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In this paper we study different algorithms for reflected backward stochastic differential
equations (BSDE in short) with two continuous barriers based on the framework of using a
binomial tree to simulate 1-d Brownianmotion.We introduce numerical algorithms by the
penalization method and the reflected method, respectively. In the end simulation results
are also presented.
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1. Introduction

Non-linear backward stochastic differential equations (BSDEs in short) were firstly studied in [1], who proved the
existence and uniqueness of the adapted solution, under smooth square integrability assumptions on the coefficient and
the terminal condition, plus that the coefficient g(t, ω, y, z) is (t, ω)-uniformly Lipschitz in (y, z). Then El Karoui et al.
introduced the notion of reflected BSDE (RBSDE in short) [2], with one continuous lower barrier. More precisely, a solution
for such an equation associated to a coefficient g , a terminal value ξ , a continuous barrier Lt , is a triplet (Yt , Zt , At)0≤t≤T of
adapted processes valued in R1+d+1, which satisfies

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds + AT − At +

∫ T

t
ZsdBs, 0 ≤ t ≤ T , a.s.,

and Yt ≥ Lt a.s. for any 0 ≤ t ≤ T . At is non-decreasing continuous, and Bt is a d-dimensional Brownian motion. The role of
At is to push upward the process Y in a minimal way, in order to keep it above L. In this sense it satisfies

 T
0 (Ys − Ls)dAs = 0.

Following this paper, Cvitanic and Karatzas [3], introduced the notion of reflected BSDE with two continuous barriers. In
this case a solution of such an equation associated to a coefficient g , a terminal value ξ , a continuous lower barrier Lt and
a continuous upper barrier Ut , with Lt ≤ Ut and LT ≤ ξ ≤ UT a.s., is a quadruple (Yt , Zt , At , Kt)0≤t≤T of adapted processes,
valued in R1+d+1, which satisfies

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds + AT − At − (KT − Kt)−

∫ T

t
ZsdBs, 0 ≤ t ≤ T , a.s.,
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and Lt ≤ Yt ≤ Ut , a.s. for any 0 ≤ t ≤ T . Here At and Kt are increasing continuous process, whose roles are to keep the
process Y between L and U in such a way that∫ T

0
(Ys − Ls)dAs = 0 and

∫ T

0
(Ys − Us)dKs = 0.

Aiming to prove the existence and uniqueness of a solution, themethod is based on a Picard-type iteration procedure, which
requires at each step the solution of a Dynkin game problem. Furthermore, the authors proved the existence result by the
penalization method when the coefficient g does not depend on z. In 2004 [4], Lepeltier and San Martin relaxed in some
sense the condition on the barriers, proved by a penalization method an existence result, without any assumption other
than the square integrability one on L and U , but only when there exists a continuous semi-martingale with terminal value
ξ , between L andU . More recently, Lepeltier and Xu [5] studied the case when the barriers are right continuous and left limit
(RCLL in short), and proved the existence and uniqueness of a solution in both Picard iteration and penalization method. In
2005, Peng and Xu [6] considered the most general case when barriers are just L2-processes by the penalization method,
and studied a special penalization BSDE, which penalized with two barriers at the same time, and proved that the solutions
of these equations converge to the solution of reflected BSDE.

The calculation and simulation of BSDEs is essentially different from those of SDEs (see [7]).When g is linear in y and z, we
may solve the solution of BSDE by considering its dual equation,which is a forward SDE. However for nonlinear cases of g , we
cannot find the solution explicitly. Here our numerical algorithms are based on approximating Brownianmotion by random
walk. This method was first considered by Peng and his students in 2000 (cf. Introduction in [8]). The convergence of this
type of numerical algorithms is proved by Briand et al. in 2000 [9] and 2002 [10]. In 2002,Mémin et al. studied the algorithms
for reflected BSDE with one barrier and proved its convergence (cf. [11]). Peng and Xu in [8] studied the convergence results
of an explicit scheme based on this kind of algorithm, which is efficient in programming. Recently Chassagneux also studied
discrete-time approximation of doubly reflected BSDE in [12] from another point of view.

In this paper, we consider different numerical algorithms for a reflected BSDE with two continuous barriers. The basic
idea is to approximate a Brownian motion by randomwalks based on the binary tree model. Compared with the one barrier
case (cf. [11]), the additive barrier brings more difficulties in proving the convergence of the algorithm, which requires us to
get a finer estimation. If we combine it with a diffusion process, and assume the coefficient to be a deterministic function,
thenwith the help of non-linear Feymann–Kac formulae,we know that the solution of BSDE equals the solution of variational
inequality. In such a case, our algorithmwill coincide with the finite differencemethod of variational inequality (cf. [13,14]).
The algorithm studied in this paper is in a stochastic point of view, in fact the coefficient of reflected BSDE can be a random
function. When the Brownian motion is 1-dimensional, our algorithms have advantages in computer programming. In fact
we developed a software package based on these algorithms for a BSDE with two barriers. Furthermore it also contains
programs for classical BSDEs and reflected BSDEs with one barrier. One significant advantage of this package is that the
users have a very convenient user–machine interface. Any user who knows the basics of BSDE can run this package without
difficulty. Meanwhile, we can also generalize algorithms in this paper to multi-dimensional Brownian motion, which will
require a huge amount of calculation. So we will not discuss this subject in this paper.

This paper is organized as follows. In Section 2, we recall some classical results of reflected BSDE with two continuous
barriers, and discretization for reflected BSDE. In Section 3, we introduce implicit and implicit–explicit penalization schemes
and prove their convergence. In Section 4, we study implicit and explicit reflected schemes, and get their convergence. In
Section 5, we present some simulations for reflected BSDE with two barriers. The proof of the convergence of penalization
solutions is in Appendix.

We should point out that recently there have been many different algorithms for computing solutions of BSDEs and
the related results in numerical analysis, for example [15,9,16–20]. In contrast to these results, our methods can easily be
realized by computing the 1-dimensional Brownian motion case. In the multi-dimensional case, the algorithms are still
suitable, however to realize them by computation is difficult, since it will require larger amount of calculation than the
1-dimensional case.

2. Preliminaries: reflected BSDEs with two barriers and basic discretization

Let (Ω,F , P) be a complete probability space, (Bt)t≥0 a 1-dimensional Brownian motion defined on a fixed interval
[0, T ], with a fixed T > 0. We denote by {Ft}0≤t≤T the natural filtration generated by the Brownian motion B, i.e.,
Ft = σ {Bs; 0 ≤ s ≤ t} augmented with all P-null sets of F . Here we mainly consider the 1-dimensional case, since the
solution of reflected BSDE is 1-dimensional. In fact, we can also generalize algorithms in this paper to multi-dimensional
Brownian motion, which will require a huge amount of calculation. So we will not discuss this subject in this paper. Now
we introduce the following spaces for p ∈ [1,∞):

• Lp(Ft) := {R-valuedFt-measurable random variables X s.t. E[|X |
p
] < ∞};

• LpF (0, t) := {R-valued and Ft-adapted processes ϕ defined on [0, t], s.t. E
 t
0 |ϕs|

pds < ∞};
• Sp(0, t) := {R-valued and Ft-adapted continuous processes ϕ defined on [0, t], s.t. E[sup0≤t≤T |ϕt |

2
] < ∞};

• Ap(0, t) := {increasing processes in Sp(0, t)with A(0) = 0}.

We are especially interested in the case p = 2.
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2.1. Reflected BSDE: definition and convergence results

The random variable ξ is considered as a terminal value, satisfying ξ ∈ L2(FT ). Let g : Ω × [0, T ] × R × R → R be a
(t, ω)-uniformly Lipschitz function in (y, z), i.e., there exists a fixed µ > 0 such that

|g(t, y1, z1)− g(t, y2, z2)| ≤ µ(|y1 − y2| + |z1 − z2|) ∀t ∈ [0, T ], ∀(y1, z1), (y2, z2) ∈ R × R. (1)

And g(·, 0, 0) is a progressively measurable square integrable process.
The solution of our BSDE with two barriers is reflected between a lower barrier L and an upper barrier U , which are

supposed to satisfy

Assumption 2.1. L and U are Ft-progressively measurable continuous processes valued in R, such that

E
[
sup

0≤t≤T
((Lt)+)2 + sup

0≤t≤T
((Ut)

−)2
]
< ∞ (2)

and there exists a continuous process Xt = X0 −
 t
0 σsdBs + V+

t − V−

t where σ ∈ L2F (0, T ), V
+ and V− are (Ft)-adapted

continuous increasing processes with E[|V+

T |
2
] + E[|V−

T |
2
] < ∞ such that

Lt ≤ Xt ≤ Ut , P-a.s. for 0 ≤ t ≤ T .

Remark 2.1. Condition (2) permits us to treat situations when Ut ≡ +∞ or Lt ≡ −∞, t ∈ [0, T ], in such cases the
corresponding reflected BSDE with two barriers becomes a reflected BSDE with a single lower barrier L or a single upper
barrier U , respectively.

