44) and 1< � < 3/2.
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Proof. Since the Fourier transform of the kernelK(s, t) = 1√
s2+t2 is given by the

function 1√
�2

1+�2
2

(see [25] or [27]) it follows from the properties of the product of

convolution that if��(v�) is in Lr(�) then

h�(v�) = � +
∫ ∫

�
��(v�(x − s, y − t) 1√

s2 + t2 ds dt

is in W1,r (�). Furthermore, since��(v�) is uniformly bounded inLr it follows that
h�(v�) is uniformly bounded inW1,r (�).

It is easy to see then thath�(v�) converges in the Holder spaceC0,�(�) (see Adams
[1] or Nec̆as [22], for example) towardsh(v) for any � > 0.

So we can pass to the limit in all terms of (44) with the exception of the quadratic
one,

∫ ∫
�
h3

�∇v� · ∇v� dx dy.

This last term is rewritten as

∫ ∫
�
(h3

� − h3(v))∇v� · ∇v� dx dy +
∫ ∫

�
h3(v)∇v� · ∇v� dx dy,

in which the first integral tends to zero, since|∇v�| is bounded inL2, and the second
one satisfies the inf-limit property

∫ ∫
�
h3(v)∇v · ∇v dx dy� lim inf

∫ ∫
�
h3(v)∇v� · ∇v� dx dy,

which allows us to conclude the proof.�
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