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Let R = k[x1, . . . , xr ] be the polynomial ring in r variables over an
infinite field k, and let M be the maximal ideal of R . Here a level
algebra will be a graded Artinian quotient A of R having socle
Soc(A) = 0 : M in a single degree j. The Hilbert function H(A) =
(h0,h1, . . . ,h j) gives the dimension hi = dimk Ai of each degree-i
graded piece of A for 0 � i � j. The embedding dimension of A is
h1, and the type of A is dimk Soc(A), here h j . The family LevAlg(H)

of level algebra quotients of R having Hilbert function H forms an
open subscheme of the family of graded algebras or, via Macaulay
duality, of a Grassmannian.
We show that for each of the Hilbert functions H1 = (1,3,4,4) and
H2 = (1,3,6,8,9,3) the family LevAlg(H) has several irreducible
components (Theorems 2.3(A), 2.4). We show also that these
examples each lift to points. However, in the first example, an
irreducible Betti stratum for Artinian algebras becomes reducible
when lifted to points (Theorem 2.3(B)). We show that the second
example is the first in an infinite sequence of examples of
type three Hilbert functions H(c) in which also the number of
components gets arbitrarily large (Theorem 2.10).
The first case where the phenomenon of multiple components can
occur (i.e. the lowest embedding dimension and then the lowest
type) is that of dimension three and type two. Examples of this
first case have been obtained by the authors (unpublished) and also
by J.O. Kleppe.
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1. Introduction

In Section 1.1 we give the context of this paper and summarize some recent work on level alge-
bras. In Section 1.2 we discuss the behavior of the graded Betti numbers in a flat family of Artinian
algebras, stating a result of A. Ragusa and A. Zappalá, and I. Peeva. In Section 1.3 we describe the
parametrization of LevAlg(H). In Section 1.4 we summarize our results.

We let R = k[x1, . . . , xr] be the ring of polynomials in r variables over an infinite field k, and
denote by M = (x1, . . . , xr) the irrelevant maximal ideal. We will consider graded standard Artinian
algebras A = R/I ,

A = A0 ⊕ A1 ⊕ · · · ⊕ A j, A j �= 0, (1.1)

of socle degree j, such that I ⊂ M2. The socle Soc(A) is Soc(A) = (0 : M)A = {a ∈ A | Ma = 0}. The
Artinian algebra A is level if its socle lies in a single degree. Thus, A is level iff Soc(A) = A j . We
will say that a sequence H = (h0, . . . ,h j) is level if it occurs as the Hilbert function H(A) for some
level algebra A. We denote by n(A), the length of A, the vector space dimension n(A) = dimk A. The
length n(Z) of a punctual subscheme Z of P

n is that of a minimal Artinian reduction of its coordinate
ring. The family LevAlg(H) of level algebra quotients of R having Hilbert function H forms an open
subscheme of the family of graded algebras [Kle1,Kle4,I2] or, via Macaulay duality, of a Grassmannian
[IK,ChGe,Kle4].

1.1. Gorenstein algebras and level algebras

When the type is one, the level algebra is Gorenstein. Gorenstein algebras occur in many branches
of mathematics, and have been widely studied (see [Mac1,BuE,Kle2,Kle3,Hu]). The level algebras of
higher types t = 2,3, . . . are a natural generalization of the concept of Artinian Gorenstein algebras.

To specify a socle degree, type and Hilbert function of a level algebra A of embedding dimension r
is to specify the Hilbert function and the highest graded Betti number of A, which must be in a
single degree. Graded Artinian algebras are defined by ideals I that are intersections of level ideals,
so one goal of understanding level algebras is to be able to extend results about them suitably to
more general Artinian algebras. For example, in [I3] certain results about level algebras of embedding
dimension two are extended to general graded Artinian algebras of embedding dimension two: in
particular the Hilbert functions compatible with a given type sequence H(Soc(A)) are specified. Thus,
to understand level algebras is a step toward the study of the family of Artinian algebras with given
but arbitrary graded Betti numbers.

For certain pairs (r, t), there are structure theorems for the level algebras of fixed embedding di-
mension r and type t . Then the sequences H that occur as Hilbert functions for such level algebras
are well understood; and it is known that the family LevAlg(H) is irreducible, even smooth, of known
dimensions.

In embedding dimension two, the Hilbert–Burch theorem states that the defining ideal of a CM
quotient R/I is given as the maximal minors of a (ν − 1)× ν matrix. When H = (1,2, . . . , t) is a level
sequence LevAlg(H) is also irreducible and smooth, of known dimension [I2,I3].

The Buchsbaum–Eisenbud structure theorem shows that the defining ideal of a height three Goren-
stein algebra A = R/I is generated by the square roots of the ν diagonal (ν − 1) × (ν − 1) minors of
a ν × ν alternating matrix M, where ν is odd: namely I = Pfaffian ideal of M [BuE]. Also in this
case, the family PGor(H) of Artinian Gorenstein algebras having Hilbert function H is both irreducible
and smooth (see [Di,Kle2]); and the dimension of the family PGor(H) is known (several authors: for a
survey of these and related results see [IK, Section 4.4]). However, in embedding dimension four there
is no structure theorem for Gorenstein algebras and the family PGor(H) is in general neither smooth
nor even irreducible [Bj,IS].

For arbitrary r and types t , the maximum and minimum possible level Hilbert functions are well
known—see [I1] for maximum, and [BiGe,ChoI] for minimum. Recently, several authors have studied
level algebras of small lengths, and types, and embedding dimensions three or four, with the idea
of delimiting the set of possible Hilbert functions that occur, given the triple (h1, j, t) of embedding
dimension, socle degree, and type [GHMS,Za1,Za2]. For example, A. Geramita et al. studied type two
level algebras of embedding dimension three, and determined the Hilbert functions that occur for
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low socle degree, j � 6. They also gave some techniques for determining more generally which H
occur in type 2 height three [GHMS]. Concerning the Hilbert function of height three level algebras,
F. Zanello recently showed that in embedding dimensions at least three, and for high enough types t ,
there are level sequences H that are nonunimodal [Za2]. A. Weiss showed that there are such height
three nonunimodal level H for type t � 5, and height four nonunimodal level H for t � 3 [Wei].
Other recent results concern weak Lefschetz properties of level algebras, and liftability of certain level
algebras to points [BjZa,M2,M3,MMi].

In embedding dimension four, M. Brignone and G. Valla [BriV] noted that there are many Hilbert
function sequences H = (1,4, . . .), such that the poset βlev(H) of minimal level Betti sequences that
occur for Artinian algebras A ∈ LevAlg(H), has two or more minimal elements. By a result of A. Ragusa
and G. Zappala [RZ] (see Lemma 1.1 below), this implies that such families LevAlg(H) have at least
two irreducible components, corresponding to the minimal elements of βlev(H).

However, there had been no published studies of the component structure of LevAlg(H) in embed-
ding dimension three for t � 2 until we began the present work. Our first (in the sense of smallest
socle degree, then among those, of smallest length) example of type two height three H for which
LevAlg(H) has two irreducible components is H = (1,3,6,10,12,12,6,2), which is part of a series
we will study elsewhere. Meanwhile, J.O. Kleppe has given an example where, proving a conjecture
of the second author about the Hilbert function H = (1,3,6,10,14,10,6,2), he shows that LevAlg(H)

has at least two irreducible components. He also notes that by linking one can construct further such
examples [Kle4, Example 49, Remark 50(b)].