Definition 2.1. The solution of a reflected BSDE with two continuous barriers is a quadruple (Y , Z, A, K) ∈ S2(0, T ) ×

L2F (0, T )× A2(0, T )× A2(0, T ) defined on [0, T ] satisfying the following equations

−dYt = g(t, Yt , Zt)dt + dAt − dKt − ZtdBt , YT = ξ (3)
Lt ≤ Yt ≤ Ut , dAt ≥ 0, dKt ≥ 0, dAt · dKt = 0

and the reflecting conditions∫ T

0
(Yt − Lt)dAt =

∫ T

0
(Yt − Ut)dKt = 0. (4)

To prove the existence of the solution, the penalization method is important. Thanks to the convergence results of the
penalization solution in [4,21] for the continuous barriers’ case andmethods in [6], we have the following results, especially
it gives the convergence speed of penalization solutions.

Theorem 2.1. (a) There exists a unique solution (Y , Z, A, K) of reflected BSDE, i.e. it satisfies (3), (4). Moreover it is the limit of
penalization solutions (Ym,p

t ,Zm,p
t ,Am,p

t ,Km,p
t ) as m → ∞ then p → ∞, or equivalent as q → ∞ then m → ∞. Here

the penalization solution (Ym,p
t ,Zm,p

t ,Am,p
t ,Km,p

t ) with respect to two barriers L and U is defined, for m ∈ N, p ∈ N, as the
solution of a classical BSDE

−dYm,p
t = g(t,Ym,p

t ,Zm,p
t )dt + m(Ym,p

t − Lt)−dt − p(Ym,p
t − Ut)

+dt −Zm,p
t dBt , (5)Ym,p

T = ξ .

And we setAm,p
t = m

 t
0 (
Ym,p
s − Ls)−ds,Km,p

t = p
 t
0 (
Ym,p
s − Us)

+ds.
(b) Consider a special penalized BSDE for the reflected BSDE with two barriers: for any p ∈ N,

−dY p
t = g(t, Y p

t , Z
p
t )dt + p(Y p

t − Lt)−dt − p(Y p
t − Ut)

+dt − Zp
t dBt , (6)

Y p
T = ξ,

with Ap
t =

 t
0 p(Y p

s − Ls)−ds and K p
t =

 t
0 p(Y p

s − Us)
+ds. Then we have, as p → ∞, Y p

t → Yt in S2(0, T ), Zp
t → Zt

in L2F (0, T ) and Ap
t → At weakly in S2(0, T ) as well as K p

t → Kt . Moreover there exists a constant C depending on
ξ, g(t, 0, 0), µ, L and U, such that

E
[
sup

0≤t≤T
|Y p

t − Yt |
2
+

∫ T

0
|Zp

t − Zt |2dt + sup
0≤t≤T

[(At − Kt)− (Ap
t − K p

t )]
2
]

≤
C

√
p
. (7)

The proof is based on the results in [4,6], we put it in Appendix.



1140 M. Xu / Journal of Computational and Applied Mathematics 236 (2011) 1137–1154

Remark 2.2. In the following, we focus on the penalized BSDE as (7), which considers the penalization with respect to the
two barriers at the same time. And p in superscribe always stands for the penalization parameter.

Now we consider a special case: Assume that

Assumption 2.2. L and U are Itô processes of the following form

Lt = L0 +

∫ t

0
lsds +

∫ t

0
σ l
sdBs, (8)

Ut = U0 +

∫ t

0
usds +

∫ t

0
σ u
s dBs.

Suppose that ls and us are right continuous with left limits (RCLL in short) processes, σ l
s and σ u

s are predictable with
E
 T
0 [|ls|2 + |σ l

s |
2
+ |us|

2
+ |σ u

s |
2
]ds < ∞.

It is easy to check that if Lt ≤ Ut , then Assumption 2.1 is satisfied. We may just set X = L or U , with σs = σ l
s or σ

u
s and

V±
=

0 l

±
s ds or


0 u

±
s ds. Here l±s (resp. u±

s ) is the positive or the negative part of l (resp. u). As Proposition 4.2 in [2], we
have following proposition for two increasing processes, which can give us the integrability of the increasing processes by
barriers.

Proposition 2.1. Let (Y , Z, A, K) be a solution of reflected BSDE (3). Then Zt = σ l
t , a.s.-dP × dt on the set {Yt = Lt}, Zt = σ u

t ,
a.s.-dP × dt on the set {Yt = Ut}. And

0 ≤ dAt ≤ 1{Yt=Lt }[g(t, Lt , σ
l
t )+ lt ]−dt,

0 ≤ dKt ≤ 1{Yt=Ut }[g(t,Ut , σ
u
t )+ ut ]

+dt.

So there exist positive predictable processesα andβ , with 0 ≤ αt , βt ≤ 1, such that dAt = αt1{Yt=Lt }[g(t, Lt , σ
l
t )+lt ]−dt, dKt =

βt1{Yt=Ut }[g(t,Ut , σ
u
t )+ ut ]

+dt.

Proof. We can prove these results easily by using similar techniques as in Proposition 4.2 in [2], in view that on the set
{Lt = Ut}, we have σ l

t = σ u
t and lt = ut . So we omit the details of the proof here. �

In the following, we will assume Assumption 2.2 hold for two barriers.

2.2. Approximation of Brownian motion and parameters of reflected BSDE

We use random walk to approximate the Brownian motion. Consider for each j = 1, 2, . . . ,

Bn
t :=

√
δ

[t/δ]−
j=1

εnj , for all 0 ≤ t ≤ T , δ =
T
n
,

where {εnj }
n
j=1 is a {1,−1}-valued i.i.d. sequence with P(εnj = 1) = P(εnj = −1) = 0.5, i.e., it is a Bernoulli sequence. We

consider the discrete filtration Gn
j := σ {εn1, . . . , ε

n
j }. Set tj = jδ, for j = 0, 1, . . . , n. We denote by Dt the space of RCLL

functions from [0, t] in R, endowed with the topology of uniform convergence, and we assume that:

Assumption 2.3. Γ : DT → R is K -Lipschitz. We consider ξ = Γ (B), which is FT -measurable and ξ n = Γ (Bn), which is
Gn
n-measurable, such that

E[|ξ |2] + sup
n

E[|ξ n|2] < ∞.

For the coefficient g(y, z), we also need to consider its approximation (gn
j (y, z))0≤j≤n, which is Gn

j -adapted, and satisfies
the following assumption:

Assumption 2.4. gn(y, z) is Lipschitz in (y, z) with the same µ for all n, and there exists a constant Cg such that for all
n > 1 + 2µ+ 2µ2,

E


n−1−
j=0

|gn
j (0, 0)|

2 1
n


< Cg .

And if we set gn(t, y, z) = gn
[t/δ](y, z), then gn(t, y, z) converges to g(t, y, z) in S2(0, T ).

Remark 2.3. If the coefficient takes the form as g = g(t, (Bs)0≤s≤t , y, z), then its natural candidate of approximation is
gn
j (y, z) = g(tj, (Bn

s )0≤s≤t , y, z). Assume that g is Lipschitz in B and t → g(t, B, y, z) is continuous, we know that gn
j satisfies

Assumption 2.4.
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Remark 2.4. When g is a deterministic function, gn
j (y, z) = g(tj, y, z) is an approximation of g satisfying Assumption 2.4,

if t → g(t, y, z) is continuous.

Now we consider the approximation of the barriers L and U . Notice that L and U are progressively measurable with
respect to the filtration (Ft), which is generated by Brownian motion. So they can be presented as a functional of Brownian
motion, i.e. for each t ∈ [0, T ], Lt = Ψ1(t, (Bs)0≤s≤t) and Ut = Ψ2(t, (Bs)0≤s≤t), where Ψ1(t, ·) and Ψ2(t, ·) : Dt → R. And
we assume that Ψ1(t, ·) and Ψ2(t, ·) are Lipschitz. Then we get the discretizaton of the barriers Lnj = Ψ1(tj, (Bn

s )0≤s≤t) and
Un
t = Ψ2(tj, (Bn

s )0≤s≤t). If Lt ≤ Ut , then Lj ≤ Uj. On the other hand, we can consider barriers which are Itô processes and
satisfy Assumption 2.2. So we have a natural approximation: for j = 1, 2, . . . , n,

Lnj = L0 + δ

j−1−
i=0

li +
j−1−
i=0

σ l
i ε

n
i+1

√
δ,

Un
j = U0 + δ

j−1−
i=0

ui +

j−1−
i=0

σ u
i ε

n
i+1

√
δ

where li = lti , σ
l
i = σ l

ti , ui = uti , σ
u
i = σ u

ti . Then Lnj and Un
j are discrete versions of L and U , with supn E[supj((Lnj )

+)2 +

supj((Un
j )

−)2] < ∞ and Lnj ≤ Un
j still hold. In the following, we may use both approximations, depending on different

situations.
In this paper, we study two different types of numerical schemes. The first one is based on the penalization approach,

whereas the second is to obtain the solution Y by reflecting it between L and U and get two reflecting processes A and K
directly. Throughout this paper, n always stands for the discretization of the time interval. And process (φn

j )0≤j≤n is a discrete
process with n + 1 values, for φ = L,U, yp, y, etc.

