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Abstract 

We show that neither the 3-ball nor the solid torus admits a triangulation in which (i) every 
vertex is on the boundary, and (ii) every tetrahedron has exactly one triangle on the boundary. 
Such triangulations are relevant to an unresolved conjecture of Perles. © 1998 Elsevier Science 
B.V. All rights reserved 

1. Introduction 

Let M be an n-pseudomanifold  with boundary .  In  the dual  graph of M, denoted 

G(M), vertices correspond to the n-cells of M with an edge between two vertices if the 

cor responding  n-cells share an (n - 1)-cell. 

Micha A. Perles asked the following quest ion [1]: Let  ~ be a subset o f  facets o f  

a simplicial d-polytope P, and ~ the complement o f  ~.  I f  both G(~)  and G(~)  are 

connected and if G(~)  is (d - 1)-regular then must ~ necessarily be the star o f  a vertex? 

We ask the same quest ion in the more general setting of t r iangulated spheres (instead 
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of P consider a triangulation of S d- 1; call the (d - 1)-simplices of the triangulation 
'facets'). 

Note that the 3-sphere S a can be decomposed into two 3-balls having a common 
boundary or into two solid tori (a solid torus is the product of a 2-ball and a circle) 
having a common boundary. Hence, if the 3-ball or the solid torus has a triangulation 

(1) that is not the star of a vertex and 

(2) in which each tetrahedron has one 2-face (triangle) on the boundary (of the ball 
or the solid torus) 
then we could extend that triangulation to a triangulation of $3 and obtain a 4- 
dimensional counterexample to the generalization of Perles' question. (The question 
of whether the 3-ball admits a triangulation having properties (1) and (2), was posed at 
the DIMACS Workshop on Polytopes and Convex Sets [2], by Jockusch and Prabhu.) 

Against this background, we show that neither the 3-ball nor the solid torus admits 
a triangulation having properties (1) and (2). (It is worth noting that the unshellable 
triangulation of a tetrahedron that Rudin describes in [3] satisfies property (1) and all 
but one tetrahedron of the triangulation satisfy property (2). In Rudin's triangulation, 
one tetrahedron has no triangle on the boundary.) 

In Section 2 we present two proofs of the result about the 3-ball. In Section 3 we 
present a proof of an analogous result for the torus. 

2. Triangulation of the 3-bail 

If X is a manifold with boundary (or a cell complex), the relative interior, relative 
boundary, interior and boundary of X will be denoted relint (X), relbd (X), int (X) and 
~(X), respectively. If v is a vertex of a simplicial complex Y, let lkr(v) denote the link of 
v in Y, i.e. the complex {S \ {v}] v ~ S ~ Y }. 

Let A be a triangulation of M, a 3-manifold with boundary. A face of A is called an 
exterior face if it lies in 0A and an interior face otherwise. We say that a tetrahedron in 
A is of type i if exactly i of its 2-faces are exterior. 

Theorem 1. Excluding triangulations which are the star of a vertex, there is no 
triangulation of the 3-ball B 3 in which every tetrahedron is of type 1. 

The theorem can be proved in two alternate ways. 

Proof (method 1). If the theorem were false we must have a counterexample A with 
fewest tetrahedra, Given such a A we show how to obtain a smaller counterexample. 

Notice that A cannot have any interior vertices. (For assume v ~ int(A). Since the 
tetrahedra in the star of v need to have exterior faces, we get that lkA(v) is a subset of 
~(A). Since Ik~ (v) is also a 2-sphere, we have that IkA (v) = t~(A) implying that A is the 
star of v, a contradiction.) 
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Then for any vertex v, IkoA(V) is a circle and lkA(v) a 2-ball. We want to show that 
relbd (lka (v)) = lkoA (v). Let ab be an edge of relbd (Ik~ (v)). Since ab is an edge of exactly 
one triangle of lkA (v), triangle vab is a face of only one tetrahedron of A ; i.e. vab is an 

exterior triangle, so ab ~ lkoA(v). Thus relbd(lk~(v)) c lke~(v); since both are topologi- 

cal circles relbd(lk~(v)) = IkoA(V). 
Let v be a vertex such that lk~ (v) is not the star (in t?(A )) of any vertex. (Such a vertex 

exists because, for any vertex z if lkA (z) is the star of vertex w, then lkA w cannot be the 

star of a vertex.) lkA(V) is a triangulation of a 2-ball. If  triangle T of lkA(v) has an edge 

E in relbd (lk~ (v)) then v * E ( * indicates join) is an exterior triangle. Hence T must be 
interior to A. Conversely, if no edge of T lies in relbd(Ik~(v)) then T must be exterior 

since all the other triangles of v* T are interior. 
A straightforward argument shows that Ik~(v) must contain two 2-balls C1 and 

