
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 912 (2016) 305–326

www.elsevier.com/locate/nuclphysb

Two-field Born–Infeld with diverse dualities

S. Ferrara a,b,c, A. Sagnotti d,∗, A. Yeranyan e,b

a Department of Theoretical Physics, CH-1211 Geneva 23, Switzerland
b INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy
c Department of Physics and Astronomy, U.C.L.A., Los Angeles, CA 90095-1547, USA

d Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89A, 00184, Roma, Italy

Received 31 May 2016; received in revised form 26 June 2016; accepted 27 June 2016

Available online 1 July 2016

Editor: Hubert Saleur

Abstract

We elaborate on how to build, in a systematic fashion, two-field Abelian extensions of the Born–Infeld 
Lagrangian. These models realize the non-trivial duality groups that are allowed in this case, namely U(2), 
SU(2) and U(1) × U(1). For each class, we also construct an explicit example. They all involve an overall 
square root and reduce to the Born–Infeld model if the two fields are identified, but differ in quartic and 
higher interactions. The U(1) × U(1) and SU(2) examples recover some recent results obtained with dif-
ferent techniques, and we show that the U(1) × U(1) model admits an N = 1 supersymmetric completion. 
The U(2) example includes some unusual terms that are not analytic at the origin of field space.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Born–Infeld (BI) theory [1] is described by the Lagrangian

L = f 2

[
1 −

√
1 + 1

2f 2 (F ·F) − 1

16f 4

(
F · F̃)2 ] , (1.1)
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where Fmn is an electromagnetic field strength in the standard four-component notation. It was 
initially put forward as an elegant refinement, based on the determinant of ηmn + 1

f
Fmn, of an 

earlier proposal [2] enforcing a dynamical upper bound on the electric field of a point charge. 
Both Lagrangians involve a square root, and both models do entail the same dynamical bound, 
much as occurs for the speed in Special Relativity. However, the choice of eq. (1.1) is particularly 
interesting, precisely due to the last term inside the square root. Schrödinger soon noticed [3], 
indeed, that the non-linear BI field equations afford a subtle and surprising realization of electric–
magnetic duality in an interacting system, or if you will in a non-linear relativistic medium.

The BI theory made a striking and unexpected comeback in String Theory [4], in the 1980’s, 
when Fradkin and Tseytlin [5] first linked it to the dynamics of open strings in a constant electro-
magnetic background. The phenomenon is of utmost interest, since it is an exact manifestation 
of the deformed spectra [6] of D-branes [7], the extended objects that populate orientifold vacua 
[8]. However, two types of corrections affect it. The first is the generic presence of interac-
tions involving derivatives of Fmn, while the second is the non-Abelian extensions that manifest 
themselves when D-branes are superposed. Both types of effects are unfortunately not fully un-
derstood (for a review see [9]), but the BI theory remains an important benchmark for all these 
searches.

A second, related reason of interest on the BI theory, has to do with the partial breaking of 
supersymmetry. When completed by the addition of gaugino interactions [10,11], the model of 
eq. (1.1) conceals indeed a second, non-linearly realized supersymmetry [12,16,13–15,17], while 
f defines the supersymmetry breaking scale. The superspace formulation rests on N = 2 con-
strained superfields, much along the lines of what happens for the Volkov–Akulov model [18], 
and thus for the N = 1 → N = 0 breaking [19]. This is nicely consistent with the link between 
BI and D-branes, where partial breaking found originally a proper setting [20]. Partial breaking 
of supersymmetry affords an alternative realization in models of N = 1 global supersymmetry 
with non-renormalizable [21] (magnetic) superpotential terms and Fayet–Iliopoulos [22] terms. 
In decoupling limits, one can recover multi-field extensions of the BI theory depending on N

field strengths F i
mn, i = 1, ..N with [13–15,17]: they involve in general multiple square-roots 

and have been fully classified up to cases with three gauge fields. It would be interesting to clar-
ify their possible links with D-branes. At any rate, in these multi-field models the duality group 
does not extend beyond the BI case.

Eventually one would like to extend the BI construction to supergravity [23], which would 
provide a low-energy characterization of D-brane systems with (partially) broken supersymme-
try. D-branes typically do bring along, in general, non-linear realizations of supersymmetry [24], 
since for one matter their presence in the vacuum breaks some translational symmetries, which 
affect their low-energy modes via shifts of scalars. The coupling of constrained multiplets to 
supergravity [25] has led to a resurgence of these ideas [26], also in connection with “brane 
supersymmetry breaking” [27] and the KKLT construction [28]. In this case supersymmetry is 
fully broken, but it is extremely important to explore and characterize similar types of systems al-
lowing for partial breaking, in various dimensions. All in all, the non-BPS combinations of BPS 
objects of brane supersymmetry breaking are possibly the simplest entry point into the intricate 
dynamics of non-supersymmetric brane systems (for a recent review see [29]).