3. Algorithms based on penalization BSDE and their convergence

3.1. Discretization of penalization BSDE and penalization schemes

First we consider the discretization of penalized BSDE (7) with respect to two discrete barriers Ln and Un. After the
discretization of time interval and approximating parameters, we get the following discrete backward equation on the small
interval [tj, tj+1], for j = 0, 1, . . . , n − 1,

yp,nj = yp,nj+1 + gn
j (y

p,n
j , zp,nj )δ + ap,nj − kp,nj − zp,nj

√
δεnj+1, (9)

ap,nj = pδ(yp,nj − Lnj )
−, kp,nj = pδ(yp,nj − Un

j )
+.

The terminal condition is yp,nn = ξ n. Since for a large fixed p > 0, (6) is in fact a classical BSDE. By numerical algorithms for
BSDEs (cf. [22]), explicit scheme gives zp,nj =

1
δ
E[yp,nj+1ε

n
j+1|G

n
j ] =

1
2
√
δ
(yp,nj+1|εj+1=1 − yp,nj+1|εj+1=−1), and yp,nj is solved from the

inversion of the following mapping

yp,nj = (Θp)−1(E[yp,nj+1|G
n
j ]),

whereΘp(y) = y − gn
j (y, z

p,n
j )δ − pδ(y − Lnj )

−
+ pδ(y − Un

j )
+,

by substituting E[yp,nj+1|G
n
j ] =

1
2 (y

p,n
j+1|εnj+1=1 + yp,nj+1|εnj+1=−1) into it. And increasing processes ap,nj and kp,nj will be obtained

from (9).
Inmany cases, the inversion of the operatorΘp is not easy to solve. Sowe apply the implicit–explicit penalization scheme

to (9), replacing yp,nj in g by E[yp,nj+1|G
n
j ], and get

ȳp,nj = ȳp,nj+1 + gn
j (E[ȳp,nj+1|G

n
j ], z̄

p,n
j )δ + ap,nj − k

p,n
j − z̄p,nj

√
δεnj+1

ap,nj = pδ(ȳp,nj − Lnj )
−, k

p,n
j = pδ(ȳp,nj − Un

j )
+.

In the same way, we get z̄p,nj =
1
δ
E[ȳp,nj+1ε

n
j+1|G

n
j ] =

1
2
√
δ
(ȳp,nj+1|εnj+1=1 − ȳp,nj+1|εnj+1=−1) and

ȳp,nj = E[ȳp,nj+1|G
n
j ] + gn

j (E[ȳp,nj+1|G
n
j ], z̄

p,n
j )δ + ap,nj − k

p,n
j . (10)

Solving this equation, we obtain

yp,nj = E[yp,nj+1|G
n
j ] + gn

j (E[yp,nj+1|G
n
j ], z

p,n
j )δ +

pδ
1 + pδ

(E[yp,nj+1|G
n
j ] + gn

j (E[yp,nj+1|G
n
j ], z

p,n
j )δ − Lnj )

−

−
pδ

1 + pδ
(E[yp,nj+1|G

n
j ] + gn

j (E[yp,nj+1|G
n
j ], z

p,n
j )δ − Un

j )
+
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with E[ȳp,nj+1|G
n
j ] =

1
2 (ȳ

p,n
j+1|εnj+1=1 + ȳp,nj+1|εnj+1=−1). The increments of increasing processes are given by

ap,nj =
pδ

1 + pδ
(E[ȳp,nj+1|G

n
j ] + gn

j (E[ȳp,nj+1|G
n
j ], z̄

p,n
j )δ − Lnj )

−,

k
p,n
j =

pδ
1 + pδ

(E[ȳp,nj+1|G
n
j ] + gn

j (E[ȳp,nj+1|G
n
j ], z̄

p,n
j )δ − Un

j )
+.

3.2. Convergence of penalization schemes and estimations

First we give the following lemma, which is proved in [11]. This Gronwall type lemma is classical but here it is given with
a more detailed formulation.

Lemma 3.1. Let a, b and α be positive constants, δb < 1 and a sequence (vj)j=1,...,n of positive numbers such that, for every j

vj + α ≤ a + bδ
j−

i=1

vi. (11)

Then

sup
j≤n
vj + α ≤ aEδ(b),

where Eδ(b) = 1 +
∑

∞

p=1
bp
p (1 + δ) · · · (1 + (p − 1)δ), which is a convergent series.

Notice the Eδ(b) is increasing in δ and δ < 1
b , so we can replace the right hand side of (11) by a constant depending on b.

We define the discrete solutions, (Y p,n
t , Zp,n

t , Ap,n
t , K p,n

t ) by the implicit penalization scheme

Y p,n
t = yp,n

[t/δ], Zp,n
t = zp,n

[t/δ], Ap,n
t =

[t/δ]−
m=0

ap,nm , K p,n
t =

[t/δ]−
m=0

kp,nm ,

or (Ȳ p,n
t , Z̄p,n

t , A
p,n
t , K̄ p,n

t ) by the implicit–explicit penalization scheme,

Ȳ p,n
t = ȳp,n

[t/δ], Z̄p,n
t = z̄p,n

[t/δ], A
p,n
t =

[t/δ]−
m=0

ap,nm , K̄ p,n
t =

[t/δ]−
m=0

k
p,n
m .

Let us notice that the laws of the solutions (Y p, Zp, Ap, K p) and (Y p,n, Zp,n, Ap,n, K p,n) or (Ȳ p,n, Z̄p,n, A
p,n
, K̄ p,n) to penalized

BSDEdepend only on (PB,Γ
−1(PB), g,Ψ−1

1 (PB),Ψ
−1
2 (PB)) and (PBn ,Γ

−1(PBn), g,Ψ−1
1 (PBn),Ψ

−1
2 (PBn))wherePB (resp.PBn )

is the probability introduced by B (resp. Bn), and f −1(PB) (resp. f −1(PBn)) is the law of f (B) (resp. f (Bn)) for f = Γ ,Ψ1,Ψ2.
So if we concern the convergence in law, we can consider these equations on any probability space.

By Donsker’s theorem and Skorokhod’s representation theorem, there exists a probability space, such that sup0≤t≤T |Bn
t −

Bt | → 0, as n → ∞, in L2(FT ), since εk is in L2+δ . So we will work on this space with respect to the filtration generated by
Bn and B, trying to prove the convergence of solutions. Thanks to the convergence of Bn, (Ln,Un) also converges to (L,U).
Then we have the following result, which is based on the convergence results of numerical solutions for BSDE (cf. [9,10])
and the penalization method for reflected BSDE (Theorem 2.1).

Remark 3.1. When g is a stochastic function, we do not have a result on convergence rate from the beginning paper [9,10].
When g is a deterministic function, we can put the equation into a Markovian framework as mentioned in the Introduction.
In such a case this algorithm coincides with the difference method for PDE, where there is many convergence rate results
(cf. [13,14]).

Proposition 3.1. Assuming 2.3 and 2.4 hold, the sequence (Y p,n
t , Zp,n

t ) converges to (Yt , Zt) in the following sense

lim
p→∞

lim
n→∞

E
[
sup

0≤t≤T
|Y p,n

t − Yt |
2
+

∫ T

0
|Zp,n

s − Zs|2ds
]

→ 0, (12)

and for 0 ≤ t ≤ T , Ap,n
t − K p,n

t → At − Kt in L2(Ft), as n → ∞, p → ∞.

Remark 3.2. From later studies, we know that the order of taking limits is not important, by the convergence of reflected
algorithm(s). In fact, in practice, we can choose p independent of n, i.e. we can choose p much larger than n. This is shown
in the simulation.
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Proof. Notice

E
[
sup

0≤t≤T
|Y p,n

t − Yt |
2
+

∫ T

0
|Zp,n

s − Zs|2ds
]

≤ 2E
[
sup

0≤t≤T
|Y p,n

t − Y p
t |

2
+

∫ T

0
|Zp,n

s − Zp
s |

2ds
]

+ 2E
[
sup

0≤t≤T
|Y p

t − Yt |
2
+

∫ T

0
|Zp

s − Zs|2ds
]
.