1.2. Betti numbers in flat families

We here state a preparatory result combining work of several authors. Recall that the graded Betti
numbers for A are defined as follows. The minimal resolution of A has the form

0 →
⊕

k

Rβr,k (−k)
δr−→ · · · δ2−−→

⊕
k

Rβ1,k (−k)
δ1−−→ R

δ0−−→ A → 0, (1.2)

where the collection β = (βi, j) are the graded Betti numbers, and the ith (total) Betti number is
βi = ∑

k βi,k . The poset β(H) has as elements the sequences β = (βik) of minimal graded Betti num-
bers that occur for Artinian algebras of Hilbert function H ; the partial order is

β � β ′ iff each βi,k � β ′
i,k. (1.3)

We denote by βlev(H) the restriction of β(H) to the subset of level Betti sequences β: namely those
for which βrk = 0 except for k = j + r. We denote the corresponding Betti stratum of LevAlg(H) by
LevAlgβ(H). A consecutive cancellation is when a new sequence β ′ of graded Betti numbers are formed
from β by choosing β ′

ik = βik except that for some one pair (i0,k0) of indices

β ′
i0,k0

= βi0,k0 − 1, and β ′
i0−1,k0

= βi0−1,k0 − 1. (1.4)

The following result is shown by A. Ragusa and G. Zappalá with antecedents by M. Boratynski and
S. Greco who showed that the total Betti numbers are upper semicontinuous on a postulation stratum
[RZ,BoG]. The consecutive cancellation portion was shown by I. Peeva [Pe, Remark after Theorem 1.1],
based on a result of K. Pardue [Par]. For further discussion see [M1, Theorem 1.1] and [Kle4, Remark 7].
By postulation of a scheme Z we mean the Hilbert function of its coordinate ring O Z = R/I Z .

Lemma 1.1. Let Y T → T be a flat family of punctual subschemes of P
r−1 , such that the postulation

H(OYt ) | t ∈ T is constant, and assume that for t ∈ T − t0 , the minimal graded Betti numbers of OYt are
constant, equal to β . Then the minimal Betti numbers β(0) at the special point OYt0

satisfy β(0) � β , in the
poset β(H); also β may be obtained from β(0) by a sequence of consecutive cancellations.

If the poset βlev(H) has two incomparable minimal elements β,β ′ , then LevAlg(H) has at least two irre-
ducible components corresponding to closures of open subfamilies of LevAlgβ(H), LevAlgβ ′ (H).
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1.3. Parametrization of the family LevAlg(H)

We let H = (1,h1,h2, . . .h j), with h1 = r be a fixed level sequence. For a vector subspace V ⊂ Ri
we denote by Ra V the vector subspace

Ra V = 〈 f v, f ∈ Ra, v ∈ V 〉 ⊂ Ra+i .

We denote by R the ring of divided powers for r variables over k, upon which R acts by differen-
tiation or “contraction” (see [IK, Appendix A], this is an avatar of Macaulay duality [Mac1]). We will
use the ring R in the second parametrization L(H) for level algebras in (B) just below. We denote by
ri = dimk Ri = (i+r−1

i

)
.

There are two natural ways to parametrize the family of level algebra quotients of R having Hilbert
function H :

(A) LevAlg(H) is an open subscheme of GrAlg(H), the family of graded algebras quotients of R having
Hilbert function H . The family GrAlg(H) is the closed subscheme of

j∏
i=2

Grass(ri − hi, ri), (1.5)

parametrizing those sequences of subspaces

(V 2, . . . , V j), V i ⊂ Ri, dim V i = ri − hi, such that R1 V 2 ⊂ V 3, . . . , R1 V j−1 ⊂ V j . (1.6)

The condition (1.6) is just that the sequence of vector spaces forms the degree two to j graded
components of a graded ideal of R . For further detail see [Kle1,Kle3,Kle4], or the discussion of the
“postulation Hilbert scheme” in [IK], or [I2, Definition 1.9].

(B) Closed points p A , A = R/I of LevAlg(H) correspond by Macaulay duality 1−1 to vector subspaces
W = (I j)

⊥ of R j = Hom(R j,k), hence to points of the Grassmannian Grass(h j, R j). We define
the locally closed subscheme L(H) ⊂ Grass(h j, R j) by the “catalecticant” conditions specifying

dim R j−1 ◦ W = h1, . . . , dim R1 ◦ W = h j−1.

This parametrization is introduced in the type one Gorenstein case in [IK, Section 1.1], and for
general level algebras in [ChGe].

The closed points of the two parametrizations LevAlg(H) and L(H) are evidently the same (in char k =
p � j one must use the “contraction action” of Ri on R j ). By the universality property of the family
of graded algebras [Kle1] there is a morphism ι : L(H)red → LevAlg(H), where L(H)red denotes the
reduced scheme structure (see [Kle3, Problem 12]). Recently J.O. Kleppe has shown that L(H) and
LevAlg(H) give the same topological structures [Kle4, Theorem 44], extending his earlier result that
there is an isomorphism between the tangent spaces to LevAlg(H) and to L(H) at corresponding
closed points.

1.4. Questions and results

What is a good description of LevAlg(H)? From the point of view of deformations we should
answer as fully as possible:

(i) What are the possible level Betti sequences β compatible with H?
(ii) What is the dimension of each Betti stratum LevAlgβ(H)?

(iii) What is the closure of LevAlgβ(H)?
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(iv) What are the irreducible components of LevAlg(H) and of LevAlgβ(H)?
(a) Can the component structure of LevAlg(H) be related to that of an appropriate A Hilbert

scheme of points or of curves on P
r−1?

(b) Do the components of LevAlg(H) lift to the family LevPoint(T ) parametrizing smooth punc-
tual subschemes of P

r , �T = H?

Of course, in the absence of a structure theorem (so when (r, t) �= (2, t) or (3,1)), it is hopeless to
answer all of these questions for all H , even in embedding dimension three. However, we can answer
them for certain H , that might either be of special interest or suggest patterns that are frequent.
A productive approach has been that of Question (iv)(a). [Bj,IK,Kle3,Kle4]. J.O. Kleppe in [Kle4] estab-
lishes in many cases a 1 − 1 correspondence between the set of irreducible components of LevAlg(H)

and those of a suitable Hilbert scheme of points.

1.4.1. Results
In this article we first answer the questions above for H1 = (1,3,4,4) and H2 = (1,3,6,8,9,3),

perhaps the simplest cases in height three where LevAlg(H) has several components.
We show that for each Hilbert function H = H1 or H = H2 the family LevAlg(H) has several

irreducible components (Theorems 2.3(A), 2.4). We determine the Betti strata and their closures for
each of these two Artinian examples. We then show that each of these examples lifts to families of
points having several components (Theorems 2.3(B), 2.5). However, in the first example, an irreducible
Betti stratum for Artinian algebras becomes reducible when lifted to points, although the overall
component structures for LevAlg(H1) and LevPoint(T1) correspond.

These two families LevAlg(H) have different behavior with respect to the poset βlev(H) of graded
level Betti number sequences compatible with H . In the first, H1 = (1,3,4,4), there are two minimal
elements of β(H1) and the Ragusa–Zappalá result applies. In the other, H2 = (1,3,6,8,9,3) there is a
unique minimum element of βlev(H), and we must use a different argument to show the reducibility
of LevAlg(H).