C: with disjoint relative interiors, having the property that relint(Ci) c int(B 3) and 

relbd(Ci) c t~(B3). Hence, each Ci divides A into two parts; Ca and C2 cut A into three 

pieces: Ax, A2 and A 3. Say the arrangement is AICIA2C2A3;  v lies in A2. 
Call an interior triangle a 'cutting triangle' if all of its edges are exterior and an 

'almost cutting triangle' if two of its edges are exterior. Pick two almost cutting 

triangles A1 and A2 from C1 and C2, respectively. We show how to find a cutting 
triangle starting from an almost cutting triangle Ai. Let a, b and c be the vertices of 

A1 and ab and bc the exterior edges. The portion of lk~A(b) contained in A1 is an arc, 
say a ~ xl ~ .-. ~ x, ~ c. Let wabc be the tetrahedron in A 1 containing triangle abc. 
ac is an interior edge, hence wac cannot be an exterior triangle; so either wab or wbc is, 

which means w must be either x~ or x,. Without loss of generality, we may assume 
w = x~. If edge xxc is exterior then triangle x~bc is the cutting triangle we were 

looking for; else x~ bc is an almost cutting triangle and we repeat the argument on the 

arc xl  ~ ... ~--~x,~-~,c. (The case w = x, is similar.) Repeating this process we event- 

ually reach a cutting triangle Ta in A~. Similarly starting with A2 we find a cutting 

triangle T2 in A 3. 
The two cutting triangles T1 and T2 cut A into three pieces: A'I, A; and A~; say the 

arrangement is A~T1 A '2 T2 A '3. Removing A ~ and pasting A'I and A'3 by identifying 
T~ and T2, we obtain a smaller triangulation of B 3. This smaller triangulation is still 

of type 1 and it is not the star of a vertex, since the only vertices whose stars have 
changed are the ones that used to be the vertices of Tx and T2, (now pairwise 

identified) and those obviously remained exterior. Thus A cannot exist. []  

Proof (method 2). We use the same notation as in method 1. Assume A is a triangula- 
tion that contradicts the claim. As in method 1, we observe that A cannot have any 

interior vertices. Let n =fo(A), wheref/(A) is the number of/-dimensional faces of A. 

Since OA is a triangulation of 2-sphere, it satisfies Euler's relation fo(~A) - f l ( O d )  + 
f2(c~A) = 2. Also, each edge in c~A is contained in two triangles. Hence, fE(OA) = 2n - 4. 

For a vertex v of A, let p(v) be the number of triangles of IkA (v) contained in c~A. Then 
~ p(v) =fE(0A) =f3(A) = 2n - 4. On the other hand, we show that X~ p(v) >1 2n, to 
obtain a contradiction. 
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For a vertex v of A, lka (v) is a triangulated polygon. A triangle T of IkA (v) lies in 0A if 
no edge of T lies in relbd (lka (v)) (see para. 3, method 1). If we think of relbd (lk~(v)) as 
bounding a cell C, then lkz(v), together with cell C, forms a cell-decomposition of 
a 2-sphere which satisfies Euler's relation (above). Hence, a simple calculation shows 
that if lka(v) has k vertices in its relative interior, then p(v) = 2k - 2. 

Case 1: Assume that Ik~(v) has exactly one vertex w in its relative interior. In this 
case p(v) = 0 and we call w the interior neighbor of v. 

Case 2: Assume v is the interior neighbor of at least one vertex (see Case 1). Let 
{vl . . . . .  vq} be the set of vertices for which v is the interior neighbor. We show that 
lka(v) must have at least q + 2 vertices in its relative interior and hence 

p(v) >1 2(q + 1); i.e., we show p(v) + p(vl) + p (v2 )  q- "'" h- p(vq) ~ 2(q + 1). 
All triangles of OA that contain vl lie in Ikd (v). Hence vl, . . . ,  v~ lie in relint (IkA (v)). In 

a triangulated 2-ball B, we call a triangle with one edge in relbd(B) a boundary 
triangle. Observe that none of the boundary triangles of Ik~(v) can be incident on any 
of the vi's. For  assume T is a boundary triangle of lk~(v) incident on vi. (Then T is 
interior to A, see above.) Let ab be the edge of T in relbd(Ika(v)). We will show that 
none of the faces of the tetrahedron abvvi can be exterior. Since v~ is in relint(lk~(v)), 
the triangles avvi and bvv~ are also interior to A and therefore abv is the only face of the 
tetrahedron abvv~ which could be exterior. But v is the only vertex in relint(Ik~(v~)), 
making the edge ab a boundary edge of lkA (v~). This then means that the triangle vab is 

also interior to A. 
For each boundary triangle of lk~ (v) having all three vertices on relbd (Ik~ (v)), contract 

the edge in relbd (lkn (v)) to obtain a reduced triangulation. None of the contradictions can 
destroy a triangle that contains vi. The result of all the contractions is a triangulated 2-ball 

M. vl . . . .  , vq still lie in the relative interior of M. A boundary triangle of M cannot be 
incident on any of the v{s. If M has fewer than two (it must have at least one) interior 
vertices different from vl . . . .  , vq, then all the boundary triangles of M are incident on 
a vertex in relint(M), i.e., M is the star of a vertex, which is a contradiction. 