By the convergence results of numerical solutions for BSDE (cf. [9,10]), the first expectation tends to 0. For the second
expectation, it is a direct application of Theorem 2.1 of the penalizationmethod. Sowe get (12). For the increasing processes,
we have

E[((Ap,n
t − K p,n

t )− (At − Kt))
2
] ≤ 2E[((Ap,n

t − K p,n
t )− (Ap

t − K p
t ))

2
] + 2E[((Ap

t − K p
t )− (At − Kt))

2
]

≤ 2E[((Ap,n
t − K p,n

t )− (Ap
t − K p

t ))
2
] +

C
√
p
,

in view of (7). While for fixed p,

Ap,n
t − K p,n

t = Y p,n
0 − Y p,n

t −

∫ t

0
g(s, Y p,n

s , Zp,n
s )ds +

∫ t

0
Zp,n
s dBn

s ,

Ap
t − K p

t = Y p
0 − Y p

t −

∫ t

0
g(s, Y p

s , Z
p
s )ds +

∫ t

0
Zp
s dBs,

from Corollary 14 in [10], we know that


·

0 Z
p,n
s dBn

s converges to


·

0 Z
p
s dBs in S2(0, T ), as n → ∞, then with the Lipschitz

condition of g and the convergence of Y p,n, we get (Ap,n
t − K p,n

t ) → (At − Kt) in L2(Ft), as n → ∞, p → ∞. �

Now we consider the implicit–explicit penalization scheme. From Proposition 5 in [8], we know that for the
implicit–explicit scheme, the difference between this solution and the totally implicit one depends onµ+p for fixed p ∈ N.
So we have

Proposition 3.2. For any p ∈ N, when n → ∞,

E
[
sup

0≤t≤T
|Y

p,n
t − Y p,n

t |
2
]

+

∫ T

0
|Z

p,n
s − Zp,n

s |
2ds → 0,

with (A
p,n
t − K

p,n
t )− (Ap,n

t − K p,n
t ) → 0 in L2(Ft), for 0 ≤ t ≤ T .

Proof. The convergence of (Y
p,n
t , Z

p,n
t ) to (Y p,n

t , Zp,n
t ) is a direct consequence of Proposition 5 in [8]. More precisely, there

exists a constant C which depends only on µ and T , such that

E
[
sup

0≤t≤T
|Y

p,n
t − Y p,n

t |
2
]

+ E
∫ T

0
|Z

p,n
s − Zp,n

s |
2ds ≤ Cδ2.

The rest is to consider the convergence of the increasing processes, notice that for 0 ≤ t ≤ T ,

A
p,n
t − K

p,n
t = Y

p,n
0 − Y

p,n
t −

∫ t

0
g(s, Y

p,n
s , Z

p,n
s )ds +

∫ t

0
Z
p,n
s dBn

s ,

compare with Ap,n
t − K p,n

t = Y p,n
0 − Y p,n

t −
 t
0 g(s, Y p,n

s , Zp,n
s )ds +

 t
0 Zp,n

s dBn
s , thanks to the Lipschitz condition of g and the

convergence of (Y
p,n
, Z

p,n
), we get A

p,n
t − K

p,n
t → Ap,n

t − K p,n
t , in L2(Ft), as n → ∞, for fixed p. So the result follows. �

Remark 3.3. From this proposition and Proposition 3.1, we get the convergence of the implicit–explicit penalization
scheme.

Before going further, we prove an a-priori estimation of (yp,n, zp,n, ap,n, kp,n). This result will help us to get the
convergence of the reflected scheme, which will be discussed in the next section. Throughout this paper, we use Cφ,ψ,...
to denote a constant which depends on φ,ψ, . . . . Here φ,ψ, . . . can be random variables or stochastic processes.

Lemma 3.2. For each p ∈ N and δ such that δ(1 + 2µ+ 2µ2) < 1, there exists a constant c such that

E


sup

j
|yp,nj |

2
+

n−
j=0

|zp,nj |
2δ +

1
pδ

n−
j=0

|ap,nj |
2
+

1
pδ

n−
j=0

|kp,nj |
2


≤ cCξn,g,Ln,Un .

Here Cξn,gn,Ln,Un depends on ξ n, gn, (Ln)+ and (Un)−, while c depends only on µ and T .
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Proof. Recall (9), we apply the ‘discrete Itô formula’ (cf. [11]) for (yp,nj )2, and get

E


|yp,nj |

2
+

n−1−
i=j

|zp,ni |
2δ


≤ E[|ξ n|2] + 2


n−1−
i=j

yp,ni |gn
i (y

p,n
i , zp,ni )|δ


+ 2E

n−1−
i=j

(yp,ni · ap,ni − yp,ni · kp,ni ).

Since yp,ni · ap,ni = −pδ((yp,ni − Lni )
−)2 + pδLni (y

p,n
i − Lni )

−
=

1
pδ a

p,n
i + Lni a

p,n
i and yp,ni · kp,ni = pδ((yp,ni −Un

i )
+)2 +Un

i pδ(y
p,n
i −

Un
i )

+
=

1
pδ k

p,n
i + Un

i k
p,n
i , we have

E


|yp,nj |

2
+

1
2

n−1−
i=j

|zp,ni |
2δ


+ 2E


1
pδ

n−1−
i=j

(ap,ni )2 +
1
pδ

n−1−
i=j

(kp,ni )2



≤ E


|ξ n|2 +

n−1−
i=j

|gn
i (0, 0)|

2δ + (1 + 2µ+ 2µ2)

n−1−
i=j

|yp,ni |
2δ + 2

n−1−
i=j

(Lni )
+ap,ni + 2

n−1−
i=j

(Un
i )

−kp,ni



≤ E


|ξ n|2 +

n−1−
i=j

|gn
i (0, 0)|

2δ


+ (1 + 2µ+ 2µ2)δE

n−1−
i=j

|yp,ni |
2
+

1
α
E


n−1−
i=j

ap,ni

2

+αE sup
j≤i≤n−1

((Lni )
+)2 +

1
β
E


n−1−
i=j

kp,ni

2

+ βE sup
j≤i≤n−1

((Un
i )

+)2.

Since Ln and Un are approximations of Itô processes, we can find a process Xn
j of the form Xn

j = X0 −
∑j−1

i=0 σiε
n
i+1

√
δ +

V+n
j −V−n

j , where V±n
j are Gn

j -adapted increasing processes with E[|V+n
n |

2
+|V−n

n |
2
] < +∞, and Lnj ≤ Xn

j ≤ Un
j holds. Then

applying similar techniques of stopping times as in the proof of Lemma 2 in [4] for the discrete case with Lnj ≤ Xn
j ≤ Un

j , we
can prove

E


n−1−
i=j

ap,ni

2

+ E


n−1−
i=j

kp,ni

2

≤ 3µ


Cξn,gn,Xn + E

n−1−
i=j


|yp,ni |

2
+ |zp,ni |

2 δ .
While Xn can be dominated by Ln and Un, we can replace it by Ln and Un. Set α = β = 12µ in the previous inequality, with
Lemma 3.1, we get

sup
j

E

|yp,nj |

2
+ E


n−1−
i=0

|zp,ni |
2δ


+

1
pδ

n−1−
i=0

(ap,ni )2 +
1
pδ

n−1−
i=0

(kp,ni )2 ≤ cCξn,gn,Ln,Un .

We reconsider the Itô formula for |yp,nj |
2, and take supj before expectation. Using the Burkholder–Davis–Gundy inequality

for martingale part
∑j

i=0 y
p,n
i zp,ni

√
δεni+1, with similar techniques, we get

E
[
sup

j
|yp,nj |

2
]

≤ Cξn,g,Ln,Un + CµE


n−1−
i=0

|yp,ni |
2δ


≤ Cξn,gn,Ln,Un + CµT sup

j
E[|yp,nj |

2
].

It follows the desired results. �

4. Reflected algorithms and their convergence

4.1. Reflected schemes

This type of numerical schemes is based on reflecting the solution yn between two barriers by an and kn directly. In
such a way the discrete solution yn really stays between two barriers Ln and Un. Compared with the penalized method,
the numerical solution of the reflected algorithm is truly controlled between two barriers and we can see better how the
increasing processes work during the time interval. After discretization of the time interval, our discrete reflected BSDEwith
two barriers on small interval [tj, tj+1], for j = 0, 1, . . . , n − 1, is

ynj = ynj+1 + gn
j (y

n
j , z

n
j )δ + anj − knj − znj

√
δεnj+1, (13)

with terminal condition ynn = ξ n, and constraint and discrete integral conditions hold:

anj ≥ 0, knj ≥ 0, anj · knj = 0, (14)

Lnj ≤ ynj ≤ Un
j , (ynj − Lnj )a

n
j = (ynj − Un

j )k
n
j = 0.

Note that, all terms in (13) are Gn
j -measurable except ynj+1 and εnj+1.
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Since our calculation is backward, the key point of our numerical schemes is how to solve (ynj , z
n
j , a

n
j , k

n
j ) from (13) using

the Gn
j+1-measurable random variable ynj+1 obtained in the preceding step. First znj is obtained by

znj = E[ynj+1ε
n
j+1|G

n
j ] =

1

2
√
δ
(ynj+1|εnj+1=1 − ynj+1|εnj+1=−1).

Then (13) with (14) becomes

ynj = E[ynj+1|G
n
j ] + gn

j (y
n
j , z

n
j )δ + anj − knj , anj ≥ 0, knj ≥ 0, (15)

Lnj ≤ ynj ≤ Un
j , (ynj − Lnj )a

n
j = (ynj − Un

j )k
n
j = 0.

SetΘ(y) := y − g(tj, y, znj )δ. In view of

Θ(y)−Θ(y′), y − y′


≥ (1 − δµ)|y − y′

|
2 > 0, for δ small enough, we get that in

such a caseΘ(y) is strictly increasing in y. So

y ≥ Lnj ⇐⇒ Θ(y) ≥ Θ(Lnj ),

y ≤ Un
j ⇐⇒ Θ(y) ≤ Θ(Un

j ).