We show in Section 2.3 that the example H2 is the first in an infinite series of height three Hilbert
functions of type three, H(c), c � 3, where H(c) has socle degree 2c − 1 and satisfies

H(c)i = min{ri − 2ri−c,3r2c−1−i}, 0 � i � 2c − 1;

and such that the number of irreducible components of LevAlg(H(c)) is bounded from below by
(1 − 1/

√
2)c (Theorem 2.10 and Remark 2.11). This result uses the connection mentioned above in

Question (iv)(a). to the Hilbert scheme of points on P
2. We denote by G(c) = Grass(2, Rc) the Grass-

mannian parametrizing pencils of degree c plane curves; we let X(c) denote the closed subset of
G(c) that is the complement of the open dense set of pencils 〈 f , g〉 spanned by a CI. Then X(c) is
the union of irreducible components G(c)a,1 � a � c − 1 corresponding to the degree a of the base
component of the pencil. A delicate issue is whether the coordinate ring of the variety that is a union
of the base curve Ca and a general enough complete intersection of bidegree (c − a, c − a), has type
three Artinian quotients of Hilbert function H(c): we show this using the uniform position property
of general enough complete intersections (Lemma 2.9).

We plan to study elsewhere further series of height three Hilbert functions, for which LevAlg(H)

has several irreducible components; one such series begins with H = (1,3,6,10,12,12,6,2) of type
two, but at the time of writing we have been not able to show that the series is infinite.

2. Families LevAlg(H) having several irreducible components

We now state and prove our main results, outlined above. Henceforth we let R = k[x, y, z] so
ri = (i+2

i

)
. Note that k is algebraically closed in Section 2.1, infinite in Section 2.2, and algebraically

closed of characteristic zero in Section 2.3.
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Table 2.1
Graded Betti numbers β(1) for H1 = (1,3,4,4), CI related Artinian algebra.

Total 1 6 9 4

0: 1 – – –
1: – 2 – –
2: – – 1 –
3: – 4 8 4

2.1. The family LevAlg(H1), H1 = (1,3,4,4)

We first consider the Artinian case. Let R = k[x, y, z] with k algebraically closed, and consider
LevAlg(H1), H1 = (1,3,4,4). The subfamily C1 parametrizes type 4, socle degree three level quotients
A of complete intersections B = R/ J where J = ( f1, f2) has generator degrees (2,2). Thus, A = R/I ,
where the defining ideal satisfies (here m = (x, y, z))

I = (
f1, f2,m4). (2.1)

As a variety, C1 ∼= CI(2,2), the variety parametrizing complete intersections B = R/ J , of generator
degrees (2,2) for J ; evidently C1 may be regarded as a dense open subset of Grass(2, R2), so satisfies

dim C1 = 2 · 4 = 8.

It is easy to check that the monomial ideal

I(1) = (
x2, y2,m4) (2.2)

defines A(1) = R/(I(1)) in this component, and has the minimal resolution β(1) of all general enough
elements of C1, given in Table 2.1 (we use the standard “Macaulay” notation). Note that it is not
possible to split off the redundant term R(−4) in the minimal free resolution β(1) of A(1), as the
two quadrics need such a syzygy: thus β(1) is a minimal element of the poset β(H).

The subfamily C2 parametrizes type 4 socle degree three quotients A = R/I of the coordinate
ring B of a line union a point in P

2: that is, we let B = R/(I2), where I2 ∼= 〈xy, xz〉 or I2 ∼= 〈x2, xy〉
up to Gl(3) linear map (coordinate change). Then R1 I2 has vector space dimension five, and also
codimension five in R3, because of the one linear relation on I2. We have

dim C2 = 8. (2.3)

This is 2+2 for the choice of a point and a line, plus 1 ·4 for the choice of a cubic form, an element of
the quotient vector space R3/R1 I2. Thus, for A = R/I ∈ C2 we have, after a linear coordinate change,

I ∼= (xy, xz, f , W ), f ∈ R3, W ⊂ R4, dimk W = 3, (2.4)

or similar generators with I2 = (x2, xy). A monomial ideal I(2) determining an Artinian algebra A(2)

in C2 is

I(2) = (
x2, xy, z3, y4, y2z2, y3z

)
, (2.5)

whose minimal resolution β(2) is that of Table 2.2. Again, although there is a redundant term R(−3)

in the minimal free resolution, it cannot be split off, so β(2) is also a minimal element of the
poset β(H).
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Table 2.2
Graded Betti numbers β(2) for H1 = (1,3,4,4), Artinian algebra related to a line.

Total 1 6 9 4

0: 1 – – –
1: – 2 1 –
2: – 1 – –
3: – 3 8 4

Table 2.3
Graded Betti numbers β(3) for H1 = (1,3,4,4), Artinian algebras in C1 ∩ C2.

Total 1 7 10 4

0: 1 – – –
1: – 2 1 –
2: – 1 1 –
3: – 4 8 4

We now show that there is only one other Betti sequence possible for Artinian algebras in
LevAlg(H1), namely β(3), the supremum in β(H1) of β(1) and β(2) (see Table 2.3). A monomial
ideal I(3) defining an algebra A(3) = R/I(3) in C3 := LevAlgβ(3)(H1) is

(
x2, xy, y3, xz3, y2z2, yz3, z4). (2.6)

Since we show in Theorem 2.3 that the Betti stratum C3 = C1 ∩ C2, the algebra A(3) is a simple
example of an obstructed level algebra.

Lemma 2.1. The Betti stratum C3 = LevAlgβ(3)(H1) is irreducible of dimension seven. There are no further
Betti strata in LevAlg(H1), other than β(1), β(2), and β(3).

Proof. Let A = R/I be a level algebra of Hilbert function H(A) = H1. In order to have a linear relation
among the two degree two generators of I , we must have

I2 ∼= 〈xy, xz〉 or I2 ∼= 〈
x2, xy

〉
, (2.7)

up to isomorphism.
We now prove that dim LevAlgβ(3)(H1) = 7. Suppose that we are in the first case of (2.7). In order

to have a further relation in degree four among the degree two generators xy, xz and the degree three
generator f , we must have

� · f = q1 · xy + q2 · xz, where � ∈ R1, q1,q2 ∈ R2, (2.8)

whence x divides � or f . If x divides f , then f mod (xy, xz) satisfies f = ax3, a ∈ k∗ , and it follows
that R1 · x2 ⊂ I , implying x2 ∈ Soc(A), contradicting the assumption that A is level of socle degree
three. Thus, x divides �, and f ∈ (y, z). Since we may now assume that f , which may be taken mod
(xy, xz), has no terms involving x, we have that f ∈ R ′

3 where R ′ = k[y, z]. Since k is algebraically
closed, up to an isomorphism of R ′ , we may assume one of f = y3, f = y2z, or f = yz(y + z), the
last being the generic case, specializing to the two others. The dimension count for this subfamily is
seven: two for the choice of x ∈ R1, two for the choice of 〈y, z〉 ⊂ R , determining R ′ , and three for
the choice of an element f of R ′

3 = 〈y3, y2z, yz2, z3〉 mod k∗ .
Next let us assume that I2 = 〈x2, xy〉, the second case of (2.7). Then (2.8) is replaced by

� · f = q1 · x2 + q2 · xy, where � ∈ R1, q1,q2 ∈ R2. (2.9)
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If x divides f , then f mod (x2, xy) satisfies f = axz2,a ∈ k∗ , whence R1 · xz ⊂ I contradicting that A
is level. Hence x divides �, f ∈ (x, y), and f mod (x2, xy) satisfies

f ∈ 〈
xz2, y3, y2z, yz2〉. (2.10)

The dimension count for this subfamily (where I2 ∼= 〈x2, xy〉), is six: two for the choice of x ∈ R1, one
for the choice of 〈x, y〉 containing x, and three for the choice of f up to scalar from a four-dimensional
vector space. This completes the proof that dim LevAlgβ(3)(H1) = 7.

We now show that C3 = LevAlgβ(3)(H1) is irreducible. Assume that A = R/I ∈ LevAlgβ(3)(H), and
that � = x in (2.9). We deform (x2, xy) to (x(x + t(z − x), xy), t ∈ k, and correspondingly deform f to
f (t) satisfying

f (t) = q1 · (x + t(x − z)
) + q2 · y.

