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Abstract

In this paper a two-dimensional quasi-variational inequality arising in elastohydrodynamic
lubrication is studied for non-constant viscosity. So far, existence results for such piezo-viscous
problems require an.®® property for an auxiliary problem. For the usual pressure-viscosity
relations, this property needs small data assumptions which are not observed in experimental
conditions. In the present work, such small data assumptions are proved unnecessary for exis-
tence results. Besides well-established monotonicity behavior for the viscosity—pressure relation,
the only condition used here is on the asymptotic behavior for this law as the pressure tends to
infinity. If the procedure used here, namely the introduction of a reduced pressure by Grubin
transform followed by a regularization procedure, appears somewhat classical, the way in which
an upper bound is obtained is completely new.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Free boundary problem; Lubrication; Variational inequality; Elastohydrodynamic

* Corresponding author.
E-mail addressesGuy.Bayada@insa-lyon.f(G. Bayada),bellout@math.niu.edH. Bellout).

0022-0396/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2005.01.013


https://core.ac.uk/display/82094482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jde
mailto:Guy.Bayada@insa-lyon.fr
mailto:bellout@math.niu.edu

G. Bayada, H. Bellout / J. Differential Equations 216 (2005) 134-152 135
1. Introduction

A basic problem in the theory of hydrodynamic lubrication is the determination of the
pressure in a thin film of lubricant when the fluid is surrounded by two close surfaces in
relative motion. One of these surfaces is usually a dortaof the (x, y, 0) plane and
the second one is the grajgh, y, h(x, y)) of a strictly non-negative functioha(x, y). It
is well known [5,14,28] that ifi(x, y) is small (with respect of the dimensions QJ,
then the pressurp does not rely on the variable Then p(x, y) obeys the Reynolds
equation

0(p) = — div <3h3Vp> + o _ 0, (1)
U 0x

where A = ulg and 1o is some physical constant, is the relative tangential velocity
between the two surfaces, assumed to be primarily along tiieection, andu is the
viscosity of the fluid.

Most of the time, Eq.1) is only valid on an unknown paf2™ of the domairQ where
the pressure is greater than a critical vajie On the complementary pa® —Q™*, the
pressure is equal tp;. This free boundary phenomenon is called cavitation. Although
not completely satisfactory from a mechanical point of view, see [4], the following
variational inequality model is often proposed to give a mathematical description of
the problem and will be retained in this paper (wjth = 0).

Findpin H={¢ in W&’Z(Q), ¢ >0 a.e} such that:

Q(p)=0, p=0, pO(p)=0. 2

Implicit assumptions in this kind of problem are that is a given known function
of (x,y) and u is a real, positive constant. However, for large values of the pressure,
these two conditions are not fulfilled. First, the surrounding surfaces can be deformed
due to the pressure, so thatis no longer a datum, but is one of the unknowns of the
problem. Furthermore, chemical and physical modifications take place in the lubricant
so that the viscosity is no longer constant and becomes also a function of the pressure.
For devices like ball bearings, the deformation induced by the hydrodynamic pressure
p can be described from an initial given smooth géfx, y) between the two surfaces

by
h(p)(X) = f(X) +/fgk(2)p(x — 2)dZ with f(x,y) = ho+x%+ 2. )

Here hg > 0 is a given constant anklis a kernel given by

k(Z) = —0

z%+z%

wherekg is a given nonnegative constant.
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For given constant, the non-local nonlinear problen2)in which h is given by (3)
is called the iso-viscous elastohydrodynamic problem and has been studied in [18,23].
Existence results have been obtained by fixed-point methods or by using a pseudo-
monotone variational inequality, while uniqueness has required data (suchtase
small.

When the viscosity is allowed to depend on the pressure, the problem is said to be
piezoviscous. Taking piezoviscosity = u(p) into account dramatically increases the
difficulty of problem (2).

It has been known at least since the early 1900s that the film thickness predicted by
the constant viscosity model can be about 100 times smaller than what is observed in
experiments, see [21,13, p. 355] [28, p. 269].