Then the implicit reflected scheme gives the results with E[ynj+1|G
n
j ] =

1
2 (y

n
j+1|εnj+1=1 + ynj+1|εnj+1=−1) as follows

ynj = Θ−1(E[ynj+1|G
n
j ] + anj − knj ),

anj = (E[ynj+1|G
n
j ] + gn

j (L
n
j , z

n
j )δ − Lnj )

−,

knj = (E[ynj+1|G
n
j ] + gn

j (U
n
j , z

n
j )δ − Un

j )
+,

on the set {Lnj < Un
j }, then we know that {ynj − Lnj = 0} and {ynj − Un

j = 0} are disjoint. So with (ynj − Lnj )a
n
j =

(ynj − Un
j )k

n
j = 0, we have anj · knj = 0. On the set {Lnj = Un

j }, we get anj = (Inj )
+ and knj = (Inj )

− by definition, where
Inj := E[ynj+1|G

n
j ] + gn

j (L
n
j , z

n
j )δ − Lnj . So automatically anj · knj = 0.

Inmany cases, the inverse ofmappingΘ is not easy to solve directly, e.g. g is not a linear function on y, like g(y) = sin(y).
So we introduce the explicit reflected scheme to handle such a situation and improve efficiency. The key point is of the
explicit reflected scheme to replace ynj in gn

j by E[ȳnj+1|G
n
j ] in (15). So we get the following equation,

ȳnj = E[ȳnj+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ + anj − k

n
j , anj ≥ 0, k

n
j ≥ 0, (16)

Lnj ≤ ȳnj ≤ Un
j , (ȳnj − Lnj )a

n
j = (ȳnj − Un

j )k
n
j = 0.

Then with E[ynj+1|G
n
j ] =

1
2 (y

n
j+1|εnj+1=1 + ynj+1|εnj+1=−1), we get the solution

ynj = E[ȳnj+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z

n
j )δ + anj − k

n
j ,

anj = (E[ȳnj+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ − Lnj )

−, (17)

k
n
j = (E[ȳnj+1|G

n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ − Un

j )
+.

4.2. Convergence of reflected implicit schemes

Now we study the convergence of reflected schemes. For the implicit reflected scheme, we denote

Y n
t = yn

[t/δ], Zn
t = zn

[t/δ], An
t =

[t/δ]−
i=0

ani , K n
t =

[t/δ]−
i=0

kni ,

and for the explicit reflected scheme

Ȳ n
t = ȳn

[t/δ], Z̄n
t = z̄n

[t/δ], A
n
t =

[t/δ]−
i=0

ani , K̄ n
t =

[t/δ]−
i=0

k
n
i .

First we prove an estimation result for (yn, zn, an, kn).

Lemma 4.1. For δ such that δ(1 + 2µ+ 2µ2) < 1, there exists a constant c depending only on µ and T such that

E

sup
j

|ynj |
2
+

n−1−
j=0

|znj |
2δ +

n−1−
j=0

anj


2

+

n−1−
j=0

knj


2
 ≤ cCξn,g,Ln,Un .



1146 M. Xu / Journal of Computational and Applied Mathematics 236 (2011) 1137–1154

Proof. First we consider the estimation of ani and kni . In view of Lnj ≤ Y n
j ≤ Un

j , we have that

anj ≤ (E[Lnj+1|G
n
j ] + gn

j (L
n
j , z

n
j )δ − Lnj )

−
= δ(lj + gn

j (L
n
j , z

n
j ))

−, (18)

knj ≤ (E[Un
j+1|G

n
j ] + gn

j (U
n
j , z

n
j )δ − Un

j )
+

= δ(uj + gn
j (U

n
j , z

n
j ))

+.

We consider the following discrete BSDEs withynn =ynn = ξ n,

ynj =ynj+1 + [gn
j (ynj ,znj )+ (lj)− + gn

j (L
n
j ,znj )−]δ −znj √δεnj+1,ynj =ynj+1 + [gn

j (ynj ,znj )− (uj)
+

− gn
j (U

n
j ,znj )+]δ −znj √δεnj+1.

Thanks to the discrete comparison theorem in [11], we haveynj ≤ ynj ≤ynj , so
E
[
sup

j
|ynj |

2
]

≤ max

E
[
sup

j
|ynj |2] , E [sup

j
|ynj |2] ≤ cCξn,g,Ln,Un . (19)

The last inequality follows from estimations of the discrete solution of classical BSDE (ynj )2 and (ynj )2, which is obtained by
Itô formulae and the discrete Gronwall inequality in Lemma 3.1. For znj , we use the discrete Itô formula’ (cf. [11]) again for
(ynj )

2, and get

E|ynj |
2
+

n−1−
i=j

|zni |
2δ = E


|ξ n|2 + 2

n−1−
i=j

yni g
n
i (y

n
i , z

n
i )δ + 2

n−1−
i=j

yni a
n
i − 2

n−1−
i=j

yni k
n
i



≤ E


|ξ n|2 +

n−1−
i=j

|gn
i (0, 0)|

2δ + δ(1 + 2µ+ 2µ2)

n−1−
i=j

|yni |
2
+

1
2

n−1−
i=j

|zni |
2δ



+αE
[
sup

j
((Lnj )

+)2 + sup
j
((Un

j )
−)2
]

+
1
α
E

n−1−
i=j

ani

2

+


n−1−
i=j

kni

2
 ,

using (yni − Lni )a
n
i = 0 and (yni − Un

i )k
n
i = 0. And from (18), we have

E


n−1−
i=j

ani

2

≤ 4δE
n−1−
i=j

[(li)2 + gn
i (0, 0)

2
+ µ|Lni |

2
+ µ|zni |

2
],

E


n−1−
i=j

kni

2

≤ 4δE
n−1−
i=j

[(ui)
2
+ gn

i (0, 0)
2
+ µ|Un

i |
2
+ µ|zni |

2
].

Set α = 32µ, it follows

E


|ynj |

2
+

1
4

n−1−
i=j

|zni |
2δ


≤ E[|ξ n|2 +


1 +

1
8µ2

 n−1−
i=j

|gn
i (0, 0)|

2δ] + δ(1 + 2µ+ 2µ2)

n−1−
i=j

|yni |
2

+ 32µ2E
[
sup

j
((Lnj )

+)2 + sup
j
((Un

j )
−)2
]

+
1

8µ2
E

n−1−
i=j

[(li)2 + (ui)
2
]

+
1
8
δE

n−1−
i=j


|Lni |

2
+ |Un

i |
2 .

With (19), we obtain
∑n−1

i=0 |zni |
2δ ≤ cCξn,gn,Ln,Un . Then applying these estimations to (18), we obtain the desired results. �

With arguments similar to those preceding Proposition 3.1, the laws of the solutions (Y , Z, A, K) and (Y n, Zn, An, K n) or
(Ȳ n, Z̄n, A

n
, K̄ n) to reflected BSDE depend only on (PB,Γ

−1(PB), g,Ψ−1
1 (PB),Ψ

−1
2 (PB)) and (PBn ,Γ

−1(PBn), g,Ψ−1
1 (PBn),

Ψ−1
2 (PBn)) where f −1(PB) (resp. f −1(PBn)) is the law of f (B) (resp. f (Bn)) for f = Γ ,Ψ1,Ψ2. So if we concern the

convergence in law, we can consider these equations on any probability space.
From Donsker’s theorem and Skorokhod’s representation theorem, there exists a probability space satisfying

sup0≤t≤T |Bn
t − Bt | → 0, as n → ∞, in L2(FT ), since εk is in L2+δ . And it is sufficient for us to prove convergence results in

this probability space. Our convergence result for the implicit reflected scheme is as follows:
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Theorem 4.1. Under Assumption 2.3 and suppose moreover that g satisfies Lipschitz condition (1), we have when n → +∞,

E[sup
t

|Y n
t − Yt |

2
] + E

∫ T

0
|Zn

t − Zt |2dt → 0, (20)

and An
t − K n

t → At − Kt in L2(Ft), for 0 ≤ t ≤ T .

Proof. The proof is done in three steps.
In the first step, we consider the difference between discrete solutions of the reflecting implicit scheme and of

penalization implicit scheme introduce in Sections 4.1 and 3.1, respectively. More precisely, we will prove that for each p,

E
[
sup

j
|ynj − yp,nj |

2
]

+ δE
n−1−
j=0

|znj − zp,nj |
2

≤ cCξn,gn,Ln,Un
1

√
p
. (21)

Here c only depends on µ and T . From (9) and (13), applying the‘discrete Itô formula’ (cf. [11]) to (ynj − yp,nj )2, we get

E|ynj − yp,nj |
2
+ δE

n−1−
i=j

|zni − zp,ni |
2

= 2E
n−1−
i=j

[(yni − yp,ni )(gn
i (y

n
i , z

n
i )− gn

i (y
p,n
i , zp,ni ))δ]

+ 2E
n−1−
i=j

[(yni − yp,ni )(ani − ap,ni )] − 2E
n−1−
i=j

[(yni − yp,ni )(kni − kp,ni )].