Then the relation (2.9) deforms to

x · f (t) = q1 · (x2 + tx(x − z)
) + q2 · xy.

This gives a deformation of A = R/I to A(t) = R/I(t) whose fiber over t �= 0 is an algebra with
I(t))2 ∼= 〈xy, xz〉. Defining for t ∈ k, I(t) = (x(x+t(x− z)), xy, f (t),m4), we have constant length, hence
flat, family of Artinian algebras. Thus C3 is irreducible.

We next show that there are no further level Betti sequences for H1. Suppose by way of contra-
diction that A = R/I ∈ LevAlg(H1) and that there are two or more relations in degree four, among
the three generators of the ideal I having degrees two and three. More than two is not possible by
Macaulay’s theorem. If there are exactly two such relations, the algebra A′ = R/(I�3) would have
Hilbert function H(A′) = (1,3,4,4,5, . . .); the growth of H(A′) from 4 to 5 in degrees three and four
is the maximum possible by Macaulay’s Hilbert function theorem [Mac2], (see [BrH, pp. 155–156])
since 43 = (4

3

)
so the maximum possible for H(A′)4 is 4′

3 = (5
4

)
. It follows from the Gotzmann Hilbert

scheme theorem ([Gotz], see also [IKl]) that I3 = (IZ)3, where Z is a projective variety with Hilbert
polynomial t + 1, and regularity degree one, the number of terms in the Macaulay expansion. Thus,
Z is a line. It follows from I level that I�3 = (IZ)�3, implying H(A) = (1,2,3,4), a contradiction. We
have shown that there is at most one relation in degree four among the generators of (I�3).

Since A = R/I ∈ LevAlg(H1) implies that the minimal generators of I have degrees at most four,
we have ruled out any Betti sequence greater than β(3) for level algebras of Hilbert function H . This
completes the proof of Lemma 2.1. �
Remark 2.2. It is easy to see that here as for most H , β(H) �= βlev(H), as the known maximal graded
Betti numbers are rarely level. Here, taking I = Ann(X3, Y 3, (X + Y )3, (X + 2Y )3, Z 2), with X, Y , Z ∈ S
gives such a maximum β in β(H1) − βlev(H1).

The first component of LevAlg(H1) in the theorem below is C1, the closure in LevAlg(H1) of the
subfamily C1 for which I2 defines a complete intersection. Recall that the algebras in C1 comprise
the Betti stratum β(1) of Table 2.1. The second component is C2, the closure in LevAlg(H1) of the
subfamily C2 for which I2 determines a point union a line. Recall that the algebras in C2 comprise
the Betti stratum β(2) of Table 2.2, and that those in C3 comprise the β(3) stratum of LevAlg(H1).

We let T1 = (1,4,8,12,12, . . .) with first difference �T1 = H1, and now define corresponding
subfamilies C ′

1, C ′
2, C ′

3 of LevPoint(T1), the family of smooth length n(Z) = 12 punctual subschemes Z

of P
3 having postulation T1 (equivalently, having h-vector H1). We let C ′

1 parametrize the punctual
schemes Z lying over C1, in the sense that some minimal reduction of R/IZ (some quotient A of
R/IZ by a linear element � ∈ A1, such that dimk A = n(Z)) is an Artinian algebra in C1. We similarly
define C ′

2 lying over C2, and C ′
3 over C3.

We denote by D ′
a , D ′

b and D ′
ab the following three subfamilies of C ′

3. In describing, say, eight points
on a plane cubic, we allow certain degenerate configurations—as a length 8 punctual scheme on the
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cubic—provided that the resulting punctual scheme remains in C ′
3: that is, it has an Artinian quotient

that is in C3. In particular the Artinian quotient must have the Hilbert function H1, a condition which
limits the amount of degeneracy. (We do not here attempt to delimit the allowable degenerations.)
We let D ′

a parametrize the subfamily of punctual subschemes of P
3 that are unions of nine points

on an irreducible plane cubic, and three points on a line meeting the cubic. Let D ′
b be the subfamily

parametrizing subschemes that are unions of eight general enough points on a plane and four points
on a line not in the plane. We let D ′

ab parametrize general enough subschemes that are unions of
nine points on a plane cubic, of which one is the intersection of the line and cubic, union three more
points on the line; or a degeneration with a double point at the intersection of the line and cubic.

Theorem 2.3.

(a) LevAlg(H1), H1 = (1,3,4,4) has the two irreducible components C1, C2 defined above, each the closure
of a Betti stratum. Both components have dimension eight. We have

C1 ∩ C2 = C3 := LevAlgβ(3)(H1). (2.11)

(B) LevPoint(T1), T1 = (1,4,8,12,12, . . .) has two irreducible components, each the closure of a subfamily
C ′

1, C ′
2 lying above C1, C2 , respectively. Algebras in C ′

1 are the coordinate rings of schemes comprising 12
points lying on the complete intersection curve of two quadric surfaces in P

3 . Elements of C ′
2 parametrize

(an open subfamily of ) schemes comprised of nine points lying on a plane cubic, union three points on
a line in P

3 . Each subfamily C ′
1 and C ′

2 has dimension 28. The Betti stratum C ′
3 lies in C ′

1 and has two
irreducible components, the closures of D ′

a and D ′
b, each of dimension 27. The intersection

C ′
1 ∩ C ′

2 = D ′
a ⊂ C ′

3. (2.12)

The intersection of D ′
a and D ′

b is D ′
ab , and has dimension 26.

Proof. To show that LevAlg(H1) has two irreducible components, it suffices by the Ragusa–Zappalá
Lemma 1.1 to note that the Betti resolutions of Tables 2.1 and 2.2, which occur for the monomial
ideals given in (2.2), (2.5), are each minimal in β(H1). This is true as the two degree two generators
of I must have a quadratic relation as in Table 2.1 unless they have a linear relation as in Table 2.2
(or see Lemma 2.1.)

The subfamily C1 is isomorphic to CI(2,2), an open set in Grass(2, R2) ∼= Grass(2,6), so it is ir-
reducible. The family C2 has fiber an open set in Grass(1, R3/R1 I2) ∼= Grass(1,5), over the variety
P

∨
2 × P2 parametrizing a line union a point in P

2, so C2 is irreducible, also of dimension eight.
We now show that the intersection C1 ∩ C2 = C3. Let A = R/I be in the intersection C1 ∩ C2.

Then by Lemma 1.1 the graded Betti numbers of A are at least the supremum β(3) of β(1), β(2)

in Tables 2.1 and 2.2, so by Lemma 2.1 they are β(3). Thus, I2 = 〈 f1, f2〉 has a “linear” relation in
degree 3; also, there is an extra degree 4 relation among the degree three generator f , and f1, f2.
Thus, for A ∈ C1 ∩ C2 we have that up to isomorphism I satisfies,

I = (
xV , f = hv,m4), V ⊂ R1, dim V = 2, v ∈ V , h ∈ R2. (2.13)

We may rule out x | f since, as in the proof of Lemma 2.1, this would imply that A is not level.
Likewise, if x ∈ V then v /∈ 〈x〉. Hence, up to isomorphism (after a change of basis for R) we have,

I = (
xy, xz, yh,m4,h ∈ 〈

y2, yz, z2〉) or

I = (
x2, xy, yh,m4,h ∈ 〈

y2, xz, yz, z2〉). (2.14)

We now show that all ideals of the form (2.14), thus all in C3 lie in the intersection C1 ∩ C2. First,
to deform those of form (2.14) into C2 is easy, as we need only deform yh to a degree three form
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having no linear factor. To show there is a deformation to C1, we note that for I ⊃ (xy, xz) and general
enough satisfying the first case of (2.14) we may assume after a further change of variables in R (see
Lemma 2.1), that

I = (
xy, xz, yz(y + z),m4). (2.15)

We now consider the one-parameter family of ideals in R[t]t ,

I(t) = (
xy, xz + tz(y + z),m4), t �= 0. (2.16)

For each t �= 0, we have I(t) ∈ C1, as (xy, zx + zt(y + z)) is a CI. Note that each I(t), t �= 0, contains

1

t

[
y
(
xz + tz(y + z)

) − z(xy)
] = yz(y + z),

hence the limit

I(0) := lim
t→0

I(t) = (
xy, xz, yz(y + z),m4). (2.17)

Thus, we have shown that the general element (2.15) of C3 is in C1 and in C2. Since C3 is irreducible
by Lemma 2.1, we have shown C1 ∩ C2 = C3.