Case 3: Assume v falls neither into Case 1 nor into Case 2. Then lkA(V) has k t> 2 

interior vertices. So p(v) >1 2. 
Combining the three cases, we see that ~v p(v) >>. 2n. [] 

3. Triangulation of the solid torus 

In this section we prove an analogue of Theorem 1 for the solid torus. Both the 
main proof and the following lemma depend on method 1 above. 

Lemma 1. There is no triangulation of B 3 in which two tetrahedra that share a vertex 
v are of type 2, and the remaining tetrahedra are of type 1. 

Proof. (We borrow notation from method 1 above.) Assume d is a triangulation that 
contradicts the claim. One can easily show that lk~(v) contains a 2-ball C with 
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relint(C) c i n t ( n  3) and relbd(C) c 63(B3). C cuts A into two pieces, say A 1 and /12, 
lkz(v) is contained in one of the pieces, say in A2. C must have an almost cutting 
triangle and arguing as in method 1, we find a cutting triangle T in A 1- T cuts A into 
two pieces, one of which contains lkA(v). Pasting two copies of the other piece along 
triangle T, we obtain a triangulation of B3 that contradicts Theorem 1. [] 

A triangulation of the solid torus cannot be the star of a vertex. Thus we have 

Theorem 2. There is no triangulation of the solid torus T in which every tetrahedron is 

of  type 1. 

Proof. If possible let A be a triangulation of T that contradicts the claim. Let lka(v) 
and lkod(v) denote the links of a vertex v with respect to T and t?(T), respectively. 

lkd(v) is a 2-ball and lkaA(V) a circle. 
Arguing as in method 1 of Theorem 1 one can show: 

(1) relbd(Ika(v)) = lk~a(v) and 
(2) lk~(v) contains a 2-ball C with relint(C) c in t (T)  and relbd(C) c O(T). 

Observe that since relbd(C) (a circle) is homotopic to a point within T, C either cuts 
A into a 3-ball A1 and its complement (Fig. 1), or it cuts T into a cylinder (Fig. 2). 

We look at an almost cutting triangle abc of C with exterior edges ab and bc. 
C divided Ik~(b) into two arcs each of which yields a cutting triangle. Call those 

cutting triangles T1 and Ta. T1 and T2 must be distinct and they share the vertex b. 
If either T1 or T: cuts T as in Fig. 1, we obtain a contradiction to Theorem 1. So 

assume both T1 and T2 cut T into a cylinder (as in Fig. 2). Then T1 and T2 cut A into 
a 3-ball A ~ and its complement. In A '1, if T1 and T2 are faces of the same tetrahedron 

Fig. 1. 

T Il l  II 

t e C 

Fig. 2. 
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then we can remove that tetrahedron, leaving a triangulation of a 3-ball with one 
tetrahedron of type 2 and the rest of type 1; this contradicts Theorem 1. On the other 
hand, if T1 and 7"2 belong to different tetrahedra in A ~, Lemma 1 is contradicted. Thus 
A cannot exist. [] 

4. Remarks 

From our results it follows that there is no triangulation of a 3-bail in which (i) one 
or two tetrahedra are of type 2 and (ii) the remaining tetrahedra are of type 1. 
However, by taking the join of a vertex with a triangulation of 2-sphere and removing 
a tetrahedron from the new complex, we obtain a triangulation of a 3-ball in which 
three tetrahedra are of type 2 and the rest are of type 1; this construction works in 
higher dimensions as well. However, it is not known if the d-ball B d has a triangulation 
without interior vertices, in which (i) 0 ~< n < d d-simplices are of type 2 (i.e., have 
exactly two (d - 1)-faces on O(Bn)) and (ii) the remaining d-simplices are of type 1. It 
is also not known if any 3-manifold with boundary other than the 3-ball can be 
triangulated such that every tetrahedron is of type 1. 

Acknowledgements 

We thank Richard Stanley for finding an error in an earlier version of method 1 of 

Theorem 1. 

References 

[1] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin.Theory Ser. A 49 (1988) 
381-383. 

[2] Problems Presented at the DIMACS Workshop on Polytopes and Convex Sets, Rutgers University, 
New Brunswick, Jan. 8-12, 1990. 

I3] M.E. Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. 64 (1958) 90-91. 