From (14), we have

(yni − yp,ni )(ani − ap,ni ) = (yni − Lni )a
n
i − (yp,ni − Lni )a

n
i − (yni − Lni )a

p,n
i + (yp,ni − Lni )a

p,n
i

≤ (yp,ni − Lni )
−ani − ((yp,ni − Lni )

−)2,

≤ (yp,ni − Lni )
−ani .

Similarly we have (yni − yp,ni )(kni − kp,ni ) ≥ −(yp,ni − Un
i )k

n
i . By (18) and the Lipschitz property of g , it follows

E|ynj − yp,nj |
2
+
δ

2
E

n−1−
i=j

|zni − zp,ni |
2

≤ (2µ+ 2µ2)δE
n−1−
i=j

[(yni − yp,ni )2] + 2E
n−1−
i=j

[(yp,ni − Lni )
−ani + (yp,ni − Un

i )
+kni ]

≤ (2µ+ 2µ2)δE
n−1−
i=j

[(yni − yp,ni )2] + 2


δE

n−1−
i=j

((yp,ni − Lni )
−)2

 1
2

δE

n−1−
i=j

((lj + gn
i (L

n
j , z

n
j ))

−)2

 1
2

+ 2


δE

n−1−
i=j

((yp,ni − Un
i )

+)2

 1
2

δE

n−1−
i=j

((uj + gn
i (U

n
j , z

n
j ))

+)2

 1
2

= (2µ+ 2µ2)δE
n−1−
i=j

[(yni − yp,ni )2] +
2

√
p


1
pδ

E
n−1−
i=j

(ap,ni )2

 1
2

δE

n−1−
i=j

((lj + gn
i (L

n
j , z

n
j ))

−)2

 1
2

+
2

√
p


1
pδ

E
n−1−
i=j

(kp,ni )2

 1
2

δE

n−1−
i=j

((uj + gn
i (U

n
j , z

n
j ))

+)2

 1
2

.

Then by estimation results in Lemmas 3.2 and 4.1 and the discrete Gronwall inequality in Lemma 3.1, we get

sup
j

E|ynj − yp,nj |
2
+ δE

n−1−
i=0

|zni − zp,ni |
2

≤ cCξn,gn,Ln,Un
1

√
p
.

Apply the B–D–G inequality, we obtain (21).
In the second step, we want to prove (20). We have

E
[
sup
t

|Y n
t − Yt |

2
]

+ E
[∫ T

0
|Zn

t − Zt |2dt
]
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≤ 3E
[
sup
t

|Y p
t − Yt |

2
+

∫ T

0
|Zp

t − Zt |2dt
]

+ 3E
[
sup
t

|Y n
t − Y p,n

t |
2
+

∫ T

0
|Zn

t − Zp,n
t |

2dt
]

+ 3E
[
sup
t

|Y p
t − Y p,n

t |
2
+

∫ T

0
|Zp

t − Zp,n
t |

2dt
]

≤ 3Cp−
1
2 + cCξn,g,Ln,Unp−

1
2 + 3E

[
sup
t

|Y p
t − Y p,n

t |
2
+

∫ T

0
|Zp

t − Zp,n
t |

2dt
]
,

in view of (21) and Theorem 2.1. For fixed p > 0, by convergence results of numerical algorithms for BSDE, (Theorem 12
in [10] and Theorem 2 in [8]), we know that the last two terms converge to 0, as δ → 0. And when δ is small enough,
Cξn,gn,Ln,Un is dominated by ξ n, gn, L and U . This implies that we can choose a suitable δ such that the right hand side is as
small as we want, so (20) follows.

In the last step, we consider the convergence of (An, K n). Recall that for 0 ≤ t ≤ T ,

An
t − K n

t = Y n
0 − Y n

t −

∫ t

0
g(s, Y n

s , Z
n
s )ds +

∫ t

0
Zn
s dB

n
s ,

Ap,n
t − K p,n

t = Y p,n
0 − Y p,n

t −

∫ t

0
g(s, Y p,n

s , Zp,n
s )ds +

∫ t

0
Zp,n
s dBn

s .

By (21) and the Lipschitz condition of g , we get

E[|(An
t − K n

t )− (Ap,n
t − K p,n

t )|2] ≤ cCξn,gn,Ln,Un
1

√
p
.

Since

E[|(An
t − K n

t )− (At − Kt)|
2
] ≤ 3E[|(An

t − K n
t )− (Ap,n

t − K p,n
t )|2] + 3E[|(Ap

t − K p
t )− (At − Kt)|

2
]

+ 3E[|(Ap
t − K p

t )− (Ap,n
t − K p,n

t )|2]

≤ c(Cξn,gn,Ln,Un + Cξ,g,L,U)
1

√
p

+ 3E[|(Ap
t − K p

t )− (Ap,n
t − K p,n

t )|2],

with similar techniques, we obtain E[|(An
t − K n

t )− (At − Kt)|
2
] → 0. Here the fact that (Ap,n

t − K p,n
t ) converges to (Ap

t − K p
t )

for fixed p follows from the convergence results of (Y p,n
t , Zp,n

t ) to (Y p
t , Z

p
t ). �

4.3. Convergence of the reflected explicit scheme

Then we study the convergence of the explicit reflected scheme, which is an efficient algorithm, when g is non-linear in
y and z. Before going further, we need an estimation result for (yn, zn, an, k

n
).

Lemma 4.2. For δ such that δ
 9
4 + 2µ+ 4µ2


< 1, there exists a constant c depending only on µ and T , such that

E
[
sup

j
|ynj |

2
]

+ E

n−1−
j=0

|znj |
2δ +

n−1−
j=0

k
n
j


2

+

n−1−
j=0

anj


2
 ≤ cCξn,g,Ln,Un .

Proof. We recall the explicit reflected scheme, which is: For 0 ≤ j ≤ N − 1

ȳnj = ȳnj+1 + gn
j (E[ȳnj+1|G

n
j ], z̄

n
j )δ + anj − k

n
j − z̄nj

√
δεnj+1, anj ≥ 0, k

n
j ≥ 0, (22)

Lnj ≤ ȳnj ≤ Un
j , (ȳnj − Lnj )a

n
j = (ȳnj − Un

j )k
n
j = 0.

Then we have

|ȳnj |
2

= |ynj+1|
2
− |z̄nj |

2δ + 2ȳnj+1 · gn
j (E[ynj+1|G

n
j ], z

n
j )δ + 2ȳnj · anj − 2ȳnj · k

n
j

+ |gn
j (E[ynj+1|G

n
j ], z

n
j ) |

2 δ2 − (anj )
2
− (k

n
j )

2
− 2ȳnj z̄

n
j

√
δεnj+1

+ 2gn
j (E[ynj+1|G

n
j ], z

n
j )z̄

n
j δ

√
δεnj+1 − 2(anj − k

n
j )z̄

n
j

√
δεnj+1. (23)

In view of (ynj − Lnj )a
n
j = (ȳnj − Un

j )k
n
j = 0, anj and k

n
j ≥ 0, and taking expectation, we have

E|ȳnj |
2
+ E|z̄nj |

2δ ≤ E|ynj+1|
2
+ 2E[ȳnj+1 · gn

j (E[ynj+1|G
n
j ], z

n
j )]δ + 2E[(Lnj )

+
· anj ] + E[(Un

j )
−

· k
n
j ]

+ E[|gn
j (E[ynj+1|G

n
j ], z

n
j )|

2δ2]
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≤ E|ynj+1|
2
+ (δ + 3δ2)E[|gn

j (0, 0)|
2
] +


1
4
δ + 3µ2δ2


E[(znj )

2
]

+ δ(1 + 2µ+ 4µ2
+ 3µ2δ)E|ynj+1|

2
+ 2E[(Lnj )

+
· anj ] + E[(Un

j )
−

· k
n
j ].

Taking the sum for j = i, . . . , n − 1 yields

E|ȳni |
2
+

1
2

n−1−
j=i

E|z̄nj |
2δ ≤ E|ξ n|2 + (δ + 3δ2)E

n−1−
j=i

[|gn
j (0, 0)|

2
] + δ(1 + 2µ+ 4µ2

+ 3µ2δ)E
n−1−
j=i

|ynj+1|
2

+αE
[
sup

j
((Lnj )

+)2 + sup
j
((Un

j )
+)2
]

+
1
α
E

n−1−
j=i

anj

2

+


n−1−
j=i

k
n
j

2
 , (24)

where α is a constant to be decided later. From (17), we have

anj ≤ (E[Lnj+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ − Lnj )

−
= (lj + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j ))

−δ,

k
n
j ≤ (E[Un

j+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ − Un

j )
+

= (uj + gn
j (E[ȳnj+1|G

n
j ], z̄

n
j ))

−δ.

Then we get

E


n−1−
j=i

anj

2

≤ 4δE
n−1−
j=i

[(lj)2 + gn
j (0, 0)

2
+ µ2(E[ȳnj+1|G

n
j ])

2
+ µ2(z̄nj )

2
], (25)

E


n−1−
j=i

k
n
j

2

≤ 4δE
n−1−
j=i

[(uj)
2
+ gn

j (0, 0)
2
+ µ2(E[ȳnj+1|G

n
j ])

2
+ µ2(z̄nj )

2
].