Since C1, C2 are each irreducible Betti strata, since C3 is also irreducible, and since by Lemma 2.1,
β(1), β(2), β(3) are the only Betti sequences that occur for level algebras of Hilbert function H1, it
follows that there can be no further irreducible components of LevAlg(H1). A check of tangent space
dimensions by Macaulay showed that the tangent space dimension is eight for general points of C1
or C2 but nine for the algebra A(3) in C1 ∩ C2, defined by a monomial ideal, given by (2.6).

We now consider LevPoint(T1), T1 = (1,4,8,12,12, . . .), for which �T1 = H1, the sequence above.
Recall that C ′

1, C ′
2 lie over C1, C2 ⊂ LevAlg(H1), and that there are monomial ideals in each of C1, C2,

as well as in C1 ∩ C2 (Eqs. (2.2), (2.5), (2.6)); thus each of C ′
1, C ′

2, C ′
1 ∩ C ′

2 is nonempty, and the graded
Betti numbers for generic elements of these subsets agree with those that occur for the corresponding
subfamilies of LevAlg(H1) (see Tables 2.1–2.3). That C ′

1, C ′
2 arise as stated in the theorem is evident.

We first show that each of the two irreducible subfamilies C ′
1, C ′

2 of LevPoint(T1) has dimen-
sion 28. Let S = k[x, y, z, w], and suppose that J ⊂ S is the defining ideal of the punctual scheme.
The dimension count for C ′

1 is dim C ′
1 = 16 + 12 = 28 as I2 = 〈 f1, f2〉 ∈ Grass(2,10), has dimension

16 = 2 · 8, and 12 points are chosen on the curve { f1 = 0} ∩ { f2 = 0}. We have dim C ′
2 = 28 as follows:

3 for the choice of a plane, and 4 = dim Grass(2,4) for the choice of a line in P
3, the plane union

a line determining I2 ∼= 〈xy, xz〉. Then 12 for the choice of a cubic f in S3/(R1 I2), a vector space of
dimension 13 because of the linear relation among the two generators of I2. The cubic intersect the
line determines three of the 12 points; the last 9 must lie on the cubic curve defined by the cubic
surface { f = 0} intersection the plane {x = 0}.

Since a punctual scheme must be defined by an algebra S/ J having a linear nonzero divisor, it
follows from our classification of all the Betti sequences for level algebras of Hilbert function H that
there can be no other irreducible components of LevPoint(T1).

We now show that C ′
3 = LevPointβ(3)(T1) has two irreducible components, the closures of D ′

a
and D ′

b , each of dimension 27. Evidently, D ′
a and D ′

b are irreducible. For D ′
a (9 points on the plane

cubic, three on the line), the choice of a plane cubic and a line meeting the cubic requires a 15 =
3 + 9 + 3-dimensional family, and the choice of the 12 points distributed (9,3) gives dim D ′

a = 27.
For D ′

b , (8 points on a plane cubic, 4 on a line), the eight points may be chosen as a general set of 8
points on the plane, having 3 + 16 = 19 parameters; choosing a line requires 4 parameters, and, there
is one plane cubic through the eight points meeting the line. One now chooses four points on the line
so dim D ′

b = 19 + 4 + 4 = 27. The family D ′
ab restricts one point to be the intersection of the line and

the cubic, so has dimension 26.
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It remains to show that there are no other components of C ′
3. The two generators of degree two

have a common factor, so any punctual scheme with this resolution has to lie on a plane union a line.
The twelve points can be distributed differently between the two components, but if there are less
than eight points in the plane, the Hilbert function is at most 7 + 4 = 11 in degree three. If there are
at most two points on the line, the first part of the ideal is the ideal of these points union the plane,
in which case we get socle in degree one or two. Thus, the only distributions that give the correct
Betti numbers are the ones described in D ′

a and D ′
b .

We now need to show that each point pZ ∈ C ′
3, pZ a punctual scheme, lies in the closure of C ′

1.
But, since the first part of the minimal resolution of the coordinate ring OZ is that of an ACM curve,
one can deform that to a complete intersection. We now show that C ′

2 ∩ LevPointβ(3)(T ) = D ′
a . But,

considering a generic point of D ′
a , it suffices to move the plane cubic and its nine points so that

it does not intersect the line with its three points, in order to deform to C ′
2. On the other hand a

subfamily of C ′
2 cannot converge to twelve points, of which eight are on a cubic, and four are on a

line, unless one of the points is the line intersection the cubic (so a scheme in D ′
ab). �

Note. Tangent space calculations using Macaulay2 [GrSt] show that the tangent space at a general
point of C ′

1, C ′
2 or D ′

b has dimension 28, whereas the tangent space at a general point of D ′
a or of D ′

ab
has dimension 29.

The strong Lefschetz (SL) condition is that ×� for � generic in R1 acting on A has Jordan partition
P (H) given by the lengths of the rows of the bar graph of H . (This definition generalizes that in
use for H unimodal symmetric [HarW].) It conceivably might be used to distinguish components of
LevAlg(H), as SL is an open condition. However, the algebra A(3) of (2.6) satisfies the strong Lefschetz
condition, by calculation. Since A(3) ∈ C3 = C1 ∩ C2, the general elements of C1, C2 are SL.

2.2. The family LevAlg(H2), H2 = (1,3,6,8,9,3)

We let k be an infinite field, and consider LevAlg(H2), H2 = (1,3,6,8,9,3). The subfamily
C1 = LevAlgβ(1)(H2) parametrizes type 3, socle degree five level quotients A of complete intersections
B = R/ J where J = ( f1, f2) has generator degrees (3,3), and having the graded Betti numbers β(1)

given by omitting the degree four generator-relation pair from β(2) in Table 2.4. Thus the algebras
A = R/I in C1 satisfy

I3 = 〈 f1, f2〉, (2.18)

where f1, f2 define a complete intersection in P
2. The family CI(3,3) ⊂ Grass(2, R3) of complete

intersections B = R/( f1, f2) is open dense in Grass(2, R3) and has dimension 2 · 8 = 16. The sub-
family C1 is fibred over CI(3,3) by an open set in the Grassmannian Grass(3, R5/R2 I3) ∼= Grass(3,9)

parametrizing the choice of a type three, socle degree five quotient of B = R/(I3): we may take

A = B/(W ), W = 〈h1, . . . ,h6〉 ⊂ B5, (2.19)

where W is a six-dimensional, general enough subspace of the nine-dimensional space B5. Thus we
have

dim C1 = 16 + 18 = 34.

One needs of course to check that such level quotients having the Hilbert function H2 exist: this is
easy to do, using the special case B(0) = R/(x3, y3).

