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This paper is concerned with single server queueing systems with renewal service process and Poisson 

arrivals modulated by a finite-state Markov chain. Exponential martingales are associated with a chain 
embedded at service completion epochs in the stochastic process describing the joint evolution of the 

number of customers in the queue and the state of the environment. The analysis of these martingales 

leads to a new and unified treatment of various known results concerning the stability condition and 

the steady state statistics, as well as to several new properties. Noteworthy among them are a conservation 

law that relates the duration of the busy period to the state of the environment at the end of the busy 

period, and some absolute continuity properties with respect to other queues of the same type. 

1. Introduction 

The queues in random environment which have been considered in the literature 

have fallen into two basic categories, depending on whether the environment 

modulates the input stream or the server’s speed. The present paper focuses on 

single server queueing systems where successive services are i.i.d. and independent 

of the arrivals which occur according to a Poisson process modulated by a finite-state 

Markov chain. Systems with Markov modulated input processes have been analyzed 

under various assumptions with a wide range of mathematical methods, e.g., [6, 9, 

10, 121. The aim of the present paper is to show that, as was the case for the M/GI/ 1 

queue treated by the authors in [l, 21, martingales again provide a unified tool for 

analyzing the dynamic, transient and stationary behaviors of these systems. 

This is done by introducing several exponential martingales which are associated 

with a chain embedded at service completion epochs in the stochastic process 
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describing the joint evolution of the number of customers in the queue and the state 

of the environment. The analysis of these martingales leads to a direct derivation 

of the stability condition for this class of M/GI/l queues in random environment, 

and to various new conservation laws that relate the duration of the busy period to 

the state of the environment at the end of the busy period. These relations take the 

form of a system of linear relations satisfied by the joint distributions of these 

random variables, and can be combined with results from the theory of Markov- 

renewal processes in order to obtain the transient and stationary distributions. 

The question of widening the range of validity of some of the conservation laws 

mentioned earlier, is investigated. To do so, it is necessary to consider the absolute 

continuity properties of certain queues in random environment with respect to 

others. This arises naturally in the context of these martingale arguments, once it 

is recalled that a positive martingale can always be interpreted as a sequence of 

Radon-Nykodym derivatives (with respect to an underlying filtration). 

As is well known, the computation of the distributions encountered in such 

M/GI/ 1 queues in random environment leads unavoidably to complex analytical or 

algebraic manipulations. These questions are here approached within the martingale 

framework developed earlier. The discussion is only outlined, as the aim of the 

paper is more to establish a computational framework than to compute the distribu- 

tions explicitly. This again illustrates the usefulness of martingale methods. 

The paper is organized as follows: The model is described in detail in Section 2, 

together with the notation and assumptions used throughout the paper. A first set 

of martingales of interest is introduced in Section 3 and their use for studying system 

stability is demonstrated in Section 4, where results on the first passage time to the 

empty state and the conservation laws mentioned above are derived by direct 

probabilistic arguments. Section 5 is devoted to several analytical characterizations 

and to some computational issues. Several extensions of these results are then 

considered. The absolute continuity properties are treated in Section 6. More 

elaborate martingales are introduced in Section 7. Further conservation laws are 

derived yielding a new and unified approach for computing the stationary and 

transient statistics of the system. 

2. The model - notation and assumptions 

The collection of all integers (resp. non-negative integers) is denoted by Z (resp. 

N), and let Iw (resp. [w,) denote the set of all real (resp. non-negative real) numbers. 

The set of all complex numbers is denoted by C. For any positive integer L, let 

(w IxL (resp. IwLx*) denote the space of L-dimensional row (resp. column) vectors 

with real entries, with a similar interpretation for the notation lF8y” and DX$“‘. The 

LX L identity matrix is denoted by IL. 

The random variables (r.v.‘s) and stochastic elements considered in this paper 

are all defined on some fixed underlying probability triple (0, 9, P). Throughout, 
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the characteristic function of any event A in 3 is denoted by I[A]. All continuous- 

time processes have R, as time parameter set, and are assumed right-continuous 

with left limits. 

2.1. The basic processes 

The environment process is modeled as an irreducible Markov process { Y(t), t 2 0) 

taking values in a finite state space 3? which is represented for convenience by 

11,. . ., L} for some positive integer L. This process is characterized by the LX L 

stochastic matrix P := (P( i, j), 1 G i, j < L) of one-step transition probabilities for 

the embedded chain and by the row vector /.L = (p(i), 1 c i =Z L) of rates out of the 

states {l,..., L}. 

The arrival pattern is Poissonian with intensity modulated by the environment in 

that A(i) is the intensity of arrivals when the environment is in state i, 1 s is L. 

Formally [4], the arrival process {A(t), t 2 0) is a counting process with A(0) = 0 

such that the process {a(t), t 3 0} defined by 

f 
a(t)==A(t)- 

i 
A(Y(s-)) ds, ta0, (2.1) 

0 

is an 9r-martingale where %, = V{ Y(s), A(s), 0~ s 4 t}. 

The consecutive service times form a sequence of i.i.d. R+-valued r.v.‘s {S,,, n = 

1,2, _ . . ) which is assumed independent of the environment process {Y(t), t > 0) 

and of the arrival process {A(t), t a 0). Throughout, the common probability distribu- 

tion of the service times and its Laplace-Stieltjes transform are denoted by S and 

by S*, respectively. 

Finally, the initial queue size is modeled as an N-valued r.v. E which is independent 

of all other basic processes previously introduced. 

2.2. The embedded queueing process 

At time t = 0, a dummy customer is assumed to complete service and by leaving the 

system, it generates the 0th departure. For n = 0, 1, . . . , let X0, and Y”, respectively 

denote the number of customers in the system and the state of the environment as 

seen by the nth departing customer. For n = 1,2,. . . , let Y”, represent the state of 

the environment at the beginning of the nth service period, while A”, denotes the 

number of arrivals during the nth service period. With these definitions, the queue 

size sequence {X0,, n = 0, 1, . . . } satisfies the recursion 

x+1 = XT, + A”,+, -I[Xo,#O], n=O,l,..,, 

x;=s, (2.2) 

and the relations 

-0 Y n+l= Y”, if XO,#O, n=O,l,..., (2.3) 

hold true. Under the enforced assumptions, the N x 9-valued process{(X”, , Y”,), 

n=O,l,... } is an irreducible Markov chain with a countable state space. 
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2.3. The free process 

The process {X0,, n = 0, 1, . . . } describes the actual evolution of the number of 

customers in the queue just after departure epochs, and can be viewed as the reflected 

version of a free ‘random walk’ on Z with semi-Markov increments. 

In order to define this free process, introduce the r.v.‘s {T,, n = 0, 1, . . . } naturally 

associated with {S,,, n = 1,2, . . . } by setting To = 0 and 

T n+l=T,+S,,+l, n=O,l,..., 

and define 

(2.4) 

A .+,=A(T,+,)-A(T,), n=O,L..., (2.5) 

so that A,,, represents the number of arrivals in the interval (T,,, T,,,,]. 

The free process is described through the sequence of Z x Zvalued r.v.‘s {(X,,, Y,,), 

n = 0, 1, . . _ }, where 

Y,= Y(T,,), n=O,l,..., (2.6) 

and the Z-valued sequence {X,,, n = 0, 1, . . . } satisfies the recursion 

X n+, =X,,+A,+,-1, n=O, l,.. ., 
(2.7) 

x,==>o. 

Under the enforced assumptions, the Z x T-valued process {(X,, Y,,), n = 0, 1, . . . } 

is an irreducible Markov chain with a countable state space. 

The reflected and free processes are related to each other in the following sense: 

Let TO denote the first passage time to the empty state for the queue size sequence 

{X0,, n=O,l,... } embedded at service completion epochs, i.e., 

F:=inf{nZ=O: X:=0} (2.8) 

with the usual convention r”= co if the defining set in (2.8) is empty. Note that 

T’ = 0 if and only if E = 0. 

The r.v.‘s {A”,,,, n =O, 1,. . . } and {A,+l, n =O, 1,. . .} are not equal in general. 

Indeed, if the queueing system becomes empty for the first time as a result of 

the nth service completion, i.e., TO= n, then for all k = 1,2, . . . , the interval 

( T,,+k_, , Tntk] does not coincide anymore with the (n + k)th service period, and 

therefore An+k # A”,+k. On the other hand, it is plain from the definitions given 

above that 

x,=x0,, Y,,=Y”, and A,=A”, on [E#O,n~F], n=O,l,.... 

(2.9) 

In short, the processes {(X0,, Y”,), n = 0, 1,. . . } and {(X,, Y,), n = 0, 1, . . . } coincide 

up to time P. 
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2.4. The probabilistic building blocks 

To fully characterize the probabilistic properties of the M/GI/ 1 queue in a random 

environment, it is convenient to introduce several additional quantities: The Lx L 

substochastic matrices T’, 0 G z c 1, have entries given by 

T’(i,j):=E[I[Y,=j]~~~(Y~=i]=~~~T~(i,j)z”, 1 S i, jC L, (2.10) 

where for all k in N, the coefficient Tk(i, j) of zk in (2.10) has the interpretation 

Tk(i,j):=PIY,=j,A1=kIYo=i], lsi,j~L. (2.11) 

The radius of convergence of the matrix-valued mapping z+ T’ is the scalar z* 

defined by 

z* := , mmL sup{z 20: E[Z[ Y, =j]zAr/ Y,= i]<co}. (2.12) 
S, -= 

The relation 1 c z* is obvious. It follows from classical results on power series that 

the matrix-valued mapping z+ T’ can be continued to complex values of the 

argument z provided IzI <z*. 