The usual practice, both for mathematical study and for numerical computations, is
to work with an auxiliary quantity called the reduced pressure instead of the pressure
itself. The reduced pressure is obtained from the pressure by performing a transform
(sometimes called the @hbin transform)

px) 1 4
= —ds.
Y fo us " “)

One can then rewrite the partial differential equati@j i6 terms of the new unknown
function v. It turns out that this equation is more manageable than (2).

The idea is then to get an existence theorem for this reduced pressure equation.
There are several existence results for the piezo-viscous two-dimensional problem (see
[6,8,18,20,23,30] and the references therein). However, in dealing with the usual phys-
ical piezo-viscous law((s) = pge™), they all require that the data of the problem be
small. The precise statement (see equation (3.15) of [23]) is too technical to be given
here, but suffice it to say that the requirement of small data is equivalent to saying that
the relative motion of the two surfaces is required to be at small speed. This restriction
on the speed seems more one of expediency rather than of physical or mathematical
necessity. This requirement for small data is used to establish a crucial upper bound
for the reduced pressure. One of the open questions listed by A. Friedman in [17] is
to prove existence without themall dataassumptions of [18,23].

The goal of this paper is to prove that such small data assumptions are not always
necessary for some realistic piezo-viscosity law. The plan is as follows: A precise
statement of the problem and recollection of classical results appears in Section 2. Under
minimal assumptions of the piezo-viscous layin Section 3, using a regularization
procedure, we start by showing that the pressure is bounddd.inThis bound has
a physical interpretation that the total force exerted on the bodies is finite. We will
also establish ar.>® estimate for the reduced pressure. If the regularized problem is
somewhat classical, the upper bounds obtained are completely new and contrary to
previous results: Ours do not require any small data assumptions. Then, in Section 4,
assuming a particular, although realistic, pressure—viscosity law, weldaiestimates
for the pressure. We finally show that these estimates yield sufficient regularity results
to obtain a solution for the reduced problem. Theorem 3.1 and the regularity results of
Section 4 make it easy to see how to obtain a solution to the original problem.
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Our approach is partly inspired by the approach of Bellouf7in However, Bellout
[7] dealt only with the one-space dimension case. There is a major difference in that
in one dimensionW2 functions are continuous, while this is not true in two-space
dimension. This creates major complications here and several new ideas are required
to overcome them.

For additional results on mathematical problems arising in lubrication theory see
[10,11,16,19] and the references therein.

2. Statement of the problem
Let f(x,y) be a given continuous, bounded, strictly non-negative function/aad

real constant, and let a pressure-viscosity relation be defined by way of a fupction
such that:

w(p) is a continuous, increasing function (5)
w0 =pg>0. (6)

The physical problem is to fing in H such that for anyp € H:

h(p)3 oh
/] (ﬂww(b—mﬂ <¢—p>> dx dy>0, @)
o\ up) 0x
where
h(p)(X) = F(X) + / /Q KZ)p(X — 2)dZ ®)
with
f =ho+x2+y?andhg > 0. 9)

Herek is a kernel given by

K(Z) = —0 (10)

,/z%—i—z%

wherekg is a given nonnegative constant. To define the problem for the reduced pressure
we introduce the function

N dS
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Under assumptionsby, (6) ony it follows that the functiora is increasing and has an
inversey such that

Y(a(s)) = a(y(s)) =s. (12)
The reduced pressungx, y) is defined by
v(x,y) =a(p(x,y) and p(x,y) =y, y). (13)

The problem satisfied by the reduced pressure is then toufiadd such that for any
¢e€H:

/ / @3- V(b — v) + 2.5 (5 _ )y dx dy >0, (14)
Q 0x
where

hW)(X) = f(X) + / /Q KZ)y(o(X — 2))dZ (15)

andf andk are as before.
An important physical quantity in applications is known as t@eiprocal iso-viscous
pressure(see[2,3,9] and the references therein). It is given by

00 0 -1
o = [/ A )ds] . (16)
0 H(s)
We will find it more convenient to use a related quantity, namely,
© 1 1
A= / S ds= (17)
0o u(s) Hoor*

The existence of a solution to probleri4)—(15) was established in [23] under the
assumption thal = +oo (o* = 0).

Although various formulas have been used for the viscosity pressure relation, all ex-
perimental measures (see [2,3,29] and the references therein) reflect two characteristics:

e The viscosity is an increasing function of the pressure.
e The reciprocal iso-viscous pressuré is non-zero. i.e.A is finite.