The graded Betti numbers β(1) for Artinian algebras A ∈ C1 are the minimum consistent with the
Hilbert function H : there are besides the eight generators of I already mentioned, ten relations in
degree six, and the three relations among the relations in degree eight.

The second component C2 is the closure of the Betti stratum C2 = LevAlgβ(2)(H2) given by Ta-
ble 2.4, and parametrizes ideals whose initial portion (I�4) defines a quadric union a point. More
precisely, C2 consists generically of quotients A = R/I such that
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Table 2.4
Graded Betti numbers β(2) for H2 = (1,3,6,8,9,3), (I�4) = (x3, x2 y, z4).

Total 1 9 11 3

0: 1 – – –
1: – – – –
2: – 2 1 –
3: – 1 – –
4: – 6 10 –
5: – – – 3

I3 = ξ · V , ξ ∈ R2, V ⊂ R1, dim V = 2,

I4 = 〈R1 I3, f 〉 (2.20)

and having no degree five relations. Thus A is the quotient of an Artinian algebra B = R/(ξ · V , f )
where R/(ξ · V ) defines a quadric ξ = 0 union the point V = 0 in P

2.

A = B/(W ), W = 〈h1, . . . ,h6〉 ⊂ B5, (2.21)

where as before W is a six-dimensional, general enough subspace of the nine-dimensional space B5.
We have

dim C2 = 2 + 5 + 9 + 18 = 34,

as follows. First, the choice of ξ · V , V ⊂ R2 requires 7 = 2 + 5 parameters, since the quadric requires
five and the point two parameters. Since dimk R4/R1 I3 = 10, the choice of f ∈ R4/R1 I3 is from an
open set in P

9; and the choice of W ⊂ B5 is that of a point in Grass(6,9).
The graded Betti numbers β(2) for an element A ∈ C2 are those of Table 2.4: these graded Betti

numbers are attained for B = R/(x3, x2 y, z4)), and W general enough.
There are two more Betti sequences that occur for level algebras of Hilbert function H2 =

(1,3,6,8,9,3). The first, β(3) corresponds to ideals I having an extra relation and generator in de-
gree five compared to the graded Betti numbers for algebras in C1. There must then be a total of
seven degree five generators. Here the ideal J = (I�4) determines an algebra B = R/ J defining a line
union four points, J = ( J3), and

I3 = J3 = 〈�g, �h〉, � ∈ R1, g,h ∈ R2.

It is easy to see that this stratum has dimension 31, as follows. We count 2 for the choice of a
line {� = 0}, 8 for the choice of a CI (g,h) of degree two forms (four points), and (7)(3) for the
choice of a three-dimensional quotient A5 of R5/R2 I3, a ten-dimensional vector space. It is also easy
to see that such ideals are in the first component C1: writing J (t) = (�g + t f1, �h + t f2) we find
that g f2 − hf1 ∈ J (t), hence is also in the limit J (0), but this is no restriction, as it merely requires
I(0)5 ∩ (g,h)5 �= 0, and a codimension 3 space I5 always intersects a codimension four space (g,h)5 =
R3(g,h) nontrivially in the dimension 21 vector space R5.

The last Betti stratum β(4) is like the previous one, except for having the extra relation and gener-
ator pair in degree four, as for algebras in C2. This corresponds to (I�4) = (�g, �h, �q3), where (g,h)

have a common factor, a degeneration of the previous case. Thus,

B = R/ J , J = (I�4) = (�ρx, �ρ y, �q3), �,ρ ∈ R1, q3 ∈ (x, y) ∩ R3.

Here it is not hard to check that this Betti stratum forms a thirty-dimensional family in the closure
of the previous stratum, and as well in C1 ∩ C2.

The proof below that there are two irreducible components of LevAlg(H2) depends primarily on
the dimension count, since the poset βlev(H) has a minimum element.
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Theorem 2.4. The family LevAlg(H2), H2 = (1,3,6,8,9,3) has two irreducible components C1, C2 , whose
open dense subsets C1, C2 corresponding to two different Betti strata for H2 are described above (see (2.19),
(2.20)), each of dimension 34. Also C1 ∩ C2 = V 2 , a codimension one subset of C2 parametrizing quotients
A = R/I ,

V 2: I = (hW1, f4), W1 ⊂ R1, dimk W1 = 2, h ⊂ R2, f4 ∈ R3W1. (2.22)

The third Betti stratum LevAlgβ(3)(H2) lies in C1 and has dimension 31. The fourth, most special Betti stratum

LevAlgβ(4)(H2) is a subscheme of LevAlg(H2) having dimension 30, and lies in C1 ∩ C2 .

Proof. By Lemma 1.1 it is not possible to specialize from a subfamily of C2 to a point A of C1, so
C2 ∩ C1 = ∅: this can also be seen readily since for B = R/ J ∈ C2, the two-dimensional vector space
J3 has a common quadratic factor, while I3 does not have a common factor for points A = R/I of C1.
Since the open dense C1 ⊂ C1 comprises the Artinian algebras having the unique minimum possible
graded Betti numbers compatible with H , there can be no larger irreducible subfamily of LevAlg(H2)

specializing to both C1 and C2. The family C2 we have described is exactly the subfamily having the
graded Betti numbers of Table 2.4. Thus, that C2 has the same dimension as C1 shows that both are
irreducible components of LevAlg(H2).

To identify the intersection C1 ∩ C2 as V 2 from (2.22), for the moment take W1 = 〈x, y〉 and
consider the following flat family converging to a point B(0) of GrAlg(H ′), H ′ = (1,3,6,8,9,9, . . .)

where B(0) = R/ J (0) satisfies I(0)3 has a degree-two common factor h:

B(t) = R/ J (t), J (t) = (xh + t f1, yh + t f2).

Each element of the family for t �= 0 contains xf2 − yf1, thus the limit J (0) = limt→0 J (t) satisfies
J (0) = (xh, yh, xf2 − yf1). Here f1, f2 may be chosen arbitrarily. The corresponding subfamily of C1
is fibred by an open dense subset in Grass(6, R5/ J (t)5) over B(t), parametrizing a vector space V (t),
such that I(t) = ( J (t), V (t)) defines A(t) = R/I(t) ∈ C1. This shows that each element of the right side
of (2.22) occurs in the closure of C1, and vice versa. That V 2 has codimension one in C2 is a conse-
quence of “ f4 ∈ R3W1” being a codimension one condition, as R3W1 has vector space codimension
one in R4. �
Note. The general element of LevAlgβ(4)(H2) is strong Lefschetz by calculation, and it follows here as
for H1 that the general elements of C1, C2 are also strong Lefschetz.

We now consider the sum function T2 = (1,4,10,18,27,30,30, . . .) of H2, and we determine com-
ponents C ′

1, C ′
2 of LevPoint(T2), lying over the components C1, C2, respectively, of LevAlg(H2). Here

an open dense subset C ′
1 of C ′

1 is comprised of thirty distinct points in P
3 that are general enough,

lying on a CI curve C that is the intersection of two cubic surfaces. An open dense subset C ′
2 of C ′

2
is constructed as follows: intersect the union of a quadratic surface K and a line L with a general
enough quartic surface Q . Choose twenty six general enough distinct points on the curve K ∩ Q , in
addition to the four points comprising L ∩ Q . The proof of the following Theorem is simplified by the
fact that H2 is the h-vector of 30 points in generic position lying on the intersection of two cubics.

We denote by S = k[x, y, z, w], the coordinate ring of P
3.

Theorem 2.5. The scheme LevPoint(T2), �T2 = H2 = (1,3,6,8,9,3) has two irreducible components, C ′
1 ,

C ′
2 , each of dimension 66. Their tangent spaces each have dimension 66.