Let v denote the first arrival time (or jump time) of the modulated Poisson process 

{A(t), t 2 0) after time t = 0, and let Q be the LX L stochastic matrix with entries 

given by 

Q(i,j):=P[Y(v)=jlY(O)=i], l=Gi,jSL. (2.11) 

The next proposition summarizes the statistical properties of the sequences 

{(A,+, , Y,), n =O, 1,. . . } and {(A”,,,, Y”,), n = 0, 1,. . . }. For all n = 0, 1,. . . , let .9,, 

and %?, denote the a-fields of events generated by the r.v.‘s {E, Y,, (Akr Yk), 

lsksn} and {E, YO, (AZ, YE), 16 k G n}, respectively. It is plain that the r.v.‘s 

{X,, k=O,l,..., n} (resp. {X0,, k = 0, 1, . . . , n}) are all .9,, (resp. S”“,)-measurable. 

Proposition 2.1. Under the foregoing assumptions, the relations 

P[A,+, = k, Y,,, =j]FH]= T,(Y,,,j), n=O, l,..., (2.13) 

and 

P[AO,+, = k, Y”,+l = jl Sz] 

=~~~~~~lT,~~~,j)+~~~o,=~l i Q(Y”,,l)Tk(l,j), n=O,l,..., 
I=1 

(2.14) 

hold true for all (k, j) in N x 2. 

Proof. The relation (2.13) is immediate in view of the enforced assumptions. To 

prove (2.14), recall (2.3) and observe that simple calculations and the strong Markov 
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property readily show that for all (k, j) in N x 2, 

Z?A”,+, = k, Y”,+, =j 1 KJ 

=P[AO,+,= k, Y”,+,=jIS~]Z[X~#O] 

+P[AO,+*= k, Y”,,, =j(Sz]Z[X”,=O] 

=Z[X”,fO]T,(Y”,,j) 

+ZIX~=O]EIPIAO,+l= k, YE+, =j(c{p,+,}v 9$]l~Fp^on] 

=Z[XO, #O]T,(Y”,,j)+Z[X”,=O]E[P[A”,+,= k, Y”,,, =jl p,+,]( Yz] 

=Z[X~#O]T,(Y”,,j)+Z[X”,=O]E[T,(Y”,+,,j)IY”,], n=O,l,..., 

(2.15) 

The result (2.14) now follows from (2.15) by making use of (2.11) together with the 

strong Markov property. Cl 

Let z be a complex number such that O< ]z( < z*. Upon multiplying both sides 

of (2.14) by zk and summing up the resulting equations over k in N, it readily 

follows that 

=Z[X~#O]T'(Y",,j)+Z[X",=O] i Q(YO,,Z)T'(Z,j) 
I=1 

=Z[X~#O]T’(Y”,,j)+Z[X”,=O](QT’)(Y”,,j), n=O,l,..., (2.16) 

for all 1 s jc L. The integrability of the r.v. I[ Y”,,, = j]z”I+l follows from the 

definition of z*, and implies the convergence of the sums 1, Tk( Y”, , j)zk and 

ck Tk(zpj)Zk. 

The form of the matrices T’, 0 < (z[ < z*, and Q is only needed at the end of the 

paper. Analytical expressions for these matrices are derived in Section 5 for later 

use. In due course, it will be established that Q is always invertible whereas T’ is 

‘almost always’ invertible, the necessary and sufficient condition for invertibility 

being given in Lemma 5.1 of Section 5. 

3. The martingales associated with the free process 

In this section, several sequences are shown to be %“-martingales; their usefulness 

is illustrated in the remainder of the paper. 

For 0 < z < z*, the R’“L-valued r.v.‘s {B”, , n = 0, 1, . . . } are defined componentwise 

by 

B:(i) := Z[ Y, = i]zxm, l<isL 2 n=O l,... , 9 (3.1) 

The r.v. Bz is 9,,-measurable. 

The basic result of this section is now presented in the next proposition. 
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Proposition 3.1. Fix z in @ with 0 < [z/ < z*. Under the foregoing assumptions, if the 

r.v. .zp is integrable, then the r.v.‘s {B’, , n = 0, 1, . . . } are all integrable and satisfy the 

relation 

E[B’,+,19J=-f-B;,T’, n=O,l,... . (3.2) 
Z 

Proof. The integrability property is established by induction on n. It clearly holds 

for n = 0 by assumption. Assume it holds for some n 2 0 and fix 1 ~j s L. It follows 

from the dynamics (2.2) and the definition (3.1) that 

E[/B:+,(j)/] = E[I[ Y,,,, =~]/z/~,~+~~~+I-‘] 

= lz$’ i E[I[ Y,, = i]l[ Y,,, =j]l~l~~~+~~+I] 
i=, 

= lzl-’ 2 E[Bk’( i)E[Z[ Y,,, = j]lzlA~+ll Sn]] (3.3) 
,=, 

= jzl-’ i E[ Bb’( i)] T”‘( i,j). (3.4) 

The passage to (3.3) is validated by the fact that the r.v.‘s X, and Y, are both 

Sn-measurable, and (3.4) follows from (2.13). By the induction hypothesis, since 

IB~I = Bk’, it is now plain from (3.4) that the r.v. B:+,(j) is integrable, and this 

completes the induction step. 

The arguments leading to (3.4) also show that 

E[Bi+,(j)lS,,] = E[I[ Y,,,, =~]z~*~+~~+I-‘)%,,] 

=z X~~-‘E[z[ Y,,, =j]ZApl+I I Sn] 

=z”fl-‘T’(Y,,j), n=O,l,..., (3.5) 

and the conclusion (3.2) is now immediate. 0 

3.1. The invertible case 

The search for an exponential martingale is first carried out under the simplifying 

assumption that the matrix T” is invertible for all z in @, 0 < IzI < z*. In this case, 

let the SW-adapted sequence of LX L matrices {nz, n = 0, 1, . _ . } be defined by the 

relation 

II~:=z”(T’)-“, n=O,l,.__. (3.6) 

The next proposition identifies the martingale structure of a first sequence of r.v.‘s 

in very much the same way as in the standard M/GI/l situation treated by the 

authors in [l]. 
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Theorem 3.2. Fix z in C with 0 < [zI < z* and assume the r.v. zE to be integrable. If 

T’ is invertible, then the RIXL-valued r.v.‘s {I?:, n = 0, 1,. . . } given by 

A?::= BiIIZ,, n=O,l,..., (3.7) 

form an integrable 9,,-martingale sequence. 

Proof. The integrability property follows immediately from the integrability of the 

r.v.‘s {Bi, n =O, 1,. . . } established in Proposition 3.1. 

Since n’,,, = z( T’)-‘I7Z,, relation (3.2) of Proposition 3.1 readily implies that 

E[Gii’,+, 1 St,1 = ELK+, 1 snlX+~ 

=: B:,T’II’,+, = n;iz,, n=O,l,... . 0 (3.8) 
Z 

The results obtained so far are not satisfactory on at least two accounts. Indeed, 

the definition (3.6)-(3.7) depends in an essential way on the invertibility assumption 

made on the matrix T’, and this very fact precludes the use of the martingale (3.7) 

for handling the general case. Moreover, as far as stability properties are concerned, 

the M/GI/l queue in random environment is expected to behave as a one- 

dimensional system. It thus seems awkward, even when the matrix T’ is invertible, 

that the stability behaviour should be studied through a higher-dimensional object. 

These remarks suggest that additional efforts be made to define a one-dimensional 

martingale under no assumption on the matrix T’, that is structurally rich enough 

to provide information on system stability. 

3.2. The general case 

The invertibility assumption on the matrix T’ is now dropped. For every 0 < z < z*, 

the matrix T’ has positive coefficients and by virtue of the Perron-Frobenius Theorem 

[8], its eigenvalue of maximal norm - denoted by h’ - is real and strictly positive. 