The most common forms of the functignused in engineering applications are the
Roelands formula (Viscosity—Pressure)

u(p) = exp(Cl—1+ (14 cp)*D. (18)
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whereC, z, ¢ are constants, and the simpler, more popular, Barus relation

p(p) = poexplap), (19)

where o and y are positive constants.

The Roelands formula is relatively recent (1966) and has been tested for pressures
between zero and 0.5 Gpa . Sgg3,24].

For the case wheré& was assumed to be finite (non-zewd) existence results
were established for problem (14)—(15) assuming thébllows Barus’s law (19) (see
[18,23,30]). But in all of those cases, the existence was proved under the small data
assumption.

We will prove existence of a solution to problem (14)—(15) without restriction on
the size of the data. In Section 3 our results are proved for any fungtiovhich
satisfies conditions (5) and (6). In the last section, we will make further assumptions
on the functionu. The additional restriction is asymptotic in nature. We will essentially
assume that for values gflarger than an arbitrary valuex, we haveu(p) = (p+0)”,
whereQ is a positive constant anfl € (1, 3/2). Notice that such a functiom could
agree with the Roelands formula over any range dbr which the Roelands formula
has been tested. Also, sinfe> 1, such a functionu would yield a finite value forA
(nonzeroo*). This kind of pressure—viscosity relations were used in [12].

3. The approximate problem and first related estimates
In this section we will first consider a cut-off approximation,oby way of a small
parameters, so defining an approximate problem of 14. Classibél? estimates of
the reduced pressure (independent)oére established. We also prove A estimate
of the reduced pressure and Ah estimate of the pressure. These estimates are proved

without any assumption on the size of the data.
For ¢ > O fixed, we define

7(8); 0<s<A—g,
Vs(s) -
YA —¢); s=2A—e.

We start by stating the existence of a solution to the approximate problem.

Proposition 1. For ¢ > 0 fixed there exists a, in H such that

// (thvg V(P —ve) + 2
Q

V¢ € H, (22)

oh
- v8)> dx dy>0, (20)
ox
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where

he = f +d; (22)

dsd
dy = / / Povs(x — 5,y — ))\/s—_;. (23)

and

Furthermore v, € C%%(Q).

Proof. This proposition is proved ifil8,23]. For the convenience of the reader we will
give an outline of the proof. First, consider the following linear free boundary value
problem: Given a positive function we geth.(u) by substitutingu to v, in (23). For
such ank, we solve the free boundary value problem (20) using classical results from
[15,19], for example. To finish the proof it is enough to show that the operator maps
u to v, has a fixed point. O

Proposition 2. (1) There exists a positive constant C such that

||U8||W12(Q)<C (24)

(2) There exists av in H such that a subsequenae (which will henceforth be
denotedv;) weakly converges towards for the W, (Q) norm

Proof. Part 2 of the proposition follows directly from part 1 and from compactness
results inW12. Next we prove part 1.
Setting¢ = 0 in the equality20 we find

// h3 |V |? dx dy —1// %vpdxdy (25)
Q
= // hg—dxdy (26)

— //Q\/_ 3/2(;3(1 dy. 27)

Using the Cauchy—Schwartz inequality and Young inequality we get that the last ex-

pression above satisfy
ox

A
<//Qh%dx )" (//Q () o)
// Zdxdy+ = //th (Vvg)? dx dy. (28)

N

1/2
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It then follows from @7) that

dxdy 72
/f h§|va|2 dxdygﬂsz * y<_|Q|_
Q o he ho

Sinceh(x, y)>ho V(x, y) € Q andVe > 0 it follows from the above inequality that

2?2
[ [ vui axay< i (29)
Q ho

where|Q] is the measure dof). From this estimate we deduce that there existseaH
and a subsequenag, such that

v, —> v weakly in Wg’Z(Q) aseg, — 0. O
Now, we will prove a somewhat technical proposition by using the same approach
as in the Lemma of StampaccHi26, p. 93], or [19] to getL*> estimates for solutions

of variational inequalities.