Proof. The putative components have open dense subsets that are Betti strata, and β(1) < β(2) in
βlev(H2), so it suffices to verify the dimension calculations. Here CI(3,3) has dimension 2(18) = 36,
and the choice of thirty points on the CI curve gives a total of 66 for dim C ′

1.
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For C ′
2, the choice of a line in P

3 is that of a point in Grass(2, S1) gives 4 dimensions, and the
choice of a quadric surface C : c = 0, c ∈ S2 up to k∗ multiple gives 9 more. The choice of a quartic
surface Q : q = 0 in the twenty eight-dimensional vector space [S/(�1c, �2c)]4, �i ∈ S1 gives 27; the
choice of 26 further points on Q ∩ C gives a total of 66. This shows that C1 and C2 are components.

In both cases, calculations in Macaulay2 show that the tangent space at a general point of C ′
1 or

of C ′
2 has dimension 66. �

2.3. An infinite sequence of examples of type three

We will now show that the example H2 = (1,3,6,8,9,3) is the first in an infinite sequence of
examples where also the number of components gets arbitrarily large. The idea is to start with the
Hilbert function we get by taking a general level quotient of type three and socle degree 2c − 1 of
a complete intersection of type (c, c), where c � 3. We will see that we can get other level algebras
with the same Hilbert function, which are not specializations of the ones coming from complete
intersections. In order for us to use a result on the uniform position property [Ha], we have to assume
in this section that k is algebraically closed of characteristic 0.

Definition 2.6. For c � 3, we define the Hilbert function H(c) of socle degree j = 2c − 1 by

H(c)i = min{ri − 2ri−c,3r2c−1−i}, 0 � i � 2c − 1, (2.23)

where ri is the Hilbert function of the polynomial ring R = k[x, y, z]. The transition between the two
phases occurs in degree α(c) := 2c − √

(c2 − 1)/2. Note that this is usually not an integer (cf. Re-
mark 2.11).

We now look at the different possibilities for the generators in degree c of an ideal with Hilbert
function H(c).

Definition 2.7. For c � 1, let G(c) = Grass(2, Rc) parametrize two-dimensional subspaces of the
space Rc of forms of degree c in R = k[x, y, z]. For a = 0,1,2, . . . , c − 1, let G(c)a be the subset
parametrizing subspaces V ⊆ Rc where the greatest common divisor has degree a. This is a stratifica-
tion of G(c) into disjoint semi-closed subsets.

G(c) =
c−1⋃
a=0

G(c)a.

The open stratum G(c)0 corresponds to vector spaces V which define a complete intersection of
type (c, c) in P

2. The following lemma tells us about the complement of this open stratum. Recall
that ra = dimk Ra .

Lemma 2.8. The dimension of the stratum G(c)a is ra + 2rc−a − 5, for 0 � a < c and the closures of the
smaller strata, G(c)1, G(c)2, . . . , G(c)c−1 are the irreducible components of the variety X(c) defined as the
complement of the open stratum, G(c)0 , in G(c) = Grass(2, Rc).

Proof. In the closure of the stratum G(c)a there is always a common factor of degree a, but there
could also be a common factor of higher degree. In that case, this common factor has a factor of
degree a. We get a surjective map

P(Ra) × Grass(2, Rc−a) → G(c)a

by sending ( f , 〈g,h〉) to 〈 f g, f h〉 and we get the dimension of G(c)a as G(c)a = ra − 1 + 2(rc−a − 2) =
ra + 2rc−a − 5.
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The variety X(c) ⊂ Grass(2, Rc), defined as the complement of the open stratum G(c)0, para-
metrizes two-dimensional subspaces with a common factor. If the greatest common divisor of such a
space V ⊆ Rc is irreducible of degree a, we are in the stratum G(c)a but not in the closure of any of
the other strata G(c)i , i �= 0,a. Thus the closures of the smaller strata are not contained in each other,
but their union is all of X(c). �

Now, we will show that the we can get level algebras with Hilbert function H(c) as quotients of
ideals generated by two forms in degree c.

Lemma 2.9. Let 〈 f , g〉 ⊆ Rc be a general element in G(c)a and, if a > 0, let I = ( f , g,h), where h is a general
form of degree 2c − a.

If a = 0 or
√

(c2 − 1)/2 � a < c, then a sufficiently general type three level quotient of R/I with socle in
degree 2c − 1 has Hilbert function H(c).

Proof. We first look at the quotient of R/I with the ideal (x, y, z)2c . With I = I + (x, y, z)2c we get
that R/I is a level algebra with Hilbert function

H(R/I)i =
{

ri − 2ri−c, 0 � i < 2c,

0, otherwise.

In particular, we have that H(R/I)2c−2 = H(R/I)2c−1 = c2. The ideal I is clearly uniquely determined
by I . In the parameter space of algebras having the same Hilbert function as I , we can specialize to an
ideal I ′ and if the general level quotient of R/I ′ has the desired Hilbert function, so does the general
level quotient of R/I .

Since 〈 f , g〉 is assumed to be general, the zero-set defined by the ideal ( f , g) consists of a curve
of degree a and a complete intersection of type (c − a, c − a). We can specialize I into I ′ = ( f , g,h′)
by asserting that h′ vanishes on the complete intersection. This is a condition of codimension (c −a)2.
Now, in order to show that the Hilbert function of a general type three level quotient of R/I is H(c),
it suffices to show that this is the case for the specialized ideal I ′ , which is an ideal of a set of c2

points in the plane. This set of points is the union of a complete intersection of type (a,2c − a) and a
complete intersection of type (c − a, c − a).

We will now go on to show that if these complete intersections are chosen general enough, the
Hilbert function of a general level quotient of type 3 and socle degree 2c − 1 is the expected H(c).

Let N = max{H(c)i | 0 � i � c} and consider a set of N points in the plane which is a subset of the
union of a complete intersection of type (a,2c − a) and a complete intersection of type (c − a, c − a).
We want to partition this set into three parts of sizes differing by at most one, such that each of the
parts has the Hilbert function of a generic set of points.

Let W be a complete intersection in P
2 of type (c −a, c −a) having the uniform position property,

i.e., all its subsets of the same cardinality have the same Hilbert function. Let W = W1 ∪ W2 ∪ W3 be
a partition such that |W1| � |W2| � |W3| � |W1| + 1.

For any positive integer m < ra let Xm ⊆ Hilbm(P2) be the subscheme parametrizing reduced sets
of m points with the generic Hilbert function, i.e., hi = min{m, ri}, for i � 0. Let Y be the subscheme
of Hilba(2c−a)(P2) parametrizing complete intersections of type (a,2c −a) having the uniform position
property. This is an open dense subset in the parameter space of complete intersections [Ha].

Consider the correspondence given by

Cm = {
(X, Y )

∣∣ X ⊆ Y
} ⊆ Xm × Y

with the two maps Cm → Xm and Cm → Y induced by the projections.
The fibers of the map Cm → Xm are all irreducible of the same dimension since we only have to

pick general forms of degree a and 2c −a in the ideal of X . Hence Cm is irreducible. The map Cm → Y
is finite, since a reduced complete intersection only has a finite number of subschemes. Let Zm ⊆ Xm

be the subscheme parameterizing sets of points, X ⊆ P
2 such that the Hilbert function of one of the
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sets X ∪ W1, X ∪ W2 and X ∪ W3 is not generic. Then Zm ⊆ Xm is a closed proper subset, since a
generic set of points in the plane yields a generic Hilbert function for each of the three sets X ∪ W1,
X ∪ W2 and X ∪ W3. Thus the dimension of the inverse image of Zm in Cm is less than the dimension
of Cm and hence the general element Y in Y has the property that all of its subschemes of length
m lie outside of Zm . Since this is true for all integers m, we can now take such a general element Y
in Y and let V ⊆ Y be a subset of size N − (c − a)2. We can partition V into subsets V 1 ∪ V 2 ∪ V 3,
where |V 1| � |V 2| � |V 3| � |V 1| − 1. In this way we have a subscheme U = V ∪ W ⊆ P

2 such that
U1 = V 1 ∪ W1, U2 = V 2 ∪ W2 and U3 = V 3 ∪ W3 all have generic Hilbert functions. In order for this
to work, we have to make sure that the sizes of the sets V 1, V 2 and V 3 are all less than ra . It suffices
to show that N � 3ra − 3.