The corresponding left and right eigenvectors are the elements I+V and 4’ in lRlxL 

and RLxl, respectively, which satisfy the equations 

$‘Tz = A’+’ and T.4’ = A’$‘. (3.9) 

The components of the eigenvectors I,V and 4’ are all strictly positive. There is no 

loss of generality in assuming these vectors to be normalized in the sense that 

i 4’(i)= 1 and i G’(i)= 1. 
i=l i=l 

(3.10) 

A careful examination of (3.2) suggests a natural way to define a one-dimensional 

martingale in the general case. Postmultiplication of (3.2) by the column vector 4’ 
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and use of the eigenvector property (3.9) lead to the conclusion that 

+ B”,f,’ +zx~~~‘(v,), n=O,l,... . (3.11) 

On the other hand, it is plain that 

B’,+,c#J’ = zxn+14’( Y,,,,), n = 0, 1,. . . , (3.12) 

and (3.11) can be rewritten as 

E[zXn+l ~~cv,,,,l~~l=~z~~~~~Y,), n=O,l,... . (3.13) 

This last relation suggests introducing the Sti-adapted R-valued r.v.‘s {M’, , n = 

O,l,. . . } given by 

M’, = zX$‘( Y,)[z/A”]“, n = 1,2,. . . ) (3.14) 

with 

M; = z”@‘( Y,,). (3.15) 

That the r.v.‘s {MZ,, n =O, 1,. . _} are well defined is an easy consequence of the 

strict positivity properties of the eigenvalue A” stated earlier. 

The next result parallels Theorem 3.2. 

Theorem 3.3. Fix z in R with 0 < z < z*. Zf the r.v. zE is integrable, then the R-valued 

r.v.‘s {M’, , n = 0, 1, . . . } form a positive integrable 9,,-martingale. 

Proof. Equations (3.13) and (3.14) give 

E[M;+, 1 S,,] = E[4’( Y,+,)zX.+lI 9n][~/h]n+’ 

= A( Yn)zXn[z/~l” 
=M:, n =O, 1,. . . , 

and the martingale property is thus established. 0 

(3.16) 

This construction can be extended to complex values of the parameter z satisfying 

the constraint 0 < ]z] < z* and to all eigenpairs of the matrix T’ with a nonzero 

eigenvalue. Indeed, for 1 s is L and 0 < Iz] < z*. With Af # 0, let Af , 4: and $Clf 

respectively denote the ith eigenvalue, right and left eigenvectors of T’. With A z # 0, 

define the 5Fn-adapted complex-valued r.v.‘s {M>‘, n = 0, 1, . .} by the relations 

Mi’= z”$Z( Y,)[z/Af]“, n = 1,2,. . . , (3.17) 

with 

M;;‘= z”Q$;( YJ. (3.18) 

The next result is an immediate extension of Theorem 3.3, and is established by the 

same arguments which are omitted for the sake of brevity. 
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Theorem 3.4. Fizzin @ with O<IzI<z* andhf#Ofor 1~isL. 1fther.v. z”is 

integrable, then the C-valued r.v.‘s {M i’, n = 0, 1, . . . } form an integrable 9,,- 

martingale. 

Proof. The integrability property follows from Proposition 3.1 while the martingale 

property is established as in Theorem 3.3. 0 

4. Stability results 

Known stability results for the M/GI/l queue in random environment are now 

derived by means of the martingale introduced in Section 3. Although these stability 

conditions are already available in the literature, this new derivation is nevertheless 

of interest on several accounts. Indeed, the proposed martingale arguments com- 

pletely bypass the usual analysis of the invariant (or steady-state) distribution of 

the system state [lo, 121, and allow for the null and positive recurrent cases to be 

treated in a unified fashion. In addition, this new proof yields an interesting 

conservation law (given in (4.8) of Theorem 4.3) which relates the length of the 

busy period to the state of the environment at the end of the busy period. To the 

best of the author’s knowledge, this result appears to be new. 

The following properties of the eigenvalue mapping z + A’ are needed in the 

stability analysis. 

Lemma 4.1. The eigenvalue mapping z + A ’ is analytic on the interval (0, z*) and 

takes values in [w,; it is monotone non-decreasing and convex with 0 < A’ G 1 for all 

z in (0, 11. The eigenvector mappings z+ 4’ and z+ I+V are analytic on the interval 

(0, z*). 

Proof. The analyticity of z + A’ follows from the implicit function theorem. Indeed, 

z + A’ has no branch point on the real interval (0, z*) since by the Perron-Frobenius 

Theorem the root A * of the characteristic polynomial is isolated and of multiplicity 

one. In the same way, the right and left eigenvectors are seen to be analytic functions 

in this region when using their representation based on minors. As for increasingness 

and convexity, the Cayley’s representation of the largest eigenvalue of a matrix yields 

A’= 
vT=v’ vT=v* sup -= 

u#OcR’XL uuf 
sup - 

“#OER:XL uvt ’ 
(4.1) 

where t denotes transposition and where the second equality follows from the fact 

that the matrix T’ has positive entries. For each v # 0 in Ry”, the mapping 

z + vT’v’( vvt)-’ . IS obviously positive, monotone increasing and convex since each 

one of the coefficients of the matrix T’ has these three properties. A simple limiting 

argument based on (4.1) readily completes the proof. That O< A’ s 1 for all z in 

(0, l] follows from the fact that T’ is substochastic on that range [8]. 0 
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The next lemma provides additional information on the eigenvalue mapping 

z + A’. The matrix T’, as defined in (2.10) for z = 1, is a stochastic matrix which is 

irreducible under the enforced assumptions. Hence, A1 = 1 and if rr denotes the 

corresponding invariant measure, then n coincides with the left eigenvector +’ of 

the matrix T’. 

Lemma 4.2. With the notation given earlier, let p denote the constant dejined by 

p := i r(i)E[A, 1 YO= i]. (4.2) 
i=l 

(i) The relation 

holds true. 

(ii) IfpSl, then z<A’forall O<z<l. 

(iii) If p > 1, then there exists 5 in the interval (0, 1) such that h’ < zfor all C < z < 1. 

Proof. Let e denotes the vector in RLx’ with components all equal to 1. It follows 

from (3.13) that +‘T’e = A’$‘e, or equivalently that 

A’ = $“T’e, (4.4) 

upon using the assumption (3.10). 

Differentiation of both members of (4.4) for z in (0, z*) yields 

,iZ=~ZTZe+$Z?e, (4.5) 

where ‘.’ denotes differentiation with respect to the variable z. At z = l-, T’e = e 

since then T’ is a stochastic matrix, and $’ = 7r. Hence (Ir’T’e tends to $‘e = 0 as 

z goes to 1. With these identifications and with the observation that $‘i”e = p at 

z = ll, the relation (4.3) follows upon letting z go to 1 from below in (4.5). 

Parts (ii) and (iii) are now straightforward consequences of (4.3) and of Lemma 

4.1. 0 

The next result already demonstrates the power of the martingale properties 

discussed in the previous section. Let T denote the first passage time to the empty 

state for the sequence {X,,, n = 0, 1,. . . }, i.e., 

7 := inf{ n 2 0: X, = 0} (4.6) 

with the usual convention T = co if the defining set in (4.6) is empty. The first passage 

time T is obviously an Sn-stopping time, with 

X,,#O wheneverOcn<r (4.7a) 

and 

X,=0 on the event [~<KJ]. 

It is noteworthy that T = To. 

(4.7b) 
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Theorem 4.3. If p s 1, then the relation 

E[l[T<oo]~‘(Y,)[z/h’]‘~~~]=zX~~‘(Y,) 

holds for all 0 < z < 1. 

(4.8) 

Proof. Owing to Theorem 3.3. and to Doob’s Optional Sampling Theorem [ll], 

the sequence of r.v.‘s {M:,,, n = 0, 1, . . . } is a R-valued %,,-martingale, with 

M:,, = zx~~m 4’( Y,,,)[z/h’]‘*“, n = 0, 1, . . . . (4.9) 

The martingale property thus translates into the equalities 

E[zX7hm qb’( Y,,,)[z/A’]‘^“I So] = zxo+‘( YJ, n =O, 1,. . . , (4.10) 

valid for all 0 < z G 1. A simple decomposition argument leads, via (4.7a) and (4.7b), 

to a rewriting of (4.10) in the form 

E[l[n<~]zX~~‘(Y,)[z/h’]“)~~]+E[Z[~~n]~’(Y,)[z/A’]‘~~~] 

=zxyb’(YO), n=O,l,... . (4.11) 

Whenever O< z < 1, the bound 

O< zx$‘( Y,,)[z/A’]“G [z/A’]” max 4’(i), n=O,l 3 . . . 9 (4.12) 
lSl=sL 

is obtained since X,, 2 0 for 0 < n G 7. From Lemma 4.2, 0 < z/A’ < 1 and therefore 

lim E[I[n < T]z~$~( Y,,)[z/Az]” ) So] = 0. (4.13) 

by the Bounded Convergence Theorem for conditional expectations. On the other 

hand, the Monotone Convergence Theorem readily yields 

limE[~[~~n]~Z(Y,)[z/A”]‘~~~]=E[1[~<~]~Z(Y,)[z/AZ]‘~~~]. (4.14) 
n 

Now upon taking the limit in (4.10) as n goes to ~0, (4.8) readily follows from (4.12) 

and (4.13). 0 

That Theorem 4.3 is indeed a statement on system stability is more apparent from 

the following corollary. 

Corollary 4.4. If p G 1, then 

P[7<co1~0]=1 P-a.s. (4.15) 

Proof. It is plain that lim,,, A’ = 1 and lim,,, 4’ = e/L, and the Bounded Conver- 

gence Theorem now yields the result upon letting z go to 1 from below in (4.8). 0 

The condition for system instability is now discussed. 