Proposition 3. The following estimate is valid

2 3/2 2 3/2
v ll oo @) < ol Q229 [F} <colQ[Y22° [—4} (30)
me hO
With /1, = Ming, yyeq he(x, y) and co a positive constant independent of

Proof. We will temporarily drop the subscript We will resume it at the end of this
section. Fork € R we set

v—Fk; v>k,
ok =
{ 0; v<k
and
Br = {(x,y) € Q v(x,y)>k}. (31)

Notice that ifv € H thenVk >0, vf € H. Setting¢$ = v + v, in (20) and using once
again the Cauchy—Schwartz inequality and Young inequality and proceeding as we did
in the proof of (24) we get that

2 dxd
// h3‘Vv(k)’ dxdyé)»zv// tay (32)
By By h
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Using thath > h,, = ming h(x, y), we get that

3l )2
// h ‘w“( dxdy<Z—|By, (33)
By hm

where | By | is the measure of the sé&;. We get from 83) that

/],

Using embedding theorems we see that there exists a constan® which depends
only on Q such that:

vU“)] drdy < 1Bl (34)

2 2
// Vv(k)‘ dxdy = // ‘Vv(k)‘ dxdy
By Q
3 2/3
> C(// ‘v(k)‘ dxdy)
Q
3 2/3
_ c(// v(k)‘ dxdy) . (35)
By
Hence
3 2/3 12 }2
(k) -
v dde> S o3| Brl < — 7 | Bkl (36)
(//Bk ‘ Chmh?, Ch%,

Let [ > k. Then we have that

3
// v(k)‘ dxdy}//
By B

and by 86), VI>k > 0 we have that

3
o] dxdy>/ (—3dxdy>(— 3Bl (37)
B

2
(1 — k)2 BP< Ch4|Bk| (38)

Settinga(s) = |By;| we then have that

a(l)<co

1
(I —k3

32
22
(6(k))%/? WhereEo=<CW) ) (39)
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By a Lemma of Stampacchia (s¢26, p. 93]) we then have
o(s) =0 Vs> D = ¢o|QY22°. (40)

Restating in terms of our earlier notation, we see that
2 3/2 2 3/2

supv; <D, whereD,=(—) |QY2°< () Y%2°. O @1

Q Chy, Chy

It easily follows from what we have done that the limitof the sequence; is in
L*°; but, in fact,v satisfies a better estimate ir°(Q). We will show next that in fact
v is bounded byA. For this purpose we will start by establishing that the sequence
of “pressures” associated with the reduced pressuyderms a sequence bounded in
L1(Q). This L' estimate of the pressure is of independent interest and of physical
significance. Indeed thé&! norm of the pressure represents the load.

Proposition 4. There exists a constant C independent cfuch that

// Ve (Ve)dx < C .
Q

Proof. From the definitions ofD, and 4,,., we have

hma2// Ve(ue(s, 1)) ds dt
Q

/12 1/4
-1/6 -1/6

wherec; is a constant which does not depend &n
Now from (30), we get

~1/6 _16. 1
el oy > Ds 20—1//93)8(1)8(;9,t))dsdt. (42)

Let us assume now thaft/, 7,(v;) ds dr tends to infinity ass tends to zero. Then by

(42) |vg| L= (@) would tend to zero. Thus, astends to zero|v,|r=(q) g% <A—¢g, S0

the monoticity ofy and the definition ofy, imply that

f/ ys(vg(s,t))dsdt:// y(vg(s,t))dsdtgf/‘ y(é> ds dt < +o00,
Q o) o \2
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which contradicts the assumption thaf, y.(v;) ds dr tends to infinity and finishes the
proof. [J

We will need the following technical result.

Lemma 5. Let E C R? be the ball centered at the origin of finite radiug > 0.
Assume that, >0 is a sequence of radial functions converging stronglyLif(E)
toward a radial functionz >0. We will assume that the sequengg converges almost
everywhere in E to uAssume also that for n fixed and for alj and r» such that
0<r1<r2< R we have thatu,(r1) >u,(r2). Let T be a positive number

SetQ; = {(x,y) € E: u(x,y)>A + 1}. Assume thatQ,; has a non-zero mea-
sure. SetQ] = {(x,y) € E : ux(x,y)>A}. Then there existsip > 0 such that
Va=no, |Q|>3|Q:l.