We can get an upper bound for the number of points N by looking at the value of the Hilbert
function H(c) in degree α(c) where we get

N � H(c)α(c) = rα(c) − 2rα(c)−c = 3(c2 − 1) + 3
√

2(c2 − 1)

4
<

3

4
(c + 1)2,

for c � 1. By assumption,
√

(c2 − 1)/2 � a < c, so we have that

ra = a2 + 3a + 2

2
>

c2 − 1

4
+ 3(c − 1)

2
√

2
+ 1 � c2 − 1

4
+ (c − 1) + 1 = (c + 1)2 + 2(c − 1)

4
,

ra = a2 + 3a + 2

2
>

c2 − 1

4
+ 3(c − 1)

2
√

2
+ 1 � c2 − 1

4
+ (c − 1) + 1 = (c + 1)2 + 2(c − 1)

4
.

Comparing these two inequalities, we get N � 3ra − 3, whenever c � 3.
The Hilbert function of the set U is given by ri − 2ri−c in degrees i � α(c) and N in degrees

i > α(c).
Suppose that an ideal I ⊂ R satisfies I j �= R j . We may construct a “general” Gorenstein ideal J ⊃ I

with R/ J Artinian of socle degree j by choosing first a general enough codimension one vector sub-
space J j ⊂ R j satisfying J j ⊃ I j ; and then taking J to be the largest ideal satisfying

J ∩ M j = ( J j) ∩ M j .

Thus, J is the ancestor ideal of J j [I2,IK]. Equivalently, we choose a generic element w ∈ (I j)
⊥ ∩ R j —

that is, w is annihilated by the contraction action of I j on R j —and let J = { f ∈ R | f ◦ w = 0}.
Now let J (1), J (2) and J (3) be general Gorenstein ideals containing I(U1), I(U2) and I(U3), re-

spectively, and whose quotients R/ J (1), R/ J (2), R/ J(3) each are Artinian of socle degree 2c − 1. By
[IK, Lemma 1.17 or Theorem 4.1A] we have that the Hilbert function of R/ J (�) is given by

max
{

ri, |U�|, r2c−1−i
}
.

In degrees where the Hilbert function of U equals N , the coordinate ring of U is a direct sum of
the coordinate rings of U1, U2 and U3. Thus the intersection J = J1 ∩ J2 ∩ J3 gives a level algebra
R/ J whose Hilbert function, in these degrees, is the sum of the Hilbert functions of the Gorenstein
quotients R/ J1, R/ J2 and R/ J3. The sum is equal to 3r2c−1−i as long as this number is less than or
equal N . In degrees at most α(c), the Hilbert function of R/ J will equal the Hilbert function of U ,
i.e., ri − 2ri−c since the initial degrees of the three Gorenstein ideals in the coordinate rings of the
parts are higher than α(c). Thus we have shown that the Hilbert function of R/ J is H(c) and hence
the general level quotient has Hilbert function H(c). �

After having established that there are level algebras with Hilbert function H(c) with different
degrees of the common divisor in degree c, we can now state the main theorem of this section.
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Theorem 2.10. For a = 0 and
√

(c2 − 1)/2 � a < c, the family Fa of all level algebras in LevAlg(H(c)) whose
degree c part lies in G(c)a is a nonempty open set in a component of LevAlg(H(c)). The dimension of this
component is 4c2 + 3c − 11 for a = 0 and 4c2 + 3c − 12 + (c − a)2 otherwise. LevAlg(H(c)) is reducible
for c � 3.

Proof. Consider the map

Φ : LevAlg
(

H(c)
) → Grass(2, Rc)

given by sending the level ideal I to its degree c component Ic .
By Lemma 2.9 we know that Fa is nonempty, since Φ has a nonempty fiber over the general

point of G(c)a . The general point in Grass(2, Rc) lies in the image and we conclude that Φ is dom-
inant. There has to be at least one component of LevAlg(H(c)) dominating the image, and since the
general fiber of Φ is irreducible of dimension 3(c2 − 3), we conclude that there is a single such
component, F 0, of dimension

2rc − 4 + 3
(
c2 − 3

) = 4c2 + 3c − 11.

Let X(c) be the variety defined as the complement of G0 in Grass(2, Rc). Lemma 2.8 gives us the
dimensions of the components, G(c)a , of X(c). Now we know from Lemma 2.9 that for

√
(c2 − 1)/2 �

a < c, the fiber over the general point of G(c)a is nonempty. Thus we know that there has to be a
component of LevAlg(H(c)) dominating the component G(c)a of X(c). The fiber of Φ over the general
point in G(c)a is irreducible of dimension r2c−a − 2rc−a + 3c2 − 9 since we have to add a form of
degree 2c − a to the ideal generated by the two forms of degree c due to their common factor of
degree a. Observe that since a �

√
(c2 − 1)/2 we have that 2c − a � α(c) and the form of degree

2c − a is determined up to scalar multiples by the level ideal. Thus the component, Fa , dominating
G(c)a is irreducible of dimension

2rc−a + ra − 5 + r2c−a − 2rc−a + 3c2 − 9 = ra + r2c−a + 3c2 − 14 = 4c2 + 3c − 12 + (c − a)2.

Since this is greater than or equal to the dimension of the component spanned by F0, we have that
Fa cannot be contained in the closure of F0, and we have shown that they are different compo-
nents. For different a �= 0, the components spanned by Fa are different since they map onto different
components of X(c). �
Remark 2.11. The first few Hilbert functions in the series H(c) are

H(3) = (1, 3, 6, 8, 9, 3 ) ,

H(4) = (1, 3, 6, 10, 13, 15, 9, 3 ) ,

H(5) = (1, 3, 6, 10, 15, 19, 22, 18, 9, 3 ) ,

H(6) = (1, 3, 6, 10, 15, 21, 26, 30, 30, 18, 9, 3 ) ,

H(7) = (1, 3, 6, 10, 15, 21, 28, 34, 39, 43, 30, 18, 9, 3 ) ,

and the first time we get more than two components is for c = 7. The number of components given
by Theorem 2.10 is c + 1 − �√(c2 − 1)/2�, which is bounded from below by (1 − 1/

√
2)c.

The values of c for which the degree α(c) = 2c −√
(c2 − 1)/2 is an integer correspond to solutions

of Pell’s equation, c2 − 2d2 = 1, which in turn are related to the continued fraction expansion of
√

2,
namely 2 = (1,2,2, . . .). Considering the approximants pk/qk , and letting c = pk,d = qk for k odd, one
obtains all such solutions. The first five are (pk,qk) = (3,2), (17,12), (99,70), (577,408), (3383,2378),

for k = 1,3,5,7,9. (See [Ro, Theorem 13.11].)
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It would be interesting to know whether the infinite series of Artinian examples of Theorem 2.10
lifts to an infinite series of examples with level set of points in a similar way as in the first example
in the series. This question is still open and the problem is that we are lacking general results that
guarantee that the Hilbert function of a general enough level set of points on a given curve has the
expected Hilbert function.
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