Theorem 4.5. If p> 1, then 

lim X, = 00 P-a.s. 
n 

(4.16) 
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and 

P[ 7 <co 1 So] < 1 on the event [E # 0] P-a.s. (4.17) 

Proof. With the notation yz = AZ/z for all O< z < 1, the relation (3.13) takes the 

form 

E[zX~+l +‘(Y,+,)ISn]= yZzXn+Z(Y,), n=O, l,... . (4.18) 

As pointed out in Lemma 4.2, there exists 5 in the interval (0, 1) such that 0 < yz < 1 

whenever 5 < z < 1, in which case 

E[zX.+~ ~‘(Y,+l)I~~]~zx~~‘(Y,), n=O,l,... . (4.19) 

In other words, the r.v.‘s {zx$‘( Y,,), n = 0, 1,. . . } form a bounded positive S,,- 

submartingale and therefore converge both a.s. and in the mean [ 11, Theorem H-2-9, 

p. 261. However, upon iterating (4.18), it is plain that 

E[zX,~+~ +‘( Y,,+dl= ~Y’~“E[~“~~‘( %)I, n = 0, 1, . . . , (4.20) 

so that for all c<z<l, 

lim zx$‘( Y,) = 0 P-a.s. (4.21) 
n 

necessarily. Consequently, lim, zx,: =0 P-a.s. since the vector 4’ has all its com- 

ponents strictly positive, and the conclusion (4.16) follows immediately. 

The proof of (4.17) follows an argument ab absurdo. To set the stage, assume 

that for all x # 0 in N, 

P[7<co(E=x]= 1 P-a.s. (4.22) 

and define the event Y by 

Y=[E#O]n[limX,=W]n[7<CO]. (4.23) 
n 

Under (4.22) it follows from (4.16) that 

P[ Y] = P[E f 01. (4.24) 

Consider the S,,-stopping time u defined by 

u := inf{ n > 7: X, > 0) (4.25) 

with the convention (T = co if the defining set in (4.25) is empty. If it could be shown 

that CT<OO P-a.s. on the event [ E ZO], then the Markov property of the chain 

{(X,,, Y,,), n = 0, 1, . . . } would immediately imply the existence of an increasing 

family of S,,-stopping times {Q, k = 1,2, . . . } such that a.s. on [E # 01, q < 00 and 

X,, = 0 for all k = 1,2, _ _ . . As a result, 

lim inf X, =G likmXTk = 0 on the event [E # 0] P-a.s. (4.26) 
n 

in clear contradiction with the convergence result (4.16). Consequently, the premise 

(4.22) has to be dismissed and (4.17) holds true. 
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In order to show that (T < ~0 P-a.s. on the event [E # 01, fix a sample point o in 

[r< CO]. Owing to assumption (4.22), the process {X,, n = 0, 1, . . . } starting in 

position E(w) # 0 returns to the state 0 after a finite time T(W). Then the convergence 

(4.16) guarantees that eventually the process becomes positive again in finite time, 

in fact for the first time at time a(w). The desired conclusion now follows by 

combining these remarks and (4.24). 0 

The contents of Corollary 4.4 and Theorem 4.5 can be given the following more 

symmetric form. 

Corollary 4.6. Under the foregoing assumptions, 

P[~<coI@,]=l ifandonlyif pal. 0 

Theorem 4.5 also admits the following immediate corollary. 

Corollary 4.7. If p > 1, then 

lim X0, = co P-a.s. 
n 

(4.27) 

(4.28) 

Proof. It is plain from Theorem 4.5 that 

P limX,=c0,7=CO E#O >O. 
[ 

(4.29) 
n I 1 

Since the free and reflected processes coincide up to time r = T’ when g # 0, (4.29) 

can be rewritten as 

P limX”,=W,?=CO E#O >O 
[ I I n 

(4.30) 

and therefore lim, X”, = 00 with a positive probability. This and the fact that 

1(X:, K),n=O,l,. . .} is an irreducible Markov chain immediately imply lim, X0, = 

co P-a.s. Cl 

These results can be combined into a necessary and sufficient condition of stability, 

which is similar to those already available in the literature; the reader is referred 

to [lo, 121 for the Markovian case and to [3] for the case with general statistical 

assumptions. First define the average arrival rate h by 

L 

A= 1 5-(i)A(i) 
i=l 

(4.31) 

and set 

E[S] = tdS(t)=E[S,,], n=l,2 ,.... (4.32) 
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(4.33) 

Proof. Define the filtration {Rre,, t SO} on R by 

X,:=~{Sn,n=1,2 ,... }v%,, ts0. (4.34) 

Since the sequence of service times {S,, n = 1,2, . . .} is independent of the process 

{A(t), Y(t), t 3 0}, it is plain that T,(=S,) is an Rt-stopping time and that the 

process {a(t), t 20) defined in (2.1) is also an Xc-martingale. Consequently, with 

A, = A(S,), it is easy to see that 

[I 

s, 
E[A, 1 %,I = E 

0 

h(Y(t-))dt~~o]=E[j:‘I(Y(t))dt/7(,]. (4.35) 

The first equality results from combining the stated martingale property with the 

assumed independence between the T.v. S, and the environment process { Y(t), t 3 O}, 
while the second equality is a consequence of the fact that the sample paths of 

{Y(t), t 2 0) are piecewise constant. Finally, under the enforced independence 

assumptions, 

s, cc 
E 

[I 
A(Y(t)) dt R. = I II GS,> tlE[A( y(t)) 1 Y(O)1 dt (4.36) 

0 0 

since the r.v. S, is X0-measurable. 

As pointed out in Section 5, it is a simple matter to check that the probability 

vector 7~ (which is invariant for the probability transition matrix T’) is also invariant 

for the continuous-time process { Y(t), t > 0). Let P,, denote any probability measure 

on the underlying sample space (0, 9) that renders the process {Y(t), t 2 0) station- 

ary, so that for all t 2 0, 

PTIY(t)=jlY(0)=i]=r(j), lGi,jGL. (4.37) 

In view of these last remarks, it is plain from (4.2) and (4.35)-(4.37) that 

P = E,[A(S,)I 

= 
I‘ 

PAS,’ tlEJh( y(t))1 dt 
0 

cc 

= h 

I 

P,[S, > t] dt = i . E,[S,] 
0 

(4.38) 

and the conclusion (4.33) follows. 0 

As in the M/GI/l case, the martingale approach provides a direct answer to the 

question of positive recurrence. 
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Theorem 4.9. The condition p < 1 implies E [ r ) P,,] -C ~0 P-as. provided the mapping 

z + 4’ has a finite derivative at z = 1 (as would be the case for instance when z* > 1). 

Proof. Fix z in (0,l). Differentiating (4.8) with respect to z on the event [E > 0] 

readily leads to 

= xozX~-‘(b’( Yo) + z”Qj’( Yo). (4.39) 

Now let z go to 1 in this relation and use Lemma 4.2(ii). This yields 

L-‘(~-~)E[T~S~]=L~~X~+~~(Y~)- i &‘(i)PIY,=ilSo] 
i=l 

=L~‘Xo+~‘(Yo)-E[~l(Y,)~~o] (4.40) 

on the event [E > 0] since lim,,, A’ = 1 and lim,?, 4’ = e/L; this concludes the 

proof. 0 

The formulae obtained so far used the eigenpair associated with the eigenvalue 

of maximal norm. It is plain from the discussion given at the end of Section 3 that 

these results can be extended to other eigenpairs. With the notation introduced 

there, the following strengthening of Theorem 4.3 holds. 

Theorem 4.10. For all 1 < i G L, the relation 

E[Z[T<~+$~(Y,)[Z/~~]~~~~]=Z~~&(Y~) (4.41) 

holds for all z in C with 0 < ]zJ c 1 such that 

hf#O and Iz/~fl<l. (4.42) 

Proof. The proof is similar to the proof of Theorem 4.3. The arguments used for 

establishing (4.11) yield similarly 

E[Z[n < T]z”~~+~( Y,)[z/Af]” so]+ E[Z[rs n]4:( YT)[z/Af]‘)So] 

= z”qJf( Yo), n =o, 1,. . . . (4.43) 

The bound (4.12) is now replaced by 

O<l~l”~~l~i(Y~)lIz/Ail”~,~,~x~ I4T(_d n =O, 1,. . . , (4.44) 

and the remainder of the proof is exactly as in Theorem 4.3. 0 

Recall that TO= r. Moreover the construction of the processes {(X0,, Y”,), n = 

} and {(X,,, Y,,), n = 0, 1, . . .} implies that the stopped processes 

$_kiii, Y”,,,), n = 0, 1 . .} and {(X,,, , YT,,“), n = 0, 1, . . .} coincide. Consequently, 

all the statements of this section, with particular attention to (4.8), (4.17), (4.27) 

and (4.41), hold for both the free and the reflected processes. For instance, (4.41) 

also reads 

E[Z[~“<~~]~Z(YOTO)[Z/A~]~OI~~]=Z~~~~( YE). (4.45) 
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5. Analytical characterizations 

The first part of this section is devoted to the analytical characterization of the 

matrices Q and T’. This characterization is then used to solve the functional equation 

(4.8) of Theorem 4.3 in order to determine the joint distribution of the busy period 

duration and the value of the environment process at the end of the busy period. 