Set α = 32µ2 in (24), it follows

E|ȳni |
2
+

1
4

n−1−
j=i

E|z̄nj |
2δ ≤ E|ξ n|2 +


δ +

1
4µ2

δ + 3δ2

E

n−1−
j=i

[|gn
j (0, 0)|

2
] + 32µ2E

[
sup

j
((Lnj )

+)2 + sup
j
((Un

j )
+)2
]

+ δ


5
4

+ 2µ+ 4µ2
+ 3µ2δ


E

n−1−
j=i

|ynj+1|
2
+

1
8µ2

δE
n−1−
j=i

[(ul
i)
2
+ (uu

i )
2
].

Notice that 3µ2δ < 1, so 3µ2δ2 < δ. Then by applying the discrete Gronwall inequality in Lemma 3.1, and the estimation
of anj and k

n
j follows from (25), we get

sup
j

E

|ynj |

2
+ E

n−1−
j=0

|znj |
2δ +

n−1−
j=0

k
n
j


2

+

n−1−
j=0

anj


2
 ≤ cCξn,gn,Ln,Un .

We reconsider (23) as before, taking sum and supj, then taking the expectation, using the Burkholder–Davis–Gundy
inequality for the martingale part, with similar techniques, we get

E
[
sup

j
|ynj |

2
]

≤ Cξn,gn,Ln,Un + CµE
n−1−
j=0

|ynj |
2δ ≤ E

[
sup

j
|ynj |

2
]

≤ Cξn,gn,Ln,Un + CµT sup
j

E

|ynj |

2 ,
which implies the final result. �

Then our convergence result for the explicit reflected scheme is

Theorem 4.2. Under the same assumptions as in Theorem 4.1, when n → +∞,

E
[
sup
t

|Y
n
t − Yt |

2
]

+ E
∫ T

0
|Z

n
t − Zt |2dt → 0. (26)

And A
n
t − K

n
t → At − Kt in L2(Ft), for 0 ≤ t ≤ T .

Proof. Thanks to Theorem 4.1, it is sufficient to prove that as n → +∞,

E
[
sup

j
|ynj − ynj |

2
]

+ E
n−1−
j=0

|znj − znj |
2δ → 0. (27)
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Since

ynj = ynj+1 + gn
j (y

n
j , z

n
j )δ + anj − knj − znj

√
δεnj+1, (28)

ȳnj = E[ȳnj+1|G
n
j ] + gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ + anj − k

n
j − z̄nj

√
δεnj+1,

we get

E|ynj − ynj |
2

= E|ynj+1 − ynj+1|
2
− δE|znj − znj |

2
+ 2δE[(ynj − ynj )(g

n
j (y

n
j , z

n
j )− gn

j (E[ynj+1|G
n
j ], z

n
j ))]

− E[δ(gn
j (y

n
j , z

n
j )− gn

j (E[ynj+1|G
n
j ], z

n
j ))+ (anj − anj )− (knj − k

n
j )]

2

+ 2E[(ynj − ynj )(a
n
j − anj )] − 2E[(ynj − ynj )(k

n
j − k

n
j )]

≤ E|ynj+1 − ynj+1|
2
− δE|znj − znj |

2
+ 2δE[(ynj − ynj )(g

n
j (y

n
j , z

n
j )− gn

j (E[ynj+1|G
n
j ], z

n
j ))]

in view of

(ynj − ynj )(a
n
j − anj ) = (ynj − Lnj )a

n
j + (ynj − Lnj )(a

n
j )− (ynj − Lnj )a

n
j − (ynj − Lnj )(a

n
j )

≤ 0

(ynj − ynj )(k
n
j − k

n
j ) = (ynj − Un

j )k
n
j + (ynj − Un

j )k
n
j − (ynj − Un

j )k
n
j − (ynj − Un

j )k
n
j

≥ 0.

We take sum over j from i to n − 1, with ξ n − ξ
n

= 0, then we get

E|ynj − ynj |
2
+ δ

n−1−
j=i

E|znj − znj |
2

≤ 2δ
n−1−
j=i

E[(ynj − ynj )(g
n
j (y

n
j , z

n
j )− gn

j (E[ynj+1|G
n
j ], z

n
j ))]

≤ 2µ2δE
n−1−
j=i

|ynj − ynj |
2
+
δ

2

n−1−
j=i

E|znj − znj |
2

+ 2µδE
n−1−
j=i

|ynj − ynj | · |ynj − E[ynj+1|G
n
j ]|.

Since ȳnj − E[ȳnj+1|G
n
j ] = gn

j (E[ȳnj+1|G
n
j ], z̄

n
j )δ + anj − k

n
j , we have

2µδE

|ynj − ynj | · |ynj − E[ynj+1|G

n
j ]|


= 2µδE

|ynj − ynj | · |ynj − ynj + gn

j (E[ynj+1|G
n
j ], z

n
j )δ + anj − k

n
j |


≤ (2µ+ 1)δE


|ynj − ynj |

2
+ µ2δE


3δ2|gn

j (0, 0)|
2
+ µ2

|ynj+1|
2

+µ2
|znj |

2
+ (anj )

2
+ (k

n
j )

2

.

Then by Lemma 4.2, we obtain

E|ynj − ynj |
2
+
δ

2

n−1−
j=i

E|znj − znj |
2

≤ (2µ2
+ 2µ+ 1)δ

n−1−
j=i

E|ynj − ynj |
2
+ δCξn,g,Ln,Un . (29)

By the discrete Gronwall inequality in Lemma 3.1, we get

sup
j≤n

E|ynj − ynj |
2

≤ Cδ2e(2µ+2µ2
+1)T .

With (29), it follows E

δ
∑n−1

j=0 E|znj − znj |
2


≤ Cδ2. Then we reconsider (28), this time we take expectation after taking
square, sum and sup over j. Using the Burkholder–Davis–Gundy inequality for the martingale parts and similar techniques,
it follows that

E sup
j≤n

|ynj − ynj |
2

≤ CE


n−1−
j=0

E|ynj − ynj |
2δ


≤ CT sup

j≤n
E|ynj − ynj |

2,

which implies (27).
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Fig. 1. A solution surface of reflected BSDE with two barriers.

For the convergence of (A
n
, K

n
), we consider

A
n
t − K

n
t = Y

n
0 − Y

n
t −

∫ t

0
g(s, Y

n
s , Z

n
s )ds +

∫ t

0
Z
n
s dB

n
s ,

An
t − K n

t = Y n
0 − Y n

t −

∫ t

0
g(s, Y n

s , Z
n
s )ds +

∫ t

0
Zn
s dB

n
s ,

then the convergence results follow easily from the convergence of An, (26) and the Lipschitz condition of g . �

5. Simulations of reflected BSDE with two barriers

For computational convenience, we consider the case when T = 1. The calculation begins from ynn = ξ n and proceeds
backward to solve (ynj , z

n
j , a

n
j , k

n
j ), for j = n − 1, . . . , 1, 0. Due to the amount of computation, here we present a simple

case: ξ = Φ(B1), Lt = Ψ1(t, B(t)),Ut = Ψ2(t, B(t)), where Φ,Ψ1 and Ψ2 are real analytic functions defined on R
and [0, 1] × R respectively. As mentioned in the Introduction, we have developed a Matlab toolbox for calculating and
simulating solutions of reflected BSDEs with two barriers which has a well-designed interface to present both global
solution surface and trajectories of solution. This toolbox can be downloaded from http://www.sciencenet.cn/u/xvmingyu
or http://159.226.47.50:8080/iam/xumingyu/English/index.jsp, with clicking ‘Preprint’ on the left side.

We take the following example: g(y, z) = −5|y+ z| − 1,Φ(x) = |x|,Ψ1(t, x) = −3(x− 2)2 + 3,Ψ2(t, x) = (x+ 1)2 +

3(t − 1), and n = 400.
In Fig. 1, we can see both the global situation of the solution surface of yn and its partial situation, i.e. its trajectory. In

the upper portion of Fig. 1, it is 3-dimensional. The lower surface shows the lower barrier L, as well the upper one for the
upper barrier U . The solution yn is in the middle of them. Then we generate one trajectory of the discrete Brownian motion
(Bn

j )0≤j≤n, which is drawn on the horizontal plane. The value of ynj with respect to this Brownian sample is showed on the
solution surface. The remainder of the figure shows respectively the trajectory of the accumulating force An

j =
∑j

i=0 a
n
i and

K n
j =

∑j
i=0 k

n
i .

The lower graphs shows clearly that An (respective K n) increases only if yn touches the lower barrier Ln, i.e. on the set
{yn = Ln} (respective the upper barrier U , i.e. on the set {yn = Un

}), and they never increase at the same time.

http://www.sciencenet.cn/u/xvmingyu
http://159.226.47.50:8080/iam/xumingyu/English/index.jsp
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Fig. 2. The trajectories of solutions of (3).