Proof. Since the functionu is also radially decreasing it follows th#&, is a ball

centered at the origin of radius > 0. Further, there exists* € (r;/+/2,r;) such

that u, (r*) converges tou(r*). Since u is decreasing and*<r; it follows that

u(r*y>u(r;)>A + v > A. It then follows from the convergence af,(+*) that there

existsng such that for alln >ng u,(r*)>A. Sinceu, is radially decreasing it then
follows that |Q7| contains the ball centered at the origin of raditis Using the fact
that r* >r./+/2 it follows that |Q?| > 3r2n > 3|Q;|. This proves the Lemma.O]

Lemma 6. Let E = (=M, +M) x (—M,+M) C R? and letv, be a sequence of
functions of L2(E) which converges almost everywhereuolf

Q. ={(x,y) € E, v(x,y)>A+1},
Q’; ={(x,y) € E, vy(x,y)=A}

. 1
and |Q;| # 0 then there existag > 0 such thatvn >ng, |Q]] >§|QT|.

Proof. First we extendv, and v by zero to all of the ball centered at the origin of
radiusM. Now we will take the Schwarz decreasing rearrangement of these functions
and call themu,, and u respectively. It is well known (see Kawholl i[9, p. 23], for
example) that:, will converge strongly inL2(B(0, M)) to the functionu. O

Now we can take a subsequenceuf which converges tar almost everywhere in
the ball. We then have all the conditions of the lemma above. By definition of the
rearrangement we have that the measure of the set on whiglyreater than or equal
to A + 7 is the same as the measure of the set on which greater than or equal to
A + 7. Similarly the measure of the set on whief is greater than or equal tA is
the same as the measure of the set whegrés greater than or equal t&. Hence, the
results of Lemma 1 apply also to sets whereand v, are greater thamt + t and A
respectively.
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Theorem 7. The limitv of the sequence; satisfies||v| ;= gq) <A.

Proof. We will once again proceed by contradiction. Let us assume that there is a
positive numberr such thatQ; = {(x,y) € Q : v(x,y)>A + t} has a non-zero
measure.

Applying Lemma 6) to a sequence, which converges almost everywhere dpit
follows that there existgp such that ife < g, thenv.(x, y)>A on a setQf with

1
1Q¢| >§|QT|. This would induce from the definition of, that if e<eg, theny,(v,) =
7(A — &) on Q. Hence,

1
// 7 dxdy > S|Qelp(A —¢). U
Q 2

This last term goes to infinity as goes to zero and this contradicts our
Proposition 4).

Proposition 8. The limitv of the sequence, satisfiesy(v) € L1(Q) and [foyw)dxdy
<I.

Proof. Let  be a positive number and introdue@(xy) = inf (v¢(x, y), A — 7). Since

vs converges strongly ir.2 to v, it can easily be verified that; converges strongly
in L2 to the functionv® given by v*(x, y) = inf(v(x, y), A — 7). Now, for 7 fixed,

v; <vgVe. Thereforey,(vy) <y.(ve)¥e and from Propositiord,

// 7. (V) dx dy < // 7. (ve) dx dy<c, (43)

for some constant. Since v <A — 7 it follows that for ¢ small enoughy,(v}) =
7(vD) <y(A — 1) <c. From this and the fact that’ converges ta® in L? we deduce
that y,(v}) converges toy(v®) in L1(Q). O

From this and the above inequality it follows thAf y(v®) dx dy<c, Vr. Next we
will let t go to zero. The sequencgv®) — y(v) ast goes to zero. It then follows
from the monotone convergence theorem tﬁgg y(w)ydxdy<c.

4. Existence result for the reduced problem

To prove thatv is a solution of the reduced problem, we need supplementary con-
vergence results foh,. To get them, we will consider additional restrictions on the
behavior of the piezo-viscosity law fqr near infinity. Specifically, we will assume that
there exists a positive numbex: such that

up)=p+0Ff p=1, 0>0 for p>px, (44)

whereQ and f§ are constants.
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An easy calculation shows that in this case we have that

© 1 71 P+ )P
A= —as=[ —das+-2L % 45
fo ™ /o T R = (49)

Also, for s >a1 = [ s,

2(s) = (B — D(A — ) TT — Q. (46)

Remark 9. In fact, what follows remains valid if we simply require tha(p) =~
(p+ 0)F (in the sense that ig(p) — (p + 0)# = o(p)), when p ~ +oc. In particular,
we can allowyu to follow either Barus formula or Roelands formula for finite values
of p and simply require asymptotic behavior of the precedent type.