5.1. The matrix Q 

Let A be the LX L diagonal matrix with entries given by 

A(i,j)= A(ifyL(i) s(i, j), 1 s i, jS L. 

It is clear that Q is given by 

Q= m@IL-A)p)- A=(I,-(I,-A)P)-‘A, 1 

(5.1) 

(5.2) 

where the convergence of the Neuman series is a consequence of the fact that 

(1, - A)P is a submarkovian kernel. From (5.2), it follows that Q is invertible with 

inverse given by 

Q-‘=A-‘(I,-(I,-A)P). (5.3) 

5.2. The matrix T’ 

Fix z in @ with IzI c 1. Recall that S,, is the duration of the nth service, and denote 

by N,+, the number of transitions of the environment process {Y(t), t 2 0) during 

the interval (T,,, T,,,], i.e., the (n + 1)st ‘service period’ in the free system. With 

this notation, it is plain that 

T’ = 
I 

00 

T: dS(t), (5.4) 
0 

where for each t 2 0, the LX L matrix T: has components given by 

(T:)(i,j):=EIIIY,=j]zAIIYo=i,S,=t], lsi,jsL. 

To proceed, consider the decomposition 

(5.5) 

T;:= f B;,,, tz0, 
k=O 

(5.6) 

where for each t 2 0 and k in N, B;,, is the LX L matrix with components given by 

(B~,r)(i,j):=EIIIYI=j,N,=k]zAIIYo=i,S,=t], lsi,jsL. (5.7) 

Simple arguments show that the matrix Bg,, is the Lx L diagonal matrix given by 

B~,,(i,j):=e-“““‘S(i,j), 16jsL, (5.8) 
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(Y’(i):=p(i)+A(i)(l-z), 1GiGL. 

Furthermore, the recursions 

(5.9) 

K+l,t(i,j) = e Pa’(i)‘p( i) i P( i, I) 
I=1 i 

’ e”z’i’“B;,(Z,j) ds, 
0 

lGi,jGL, k=O,l,..., (5.10) 

are readily obtained from basic principles and hold for all t s 0. 

The notation is conveniently abbreviated by introducing the LX L diagonal 

matrices L: and M with entries given by 

L:(i,j):=e”““‘6(i,j), l<i,jGL, 

and 

M(i,j):=p(i)G(i, j), 1 S i,jG L. 

In matrix notation, (5.10) now reads 

I 

I 

G%+,,, = MLSPB;,, ds, t a 0, 
0 

so that the matrix function t + T: satisfies the functional equation 

I 

f 
LfT;= IL+ ML: PT: ds, t 2 0, 

0 

since the matrices L: and BG,, are inverse of each other. 

Differentiating (5.14) with respect to the time variable t now yields 

or equivalently, 

MP-(L;)-l$ T;, t>O, 
1 

after some simple rearrangements. 

It is plain from (5.11) that 

where A’ denotes the Lx L diagonal matrix with entries given by 

A’(i,j):=a’(i)S(i,j), l~i,jSL. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

Direct substitution of (5.17) into (5.16) readily shows that the matrix function t + Tf 

satisfies the linear matrix differential equation 

$=WT;, ta0, (5.19) 



F. Baccelli, A.M. Makowski / Modulated M/GI/l 117 

with initial condition Ti := IL, where H’ denotes the L x L matrix given by 

HZ:= MP-A’. (5.20) 

The unique solution to (5.19) is known to be 

T::=elH’, t>O, (5.21) 

so that for each t 2 0, the matrix T: is invertible, with inverse given by 

(T:))‘=eP’HZ, ra0. (5.22) 

For 1 c i c L let Pf and 6: (resp. 4:) denote the ith eigenvalue and corresponding 

right (resp. left) eigenvector of the matrix H’ defined in (5.19). Moreover, recall 

that S* denotes the Laplace transform of the service time distribution S. 

Lemma 5.1. The matrix T” is given by 

I 

‘x 
T’ = erH’ dS( t). 

0 

(5.23) 

For all 1 c i 4 L, the complex number /3: has a negative real part so that S*(-pf) is 

well defined. Moreover, the matrix T, is invertible if and only if 

Proof. Equation (5.23) immediately follows from (5.4) and (5.22), and the rest of 

the proof deals only with the invertibility problem. The eigenvalues /3 F, 1 G i s L, 

all have a negative real part (because the matrix etH’ cannot have eigenvalues of 

norm larger than 1 for Iz] G 1). 

Let K’ be the Jordan decomposition of the matrix H’ [7, p. 112ff.l. Hence there 

exists an invertible matrix U’ with the property that 

(5.25) H” = U’K’( U=)-‘, 

where K” is the upper triangular matrix given by 

K’:= 

: Pf (j 0 0 0 0 . . . . . /34 a; . 0 . . . . . . . . /3; a5 . 0 0 0 0 . . ai . 0 0 0 0 0 . . pZd2 0 0 0 0 0 p;-1 ai_, ... ... 1.. . 0 . . a; 0 0 0 0 0 

p; 1. L 

t 

(5.26) 

In (5.26) the elements af , 2 G i S L, are either zero or one, and the elements /?f , 
1s i c L, are the eigenvalues of the matrix H’ counted with their multiplicities. 
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Expanding (5.23) and using (5.25) lead to 

T’= LJ’ mf,$ (KY” dS(Q] (,=)-‘. (5.27) 

The structure of (5.26) can now be used in (5.27) to claim the existence of an 

upper-triangular matrix 0’ with ith diagonal element S*(-pf), 1 s is L, such that 

T’ = U=O=( lJ=)-1. (5.28) 

The unspecified elements of the matrix 0’ are necessarily finite owing to the remark 

made earlier on the convergence of the integral expression in (5.23). The matrix T’ 

is thus invertible if and only if none of the diagonal elements S*( -Pf), 1 s is L, 

are zero, and this completes the proof of the lemma. 0 

The case of a Laplace transform vanishing at some points of the complex right 

half-plane is rather infrequent. The coincidence of one of the complex eigenvalues 

of Hz with one of these possible zeros is an even more uncommon situation, which 

justifies the assertion of Section 2 that T’ is ‘almost always’ invertible. 

The next lemma establishes a property that is needed in the sequel, namely the 

link between the eigenpairs of T’ and H’. 

Lemma 5.2. For all 1 s is L, A: = S*(-pf) is an eigenvalue for the matrix T, and 

the corresponding right (resp. left) eigenvector 6: (resp. Jlf) can be taken to be ~$f 

(resp. I/J;). 

Proof. By (5.23) (and (5.27)), it is clear that 

(5.29) 

and for 1 G is L, the eigenpair property of (Pf, 4:) for H’ reads 

H’&=&. 

Consequently, 

(5.30) 

I 
m 

= e’P:dS( t)&f, 

0 

i.e., 

T’&S*(-pf)&=Af#$ (5.31) 

The proof is thus completed for the right eigenvector. The proof for the left 

eigenvector is similar, and is therefore omitted. 0 
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5.3. Joint distributions 

As mentioned earlier, (4.8) provides a general relation between the length of the 

busy period of the queue and the state of the environment at the end of this busy 

period. It is now shown how this relation together with its extension given in Theorem 

4.10 yields a simple way to determine analytically the joint distribution of these two 

quantities. In this section we make the assumption that each eigenvalue of the matrix 

H’ is analytic in the domain IzI < 1. 

Lemma 5.3. For every complex number u E C such that Iu[ < 1, and for all 1s i c L, 

there exists a unique complex number zi( u) in the open unit disc solution of the equation 

z=uhf. (5.32) 

Proof. Fix z such that IzI = 1 and 1 s is L. It is plain that IS*(-pf)lc 

S*(-Re(Pf)) d 1 where the last inequality follows from Lemma 5.1. Consequently, 

luhfl= lus*(-pf) s IUI < (ZI = 1 

for every u in C such that IuI < 1. It follows from Rouche’s Theorem that the function 

z+ z-uS*(-pf) (which is analytic inside the unit disc in view of the preceding 

assumption and of Lemma 5.1) has exactly as many zeros in the unit disc as the 

function z + z, namely one, and this completes the proof of the lemma. 0 

For 1~jsL and u in @ such that O<lul<I, set 

f(j,U):=E[1[T<~]l[Y,=j]u’I~~]=E[1[~”<~]l[Y”,~=j]uT~I~~]. 

(5.33) 

Theorem 5.4. For all u in @ such that 0 < [MI < 1, the linear relation 

Yf f(j, u)+f”“‘(j) = zi(u)xof$f”“‘( Y,) (5.34) 
j=l 

holds for all 1 G i s L such that A :“” # 0. 