In the upper portion we can see that there is an area, named Area I, (resp. Area II) where the solution surface and the
lower barrier surface (resp. the solution surface and the upper barrier surface) stick together.When the trajectory of solution
ynj goes into Area I (resp. Area II), the force An

j (resp. K n
j ) will push ynj upward (resp. downward). Indeed, if we don’t have

the barriers here, ynj intends to go up or down to cross the reflecting barrier Lnj and Un
j , so to keep ynj between Lnj and Un

j ,
the action of forces An

j and K n
j are necessary. In Fig. 1, the increasing process An

j remains zero, while K n
j increases from the

beginning. Correspondingly in the beginning ynj goes into Area II, but always stays out of Area I. Since Area I and Area II are
totally disjoint, so An

j and K n
j never increase at same time.

About this point, let us have a look at Fig. 2. This figure shows a group of 3-dimensional dynamic trajectories (tj, Bn
j , Y

n
j )

and (tj, Bn
j , Z

n
j ), simultaneously, of 2-dimensional trajectories of (tj, Y n

j ) and (tj, Z
n
j ). For the other sub-figures, the upper-

right one is for the trajectories An
j , and while the lower-left one is for K n

j , then comparing these two sub-figures, as in Fig. 1,
{anj ≠ 0} and {knj ≠ 0} are disjoint, but their complement may be not.

Now we present some numerical results using the explicit reflected scheme and the implicit–explicit penalization
scheme, respectively, with different discretization number. Consider the parameters: g(y, z) = −5|y + z| − 1,Φ(x) =

|x|,Ψ1(t, x) = −3(x − 2)2 + 3,Ψ2(t, x) = (x + 1)2 + 3t − 2.5:

n = 400, reflected explicit scheme: yn0 = −1.7312

penalization scheme: p 20 200 2000 2 × 104

yp,n0 −1.8346 −1.7476 −1.7329 −1.7314

n = 1000, reflected explicit scheme: yn0 = −1.7142

penalization scheme: p 20 200 2000 2 × 104

yp,n0 −1.8177 −1.7306 −1.7161 −1.7144

n = 2000, reflected explicit scheme: yn0 = −1.7084

penalization scheme: p 20 200 2000 2 × 104

yp,n0 −1.8124 −1.7250 −1.7103 −1.7068

n = 4000, reflected explicit scheme: yn0 = −1.7055

penalization scheme: p 20 200 2000 2 × 104

yp,n0 −1.8096 −1.7222 −1.7074 −1.7057
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From this form, first we can see that as the penalization parameter p increases, the penalization solution yp,n0 tends
increasingly to the reflected solution yn0. Second, as the discretaization parameter n increases, the differences of yn0 with
different n become smaller as well as that of yp,n0 . An important fact is that the numerical solution is stable with respect to
the penalization factor. The penalization parameter p can be chosen larger than the time discretization n. For the data, we
can know yp,n is increasing in p, which is obvious from the comparison result of BSDE. Another phenomenon is that yp,n and
yn are both increasing in n, this is because of the choice of coefficient.
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Appendix. The proof of Theorem 2.1

To complete the paper, here we give the proof of Theorem 2.1.

Proof of Theorem 2.1. (a) is the main result in [4], so we omit its proof.
Now we consider (b). The convergence of (Y p

t , Z
p
t ) is a direct consequence of [6]. For the convergence speed, the proof

is a combination of results in [4,6]. From [4], we know that for (5), as m → ∞,Ym,p
t ↗ Y p

t in S2(0, T ),Zm,p
t → Zp

t in
L2F (0, T ),Am,p

t → Ap
t in S2(0, T ), where (Y p

t , Z
p
t , A

p
t ) is a solution of the following reflected BSDE with one lower barrier L

−dY p
t = g(t, Y p

t , Z
p
t )dt + dAp

t − p(Y p
t − Ut)

+dt − Zp
t dBt , Y p

T = ξ, (30)

Y p
t ≥ Lt ,

∫ T

0
(Y p

t − Lt)dA
p
t = 0.

Set K p
t =

 t
0 p(Y p

s −Us)
+ds. Then letting p → ∞, it follows that Y p

t ↘ Yt in S2(0, T ), Zp
t → Zt in L2F (0, T ). By the comparison

theorem, dAp
t is increasing in p. So Ap

T ↗ AT , and 0 ≤ supt [A
p+1
t − Ap

t ] ≤ Ap+1
T − Ap

T . It follows that Ap
t → At in S2(0, T ). Then

with Lipschitz condition of g and convergence results, we get K p
t → Kt in S2(0, T ). Moreover from Lemma 4 in [4], we know

that there exists a constant C depending on ξ, g(t, 0, 0), µ, L and U , such that

E
[
sup

0≤t≤T
|Y p

t − Yt |
2
+

∫ T

0
(|Zp

t − Zt |2)dt
]

≤
C

√
p
.

Similarly for (5), first letting p → ∞, we getYm,p
t ↘ Y

m
t in S2(0, T ),Zm,p

t → Z
m
t in L2F (0, T ),Km,p

t → K
m
t in S2(0, T ), where

(Y
m
t , Z

m
t , K

m
t ) is a solution of the following reflected BSDE with one upper barrier U

−dY
m
t = g(t, Y

m
t , Z

m
t )dt + m(Lt − Y

m
t )

+dt − dK
m
t − Z

m
t dBt , Y

m
T = ξ, (31)

Y
m
t ≤ Ut ,

∫ T

0
(Y

p
t − Ut)dK

m
t = 0.

In the same way, as m → ∞, Y
m
t ↗ Yt in S2(0, T ), Zm

t → Zt in L2F (0, T ), and (A
m
t , K

m
t ) → (At , Kt) in (S2(0, T ))2, where

A
m
t =

 t
0 m(Ls − Y

m
s )

+ds. Also there exists a constant C depending on ξ, g(t, 0, 0), µ, L and U , such that

E
[
sup

0≤t≤T
|Y

m
t − Yt |

2
+

∫ T

0
(|Z

m
t − Zt |2)dt

]
≤

C
√
m
.

Applying the comparison theorem to (6) and (30), (6) and (31) (letm = p), we have Y
p
t ≤ Y p

t ≤ Y p
t . Then we get

E
[
sup

0≤t≤T
|Y p

t − Yt |
2
]

≤
C

√
p
,

for some constant C . To get the estimated results for Zp, we apply Itô formula to |Y p
t − Yt |

2, and get

E|Y p
0 − Y0|

2
+

1
2
E
∫ T

0
|Zp

s − Zs|2ds = (µ+ 2µ2)E
∫ T

0
|Y p

s − Ys|
2ds + 2E

∫ T

0
(Y p

s − Ys)dAp
s

− 2E
∫ T

0
(Y p

s − Ys)dAs − 2E
∫ T

0
(Y p

s − Ys)dK p
s

+ 2E
∫ T

0
(Y p

s − Ys)dKs.
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Since

2E
∫ T

0
(Y p

s − Ys)dAp
s = 2E

∫ T

0
(Y p

s − Ls)dAp
s − 2E

∫ T

0
(Ys − Ls)dAp

s

≤ 2pE
∫ T

0
(Y p

s − Ls)(Y p
s − Ls)−ds ≤ 0

and 2E
 T
0 (Y

p
s − Ys)dK

p
s ≥ 2pE

 T
0 (Y

p
s − Us)(Y

p
s − Us)

+ds ≥ 0, we have

E
∫ T

0
|Zp

s − Zs|2ds ≤
C

√
p
,

in view of the estimation of A and K and the convergence of Y p.
Now we consider the convergence of Ap and K p. Since

At − Kt = Y0 − Yt −

∫ t

0
g(s, Ys, Zs)ds +

∫ t

0
ZsdBs,

Ap
t − K p

t = Y p
0 − Y p

t −

∫ t

0
g(s, Y p

s , Z
p
s )ds +

∫ t

0
Zp
s dBs,

from the Lipschitz condition of g and the convergence results of Y p and Zp, we have immediately

E[ sup
0≤t≤T

[(At − Kt)− (Ap
t − K p

t )]
2
] ≤ 8E

[
sup

0≤t≤T
|Y p

t − Yt |
2
+ 4µ

∫ T

0
|Y p

s − Ys|
2ds + C

∫ T

0
|Zp

s − Zs|2ds
]

≤
C

√
p
.

Meanwhile we know E[(Ap
T )

2
+ (K p

T )
2
] < ∞, so Ap and K p admits weak limitA and K in S2(0, T ) respectively. By the

comparison results of Y
p
t , Y

p
t and Y p

t , we get

dAp
t = p(Y p

t − Lt)−dt ≤ p(Y
p
t − Lt)−dt = dA

p
t ,

dK p
t = p(Y p

t − Ut)
+dt ≥ p(Y p

t − Ut)
+dt = dK p

t .

So dAt ≤ dAt and dKt ≥ dKt , it follows that dAt − dKt ≤ dAt − dKt . On the other hand, the limit of Y p is Y , so dAt − dKt =

dAt − dKt . Then there must be dAt = dAt and dKt = dKt , which impliesAt = At andKt = Kt . �
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