The aim here is to show that there exists a constaimdependent ok such that
there existss > 1 with

[ [ uwarar<e. (47)
so that in turn we get

172l ws @) < ¢ (48)

The basic idea is to find, with ¢>0, such thatl|y,(v.)’|ly12q) <c, which implies
that ||y, (v,)? L) <c for any r > 1. The required convergence will be obtained for
any s = or. The proof will be a two-step procedure. First, we introduce the function

0z(ve) = (0O + "/g(Us))aw(Us),

with  a cut-off function defined in Lemmall) anda a parameter chosen such that

Vg - /9 (ve)ll 12y IS bounded.

Secondly,s is chosen such tha¥v, - \/J,(v,) behaves likeV(y,(vs))? when v, is
nearA.

Remark 10. Recall thaty,(v.) is uniformly bounded forv, away fromA. The main

purpose of what follows is to show thadq) holds forv; nearA.

Lemma 11. Let ap = A — a1 and Y (s) be a function inC2(R) with y(r) =0 if r <
2

a1+ Z Y = 1if 1> a1+ =2, /020, Then fore > 0, 8; = (Q +7,(v0)(vy)

lies in Wol’z(Q), for all «>0.
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Proof. This is obvious, since,(v.) is bounded and)>0. The introduction ofys is
necessary to ensure thét vanishes on the boundary[]

Lemma 12. The following inequality is valid

// thvalzég(vg)dxdyéc// 5’8(v3)dxdy,
Q Q

where c is a positive constant independent.of

Proof. Using ¢ = v, + J, as test function in (44), we obtain

// h§|Vv£|25;(vg)dxdy<Z// he
Q Q

As 6,>0, >0, ¢/ >0 andd, >0 the inequality above can be rewritten in the form

Ovg

o J,(ve) dx dy.

V0 (ve)
/ 32 [o dv &\Ve
//Qh§|v1)g|258(u8)dxdy</1//9 [h/ NEAON! a_; ] T dx dy

Applying the Cauchy—Schwartz inequality, we obtain the resuli.

Lemma 13. Assume thaty can be chosen such that

A—ay
2

V() <c*Y(s) Vs >ay+ (49)

and that2 — o — f>0. Then there exist positive numbers C and iNdependent ot,
such that

G,() <M + C(Q +7,()Y(s) Vs. (50)

First, assumption49) would easily be satisfied by any which is C! and satisfies
the conditions of Lemma (11).
Set

(= DA —v)YIDP if a3<v, <A -,
B:(vy) = O + Vs(vs) = 1

W if v,>A—¢
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so that forv,>ay, 9,(v:) = aBZ 1(v,) BL(v)Y(ve) + B*(v-){ (v;). We will consider
the various possibilities (assumirsgsmall with respect tai/3).

o Forv(s)<a1+ %, then 5/(v8) = 0 the required inequality holds.
e Foraj + “2 <vg(s)<ar + 25, then due to the definition oB,(v;), we have that

Bl(v) = Bg (ve) and therefore

Sh(vy) = o BE (v - Bl(ve) - Y(vs) + ¥/ (ve) BX(vy)
< B wo) + B2 wo) | wwo).

As B;(v;) is bounded uniformly with respect tothe proof is finished.
e Foray + 2%2 <ve(s) <A, then

o—1+p
WB—-DA—v) T if v, <A—e
0 if v,>A—c¢

5;(1}8) =

and

(B = DA —v)YEP if v, <A e,
(Q+ Vg(vs))‘//(vs) = 1

_ if v,>A—e
(&(f— 1) 7D

Thus, as soon as — 1+ <1, the desired inequality is obtained.
Let us now prove

Proposition 14. With the assumptions of Lemmgisl) and (13),
//Q|Vv£|25;dx dy<c (independently of).