Proof. The assumptions u # 0 and A f”“’ # 0 entail Zi( u) = MA:‘“’ f 0. The martingale 

{Mu’,‘“‘, n = 0, 1,. . .} is thus well defined according to Theorem 3.4 and (5.34) is 

thus a mere rephrasing of (4.36) given in Theorem 4.8. 0 

In order to determine the joint distribution of interest, it suffices to determine the 

real numbers f(j, u), 1 G i s L, for 0 < u < 1, or even in a real neighborhood of some 

real number 0 < u. < 1. Theorem 5.4 shows that these real numbers satisfy a system 

of linear equations specified by (5.34), where the (possibly complex-valued) known 

parameters are the eigenvectors of the matrix T’, or equivalently of matrix H’, 

taken at z = zi( u). The natural question whether the rank of that system is sufficient 

to unambiguously determine these real numbers, is still open as to the writing of 

this paper. 
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6. Absolutely continous families of queues 

The restrictions 0 < z < 1 and p s 1 were essential in the proof of Theorem 4.3. What 

happens to the results of this theorem when the definitions are given for z lying in 

a larger set than the unit interval (in the event 1 <z* and under appropriate 

integrability condition), or when p > l? It is the purpose of this section to show 

that these questions can be settled by considering a larger family of queues in 

random environment, the sample paths of which are all absolutely continuous with 

respect to the sample paths of the initial queueing system. 

The main results of the section are given in Theorems 6.1 and 6.3 and in Corollary 

6.5 where a new conservation law generalizing (4.8) is established. The discussion 

is based on interpreting the real-valued martingale defined in Theorem 3.3. as a 

Radon-Nikodym derivative. 

Theorem 6.1. Fix z in the interval (0, z*) u (0, 11. Under theforegoing assumptions, 

the relation 

E[z[7<a3]~2(Y,)[z/AZ]T’I~]=zX~~Z(Y~) 

holds true if and only if the condition 

(6.1) 

(6.2) 

is satisfied. 

The proof of Theorem 6.1 proceeds in several steps which are organized in a 

series of technical lemmas. Observe that for z = 1, (6.2) reduces to the condition p s 1. 

Lemma 6.2. For all z in the interval (0, z*) u (0, l] and 1 s is L, the mapping 

NxZ’-+R: (k,j)+ O;(i,j) dejined by 

@',(i,j):= s [ I l Tk(i,j) (6.3) 

is a point mass probability function on the countable set N x 3. 

Proof. Each one of the terms (6.3) is strictly positive, and for every pair (k, j) in 

N x 9, 

k=O j=l k=O j=l 

= jj & k,fo Tk(i9j)Zk (6.5) 

(6.4) 

(6.6) 

where the second part of (6.6) follows from the eivenvalue property (3.13). 0 
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At this point of the discussion it is convenient to introduce the set d defined as 

the Cartesian product (lV x Z)“, with generic element (3 expressed in the form 

W:=(Xg,yo,al,y,,a,,y,,...). (6.7) 

Let g, {A,,,, , n = 0, 1,. . .} and {p,,,, n = 0, 1, . . .} be the coordinate mappings on d, 

i.e., 

g(&):=x,, &,+,(&):=a,+, and Fn(W):=y,,, n=O,l,..., (6.8) 

with the representation (6.7). The filtration {gnn, n = 0, 1, . . .} is defined on d by 

$* := a{ 2, ?&&,~~),o<k~n}, n=1,2 ,...) (6.9) 

with g0 := CT{ 2, ?,,}, and set ga:= V,, @,, as usual. 

Now, for every z in the interval (0, z*) u (0, 11, there exists a unique probability 

measure P’ on the r-field @, with the property that 

P’[ g=x, ~06;;l:=p[~=x, Y,=i] (6.10a) 

for all pairs (x, i) in N x 3, and 

Pz[An+l = k, ~~+,=jl~~]:=O;(~~,j), n=O,l,... , (6.10b) 

for all (k, j) in N x R 

The r.v.‘s {Xn, n =O, 1,. . .} are defined on fi through the recursion 

&+, = r?;, +&+, -IIXn#O], n=O,l,..., 

j&g. (6.11) 

It is plain from (6.10)-(6.11) that under P’, the r.v.‘s {(X,, ?,,), n = 0, 1,. . .} form 

a Markov chain with state space RJ x 2, and that 

&=o{(&, ?k),Oskcn}, n=O,l,... , (6.12) 

Upon specializing (6.3) for z = 1 and using the fact that A’ = 1 and 4’ = e in that 

case, it is a simple matter to check that the stochastic process {(Xn, pn), n = 0, 1, . . .} 

on (fi, %=, P’) is equivalent in law to the original process {(X,, Y,,), n = 0, 1, . . .} 
on (a,$, P). 

In analogy with (4.6), the .@n-stopping time i is defined as 

? := inf{ n 2 0: gn = 0}, (6.13) 

with the usual convention i= 00 whenever the defining set in (6.13) is empty. The 

following identification takes place. 

Lemma 6.3. Fix z in the intervd (0, z*) u (0, 11. 7’he relation 

E[l[n < 7]zxn&( Y,)[z/h’]” IX, = x, Y0 = i] 

=P’[n<ilrl,=x, ?O=i]zx+Z(i), n=l,2 ,..., 

holds for every pair (x, i) in N x 2. 

(6.14) 
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Proof. On the event [n < T], (2.2) specializes to 

Xk=XO+ 2 A,-k, lsksn, n=1,2 ,.._, 
I=1 

so that 

X0-t; A,>k , 
I 

n-1,2,... , 
I=1 

(6.15) 

(6.16) 

and 

I[n < T]zxn(b’( Yn)[z/AZ]n 

X0+; A,>k,lcksn I[ ZXo+C;=, Ak 4zc y ) I=1 (*‘)” n,n=l,2 ,-... I 
(6.17) 

Now, in view of (6.15), define for every x in N the subset K,(x) of N” by 

K,(x):= L=(k,,.. 
1 

.,k,)EFV:x+ ; k,>l,l<l<n 
I 

, n-1,2,... . 
m=l 

(6.18) 

Fix a pair (x, i) in N x 3. For every k’in K,(x) and every i’= (i,, . . . , i,) in 3” (with 

the convention i,= i), it is simple matter to conclude by the Markov property that 

P[A,=k,, Y,=i,,l<Z<n;X,=x, Y,=i] 

=T~,,(i,_,,i,)PIA,=k,,Y,=i~,l~~<n;Xo=x,Yo=i], n-l,2 ,..., 

(6.19) 

since X,_, # 0 on the event [X,=x, Y. = i; Al = k,, 1 s I < n] for any k’ in K,(x). 

Iterating (6.19) readily yields 

P[A,=k[, ~=i,,l~Z~n;X,,=x, Y,=i]+“(i,) 

fi Tkr(it-lr id $$fj 3 P[X,=x, Yo= i]qbZ(io) 
I=1 

zzz 
[ ,ijl oi,(i,-lj &I] z~,l’!“kH p[xO= x, YO’ i]cb’(iO), 

n-1,2,... , 

(6.20) 

so that 

P[A,=k,, Y,=i,,l~Z~n~X,=x, Y,=i]$‘(i,) 

= [ ,ij @;,(k,, i, z:,::!:,,, +‘ci), n=l,2,... . (6.21) 
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The relations (6.17) and (6.21) now imply that 

E[l[n < T]zx~+‘( Y,)[z/AZ]” 1x,=x, Yo= i] 

4”(i,)P[A,=k,, Y,=~,,~sZG~IX,=X, Y,=i] 

= EtlI_) En [ fI, %(Ll, it)] z”4’(4 

=P’[~,#O,l~l~n~XO=x, PO=i]z”~‘(i) 

=P’[n<7”1&=x, ?0=i]z”4’(i), n=O,l,... , (6.22) 

by straightforward arguments using the definition of the r.v.‘s T and ?, and the 

Markov property of the sequences {(X,,, Y,), n =O, 1,. . .} and {(Xn, p,,), n = 

0, 1, . . .}. 0 

For z in the interval (0, z*) u (0, 11, define the LX L matrix Q’ with entries given 

by 

Q’(i, j):= C O’,(i, j) = 
k=O 

(6.23) 

This matrix Q’ is a stochastic matrix as a consequence of (3.13). 

Lemma 6.4. For every z in the interval (0, z*) u (0, 11, the stochastic matrix Q’ has 

an invariant measure yZ given by 

yz( i) := 4’(W(i) 
x,“_, 4’(j)+z(j)’ l<iGL. (6.24) 

Proof. Indeed, since each one of the components of the vectors c$’ and $’ are 

strictly positive, so are the components of the vector y’. Moreover, for every 1 s j s L, 

ii, 4’(i)4l’(i)Q’(i,j) = ii, ~‘(i)+“(i) f!$$ (T’)(i,j) 

= ii, V(i)( W&j)] [$F] = 4”(jM’(j), 

(6.25) 

where the second equality in (6.25) follows from the eigenvalue property (3.13). 0 

All the elements are now present to give a discussion of Theorem 6.1. 

Proof of Theorem 6.1. A closer inspection of the proof of Theorem 4.3 quickly 

reveals that on the interval (0, z*) u (0, 11, under the extended conditions of Theorem 

6.1, both (4.11) and (4.14) always hold, but the key limit (4.13) will fail to hold in 
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general and the balance equation of Theorem 4.3 may not be valid. As a direct 

consequence of Lemma 6.3, the convergence 

IimE[l[n<?]zx~[;;I]‘Q;(Y.)l~~] =0 P-a.s. (6.26) 

takes place if and only if 

linm P’[ n < ?( .@J = 0 P’-a.s. (6.27) 

By Theorem 4.6, applied to P” in place of P, it follows that the convergence (6.27) 

takes place if and only if the appropriate version of the condition p s 1 holds. Upon 

making use of (4.2)-(4.3), it is simple matter to check that the relevant condition is 

oZ= i r=(i) f k f: O’,(i,j)sl. (6.28) 
i=, k=O J=l 

To get the condition (6.2) from (6.28), observe that (Y’ can be evaluated as 

,g14’(i)6;(i) i z [zkkE+P[A,=k, Y,=ji?o=i)]] 
j=l k=O 

= ,i, jz, (Cl’(i)E[(A, - l)z^lZ[( Y, = j)] ( PO= i] 9 

(6.29) 

The end of the proof is now very similar to the proof of Theorem 4.3. First notice 

that for 0 < z < z*, the r.v.‘s 

zX~~~[z/A’]“*‘C$J’( Y,,,), n =o, 1,. . . ) (6.30) 

also form an integrable SH-martingale owing to Theorem 3.3, so that (4.11) holds 

without modification for 0 < z < z*. 0 

The next corollary investigates the case where condition (6.2) is not satisfied. 

Corollary 6.5. Fix z in the interval (0, z*) u (0, 11. If 

(6.31) 

then (6.1) has to be replaced by the relation 

E[~[T<~]~=(Y,)[z/A=]~~&,]=z~~~~(Y~)-P~[;=co~~~] 

where P’, go and ? are respectively defined by (6.10), (6.9) and (6.13). 

(6.32) 
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Proof. If condition (6.2) is not satisfied, the limit given in (6.27) does not hold 

and has to be replaced by 

limP’[n<7”1~~]=PZ[i=co1~~] P’-a.s. 
n 

(6.33) 

This completes the proof of (6.32) when letting n go to ~0 in (4.11). 0 

7. The martingales associated with the reflected process 

In this section, several sequences associated with the reflected process {(X0,, Y”,), n = 

0, 1,. . .} are shown to be 9:-martingales. Their usefulness becomes apparent when 

analyzing other and more elaborate stopping times than the busy period, and when 

studying the transient and stationary statistics. Some of the proofs are very similar 

to those of Section 3 and are therefore omitted for the sake of brevity. 

For 0 < z < z*, the R1”L-valued r.v.‘s { Ci , n = 0, 1, . . . } are defined component- 

wise by 

Ci(i):=Z[Y”,=i]zx-, l<iGL, n=O,l,..., 

and the LX L matrices {Si, n = 0, 1, . . . } are defined by 

s’,:=I[xo,#o](l/z)l,+z[x”,=o]Q, n=O,l,... . 

Both r.v.‘s CZ, and S”, are 9”,-measurable. 

(7.1) 

(7.2) 

Proposition 7.1. Fix 0 < z < z*. Under the foregoing assumptions, if the T.V. zE is 

integrable, then the r.v.‘s {CZ,, n = 0, 1, . . . } are all integrable and satisfy the relation 

E[C~+,19~]=C~S2,TZ, n=O,l,... . (7.3) 

Proof. The integrability is handled as in Proposition 3.1. In order to get (7.3), 

observe that 

E[C’,+,(j)l~~]=E[~[Y”,+,=j]zX~~tA~+~~’[X~’”’1~”,] 

= z~%~‘[~~‘~IE[ I[ Y”,,, = j]z”E+t 1 sz], n = 0, 1, . . . . 

(7.4) 

Substitution of (2.10) into (7.4) and use of the definition of the matrix Sz readily 

imply that 

E[Cz+,(j) 1 SO,] = zxp, IIX~iO]~T’(T”,,j)+IIX”,=O](QTZ)(Y”,,j) 

=zX6(SzT’)( Y”,, j), n =O, 1,. . . . 

The conclusion (7.3) is now immediate from (7.5). 0 

(7.5) 
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7.1. The invertible case 

Assume the matrix T’ to be invertible for 0 < z < z *. In that case, since the matrix 

Q is always invertible by (5.3), the product matrix S’, T’ is invertible, with correspond- 

ing inverse matrix R’, given by 

R:, := (Sz, T=)-’ = I[X”, # O]z( T’)-‘+ I[X”, = 0]( QT’)-‘, n = 0, 1, . . . . 

(7.6) 

The 9”,-measurable matrices {LIZ,, n = -1, 0, . . . }, 0 < z G 1, are now defined by 

fl:,:= fi R’, = R’, . . + R;R:, n=O,l,..., (7.7) 
k=n 

with the convention rrt, = IL. 

Theorem 7.2. Fix 0 < z < z* and assume the r.v. zs to be integrable. If T’ is invertible, 

the lR’+L -valued r.v.‘s {kT’, , n = 0, 1, . . . } given by 

I?::= CzIIi-,, n =O, 1,. . . , (7.8) 

form an integrable Y”, -martingale sequence. 

Proof. It is easily seen by induction that each entry of the matrix 17: is bounded 

from above and from below by some (non-random) constants. The stated integrability 

property now follows immediately from the integrability of the r.v.‘s {Ci, n = 

031,. . . } established in Proposition 7.1. 

The 9”,-measurability of the matrix IT’, and Proposition 7.1 readily imply that 

E[~‘n+11~^0,]=E[Cz,+11~0,]172,=CZ,S:,TZITZ,, n=O,l,... . (7.9) 

On the other hand, the very definition of the matrices Ri and IIZ, yields the identity 

S:,T’n:,=S:,T’R~17’,~,=17’,_,, n=O,l,..., (7.10) 

and the martingale property is now immediate from (7.9) and (7.10). 0 

7.2. The general case 

In the general case, postmultiplication of (7.3) by the column vector 4” defined in 

Section 3.2 leads to the conclusion that 

E[C’,+,4’1 So,] = C’,S’,T’$J’ = A’C’,S’,+’ 

= A’zXP,(S’,~“)( Yz), n = 0, 1, . . . . 

On the other hand, it is plain that 

(7.11) 

(7.12) Ci+,4’ = z”z+l4’( Y",+l), n = 0, 1, . . . , 
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so that 

This last relation suggests introducing the %:-adapted R-valued r.v.‘s {N’, , n = 

O,l,. . . } given by 

(7.14) 

with 

N; = z”$‘( Y;). (7.15) 

That the r.v.‘s {Ni, n = 0, 1,. . . } are well defined is an easy consequence of the 

strict positivity properties of the eigenpair (A’, 4’). It is also convenient at this point 

to observe that for all 1 G is L, 

(7.16) 

(7.17) 

(7.18) 

where the strict positivity is a consequence of the fact that Q is a stochastic matrix. 

The next result parallels Theorem 7.2. 

Theorem 7.3. Fix 0< z < z*. If the 1.0. zz 

{W, n=O,l,... } form a positive integrable 

Proof. For every n = 0, 1, . . . , the relation 

is integrable, then the R-valued r.v.‘s 

SO, -martingale. 

n A’(S;4’)(Y”,) -I 
d’( Yi) I = [+I" ,J<n [z(~~~~&Jl’~xi-“l (7.19) 

O=k<,, 

is an immediate consequence of (7.18), and the r.v.‘s {N’, , n = 0, 1, . . . } thus take 

the alternate form 

(7.20) 
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The matrix Q having all its entries positive, the bounds 

o< d’(Y”,) b’ 
z(Q4z)(yz)y’ n=O,l,..., 

are readily obtained, where the constant b’ is defined by 

Consequently, 

G zxz ,m%xL ~‘(i)[z/h’l”[max{l, b’lz)l”, n =O, 1, . . . 2 (7.24) 

on the range 0 < z < z*, so that the integrability of the r.v.‘s {Ni, n = 0, 1, _ . . } 

immediately follows from the integrability of the r.v.‘s {zxz, n = 0, 1, . . . } which was 

established in the proof of Proposition 7.1. 

The r.v.‘s 

(7.21) 

(7.22) 

(7.23) 

(7.25) 

being all 9”,-measurable, use of (7.13) and (7.20) leads to 

E[N:+, 1 S;“,] = E n (7.26) 
k=O 

n =o, 1,. . .) 

(7.27) 

and the martingale property is established. 0 

Several other conservation laws can be obtained from these new martingales. The 

simplest of these relations reads 

= E[zXk$‘( Yi)], n =o, 1,. . . ) (7.28) 

and follows immediately from the identity E[Ni] = E[Ni] and from (7.19). The 

relation (7.28) establishes a general conservation between the state r.v.‘s (X0,, Y”,) 

and the total time spent in an empty queue up to time n. Similar relations can be 

derived for various stopping times such as the second time the queue empties or 

the first time a given threshold is reached. This line of investigation will not be 

pursued here for the sake of brevity. 
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7.3. Stationary and transient distributions 

The martingales introduced so far are now used to show how the computation of 

the stationary and transient distributions can in fact be obtained via basic theorems 

on Markov-renewal processes. This approach generalizes what was done in [2], 

where the authors computed the Pollaczek-Khinchine function and the transient 

distribution of the M/GI/l queue via simple arguments from renewal theory. 