Proof. From Lemma 12) and (13), we have

/‘/QIVvslzé/dedy < c//g;cs;dxdy

<e / fg [M + c(Q + 7,(ve) (vs)] dx dy.

Applying Proposition (4) and the assumptions for we get the result. [J
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Proposition 15. With the assumptions of Lemnfal) and (13) for v, if 1 < f§ < g
andr > 1, theny,(v,) is bounded inL" () independently o.

Proof. Setg.(v:) = (y,(v:)?W(ve). Then
[ [vet dxdy = [ [ @i G290 y2dxay
+20 [ /Q Qa3 V02 W dxdy
+ f fQ a2 - W2 - 190, 2 dx dy.

Let us split each of these integrals into three parts. In the first pait, y) <a1 +
A — . .
2 al, so that all terms involved are bounded independently.ofn the second

part, ve(x, y) > A — ¢. In this caseyy = 1 andy,(v.) is constant, s&Vg, = 0. In the
A—ap

last one, we havej + 2

<wvg(x, y) <A — ¢ Recalling that in this rangé = 1
andy’ = 0 we then get

[ [vaiavay<es o [ [ 500200 62 90 dx dy, (51)

where Q* is given by

A—ar

Q*:{Qﬂ{a1~|—2 gvg(x,y)éA—SH. (52)

A—ay A—ay

Recalling now that for small, a;+2 < A—¢, we then get forw, >a1+2 3

0s(ve) = (Q + Vg(vs))x

and
Ve(ve) = 5:;(1);;)1/“ —0.

Hence,

—0

1 .
Ve(ve) = =3, ~5;(v8>=&(Qﬂgvg))l‘“-og(vg).

R |
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Moreover, from the definition of, = y in (44), (45) and (46) we get
1
7:(Ve) = y(ve) = ((f — l)(Aﬂ— ve)) P — 0,
76 e) = (B — D(A = v:)) =F = (7,(v) + Q)P

With a view toward applying Propositiori4), then (51) is rewritten as

/f Vgol? dx dy
Q

2
<c+ % f /Q 2?0V 0,0 + 0 (5,we) + )17 (W) [V dx dy

0? /
<et — / /Q [7,(ve) + QPO 5 (0,) |V, |2 dx dy.

1—
Choosing howd = u > 0, we find that 20 — 1) + f+ 1 — « = 0. This allows

us to use Proposition (14) and then deduce fizall y12q) is bounded uniformly with
respect toe. This in turn implies that(y,(v;)) is bounded inL"(Q) for any r > 1.

Let us remark that the choick < > is the best one to ensure eachoof-1— >0,
2—o—f>20andf>1 0O

Theorem 16. The limitv of the sequence; is a solution of the reduced probleriind
v € H such that

//(h3Vv -V(p—v)+ )bg—h(qs —v))dxdy>0 V¢ € H and where (53)
X

h(x,y)=f+d (54)
where
f=hot X 2 : (55)
and
d= // y(u(x — s,y — t)); ds dt (56)
N

with y defined by(44) and 1 < f§ < 3/2.
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Proof. Since the Fourier transform of the kerngl(s,r) = ﬁ

function % (see[25] or [27]) it follows from the properties of the product of
>1 52
convolution that ify,(v,) is in L"(€2) then

is given by the

. 1
he(veg) =0 + // Ye(e(x — s,y —t) ——=ds dt
Q

52412

is in W17 (Q). Furthermore, since,(v;) is uniformly bounded inL” it follows that
he(ve) is uniformly bounded inW1"(Q).

It is easy to see then that(v;) converges in the Holder spac®*(Q) (see Adams
[1] or NeCas [22], for example) towards(v) for any o > 0.

So we can pass to the limit in all terms of (44) with the exception of the quadratic

one,
// hg’va -Vugdxdy.
Q

This last term is rewritten as
// (h? — h3(v))Vv8 -Vuedxdy + // hs(v)va -Vugdxdy,
Q Q

in which the first integral tends to zero, sinfev,| is bounded inL2, and the second
one satisfies the inf-limit property

// h3(W)Vv - Vodx dy < liminf // 3 () Vu, - Vo, dx dy,
Q Q
which allows us to conclude the proof[]
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