Let u be a finite 9”,-stopping time and let u(a) be the 9”,-stopping time 

V(U) := inf{ n > (T: X0, = 0} 

with the usual convention V(V) = co if the defining set is empty. 

Theorem 7.4. If p G 1, the relation 

E[Z[o<q V(CT)<03][Z/hZ]Y(~)-Cr~Z(YOy(~))I~~] 

= z[u<co]zx+b=( y”,) 
[ 

z( @b’)( Y”,) ‘[xg=“’ P_a.s 

4’( Y”,) 1 
(7.29) 

holds for all 0 < z < 1. 

Proof. In view of the strong Markov property and the time homogeneity, it suffices 

to establish (7.29) for m = 0. To that end apply the Optional Sampling Theorem [ 1 l] 

to the martingale {N’(n), n = 0, 1, . . .} defined in (7.14) with the stopping times 0 

and v(0) A n. The relation 

E [Z[n < V(0)]ZX$‘( Y;)[z/h’]” 1 S$] 

+E[Z[v(O)S n]+‘( YOy~O~)[~/hZ]“‘O)~FO] 

= z”qb’( Y;) 
[ 

z( @‘)( y;) ‘[XFl=Ol 
4z(yE) , n=O,L..., 

1 
(7.30) 

is then seen to hold, and (7.29) follows from (7.30) upon using the same limiting 

arguments as in the proof of Theorem 4.3. 0 

Let {v,,n=O,l,. . . } be the sequence of %:-stopping times defined by the 

recursion 

v,+1 = v(v~), n=O, 1,. .., (7.31) 

with v0 = 0. With u = 0, the arguments of Corollary 4.4 applied to (7.29) imply 

P[ v1 < Co1 Si] = 1 P-a.s. 

Lemma 7.5. Zfp~ 1, the r.v.‘s {(Y”,,, v,), n = 1,2,. . . } form a (possibly 
recurrent Markov-renewal process. This process is recurrent positive if p < 1 

$ ’ is finite. 

(7.32) 

delayed ) 

provided 
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Proof. It is plain from the Markov property that for all n = 0, 1, . . . , the r.v.‘s 

{ Yov(n+,), v”+I - Y”} and the a-field SZ, are conditionally independent given the r.v. 

Y”,,. This completes the proof of the Markov-renewal property. Moreover this 

Markov-renewal process will be delayed if and only if E = 0 P-a.s. For p G 1, the 

recurrence property is an immediate consequence of (7.32). The proof of the positive 

recurrence property is as in Theorem 4.9. 0 

The forward recurrence times {I, n = 0, 1, . . . } of the recurrent renewal process 

iv,, n=0,1,2,...}aredefinedby 

7(n) = 
inf{ m 2 0: X0,+, = 0) if this set is non empty, 

00 otherwise, 
n=O,l,... . 

(7.33) 

The generating function of the number X0, of customers at the nth service completion 

is related to the generating function of the forward recurrence time 7(n) in a very 

simple way. This key relationship is provided in the next theorem. 

Theorem 7.6. Assume p s 1. For all 0~ z s 1, the relation 

E[zX$:( YZ)] = E[[z/hf]““‘&( Y”,+,&], n =o, 1,. . . , 

holds trueforall 1sisLsuch thatAf#O and [z/hfl<l. 

(7.34) 

Proof. In view of the homogeneity property, the martingale relations (4.45) readily 

yield the identity 

E[1[7(n)<~l+f( K+,(n) )[z/Af]““‘l sg] = z”$f( Y”,) (7.35) 

whenever Af # 0, 1 s i G L, and the relation (7.34) follows by taking expectations 

on both sides of (7.35). 0 

Various generating functions pertaining to the transient and stationary distribu- 

tions of the queue size process can now receive a very simple interpretation in terms 

of the generating function of the forward recurrence times defined in (7.33). To that 

end, for every z in R such that 0 < z < 1, set 

g,,(j,z):=EIZIYO,=j]zx~], lcj<L, n=O,l,... . (7.36) 

With this notation, Theorem 7.6 can be rephrased as follows. 

Corollary 7.7. For all z in R such that 0 < z < 1, the linear relation 

i c,(.Lz)+Z(j)=E 
r(n) 

+:c y:+,(n) n=O,l,..., 
j=l 

(7.37) 

holdsforall 1~i~LsuchthatAfZOand Iz/Afl<l. 0 
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In other words, the generating functions of interest (7.36) - be it in the transient 

or stationary regime - satisfy the system (7.37) of linear equations where the 

(possibly complex-valued) known parameters of the left-hand side are the eigen- 

vectors of the matrix T’, or equivalently of the matrix H’, and those in the right-hand 

side are given by the statistics of the Markov-renewal process defined in Lemma 7.5. 

7.4. Remarks on the system (7.37) 

Although it is beyond the scope of this paper to provide a complete analytical 

characterization of the generating functions (7.36), some brief comments are in 

order concerning the computational issues associated with the linear system of 

Corollary 7.7. 

(i) Computation of the right-hand side of (7.37): The first question concerns the 

computation of the stationary or transient statistics of the Markov-renewal process 

showing up in the right-hand side of (7.37). This can be obtained within the existing 

martingale framework as follows. Indeed the martingale which was defined in (7.14) 
- upon applying the Optional Sampling Theorem - can be used to derive the 

relation 

E[4’( y”,,,+,)[z/~‘l”H+l -“PI] = E[z( (I+‘)( Y”,,,)], n = 1,2, . . . . (7.38) 

Again, this relation extends to the other eigenvalues provided certain non-degeneracy 

conditions hold, i.e., 

E[~:(Y~,,+,)[zlhfl~,,+, _“,,]=E[z(Q~f)(Y”,,,)], n-l,2 )..., (7.39) 

for all 1s i 4 L. 

In analogy with Theorem 5.4, let S(j, u) be the stationary generating function 

S(j,u):=E[u”~~+‘~“~Z[Y”,,,+,=j]], lGjGL, n=1,2 ,..., (7.40) 

for u in the interval (0, 11. Under the assumptions of Section 5.3, (7.39) implies 

i f(i u)4f""'(j)=zi(U) f, f(j, l)(Q4”‘“‘)(j), 1s is L, (7.41) 
j=l ,=I 

where the notation of Lemma 5.3 has been used. We get hence a linear system for 

the constantsf(j, l), 1 s js L, by letting u go to 1 in (7.41). Observe that the equation 

associated to the largest eigenvalue is degenerate. However we have the additional 

linear normalization equation stating that C,!=,f(j, 1) = 1. Then, the evaluation of 

the functions f(j, u) follows the same lines as in Theorem 5.4. 

(ii) Non-singularity of the system (7.37): It is natural to wonder whether the 

rank of the system (7.37) is sufficient to determine the scalars gn(j, z), 1 <j< L, 

unambiguously. The following lemma provides a simple sufficient condition for this 

to happen. 

Lemma 7.8. If the infinitesimal generator 4 of the continuous-time Markov process 

{Y(t), t a 0} describing the environment process is diagonalizable, and if the Laplace 
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transform S* has nojinite zero in the right half complex plane, then there exists a real 

number z0 in (0, 1) such that the linear system (7.37) has a unique solution in a real 

neighborhood of z,,. 

Proof. In view of Lemma 5.2, it is plain that the condition on S” implies that all 

the eigenvalues of T’ are non-zero, and that (z/h:1 < 1, 1 <j c L, for z in a complex 

neighborhood of 0. As a result, (7.37) holds for all 1 s is L and at least for all z 

in a right neighborhood of 0. 

With the notation of Section 6.2, it is easily seen that this infinitesimal generator 

9 is given by 

9’=M(P-I)=H’. (7.42) 

The assumption that 4 is diagonalizable implies that its eigenvectors, namely 

~,‘,l~i~L,formabasisofC’+‘. Hence the vectors +f , 1 s i c L, form a basis of 

C Lx’ for all z in @ such that IzI<z*, but for isolated singularities. Indeed, by 

construction, the coordinates +f(j), 1 s i, j G L, of the eigenvectors of the matrix 

H’ are algebraic functions of the parameter z, so that the determinant A’ of the 

matrix U’ given by 

MI) *.. 4’,(l) 

G(2) . . . 42(2) 

g&l) ... $h;(i- 1 

G(L) ... 42(L) I (7.43) 

) 

is also an algebraic function of the variable z. Since this determinant does not vanish 

for z = 1, its zeros can then only be isolated singularities. This establishes that T’ 

admits a proper basis for all z in @ with IzI < z* but for a finite number of isolated 

singularities. 

It is now immediate that there exists a real number 0 < z,, < 1 such that for all z 

in a real neighborhood zO, the relations Iz/Afl< 1, 1 <Jo L, hold and the rank of 

the system (7.37) is exactly L. 0 
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