As we have anticipated, a key missing ingredient of present constructions is the generalized 
electric–magnetic dualities that play a central role in extended supergravity [30]. Duality sym-
metries for systems of Abelian field strengths were characterized, in general, by Gaillard and 
Zumino (GZ) [31]. Drawing some inspiration from [30,32], they showed that, with N Abelian 
field strengths F i

mn the maximal possible duality group is U(N), which can extend at most to 
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Sp(2N, R) in the presence of scalars, and is accompanied by chiral rotations if fermions are 
present. The simplest example of this type is pure N = 4 supergravity, whose duality group is 
SU(4) × Sp(2, R), where the latter also acts on the axion–dilaton system [33]. These results 
were analyzed in depth and extended in a number of works following [31], which include [34,
35]. The GZ formulation also raised the natural question of building corresponding extensions 
of the BI theory. The problem was set up in general in [37], but no analytic solutions were found 
for N > 1. Non-linear deformations of N = 2 electrodynamics that are U(1) duality invariant 
were also investigated. However, they were not proven to be non-linear realizations of a higher 
N = 4 supersymmetry Refs. [35,36].

During the last decade, Ivanov and Zupnik (IZ) were responsible for a major independent 
line of development, which rests on the combined use of master actions and tensor auxiliary 
fields [38,39]. Master actions combining field strengths and their duals are a familiar tool to 
investigate electric–magnetic dualities, and in connection with scalar auxiliary fields they make 
Legendre transforms simple and elegant for the BI theory [16]. While duality transformations 
mix, in general, the field strengths F i

mn and their duals Gi
mn, which are non-linear functions 

of them, the IZ tensor auxiliary fields transform linearly under dualities, in a universal way 
that is independent of the dynamics. All bona fide interactions that are duality invariant can 
be expressed solely in terms of them, which makes a systematic search for extended dualities 
possible. However, the reversal to the ordinary field strengths is typically difficult, and thus no 
simple closed-form multi-field examples were found.

In this paper we build, along the lines traced by IZ, three prototype analytic extensions of the 
BI model involving two field strengths F i

mn (i = 1, 2) that realize the possible extended duality 
groups, namely U(2), SU(2), U(1) × U(1). All these models reduce to the BI theory when the 
two field strengths are identified. The U(2) model is new, but includes a peculiar term that is not 
analytic at the origin of field space, while the others reproduce results that we had previously 
presented in [40]. In the weak-field limit, all these models reduce to two copies of the Maxwell 
theory. Moreover, they all rest on one and the same expression in terms of auxiliary variables, 
which emerges naturally and is essentially the same that, for N = 1, determines the BI theory. 
For more than two fields we have not found, so far, examples of comparable simplicity.

The plan of the paper is as follows. In Section 2 we review the previous construction [38,39] of 
models with a single field strength. In Section 2.2 we present a one-parameter deformation of the 
BI theory that is also invariant under U(1) duality and contains some contributions that are not 
analytic at the origin of field space. In Section 3 we turn to the two-field case, and the following 
subsections describe the construction of our three prototype examples, with duality groups U(2), 
SU(2) and U(1) × U(1). The first model contains non-analytic terms that are akin to those met 
in Section 2.2. In Section 4 we discuss the possibility of extending the prototype models in order 
to accommodate N = 1 supersymmetry. Finally, Section 5 contains some concluding remarks.

2. One-field models: BI theory and a family of extensions

Master actions combining field strengths with their duals are a familiar tool to approach dual-
ities via Legendre transforms, but they can be very useful also to address the solution of the GZ 
constraints [31] and the continuous duality symmetries of field equations.

The approach that will concern us here originates from the work of IZ [38,39]. Their key step 
was the introduction of tensorial counterparts Vαβ and V α̇β̇ of the Maxwell field strengths Fαβ

and F α̇β̇ . We shall adopt this two-component notation to a large extent, reserving to Section 5
the translation of final results into the four-component form.
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The authors of [38] first considered the redefinitions

Fαβ =
(

1 + V 2

1 − V 2 V 2

)
Vαβ , F α̇β̇ =

(
1 + V 2

1 − V 2 V 2

)
V α̇β̇ . (2.1)

Also in view of the following sections, let us define the scalar quantities

φ = F 2 , φ = F
2

, (2.2)

ν = V 2 , ν = V
2

, a = ν ν . (2.3)

The first two involve Fαβ and its complex conjugate, while the others involve the auxiliary 
field V . Lorentz invariance constrains the Lagrangian to depend on the variables of eq. (2.2), 
and the standard BI action reads

SBI =
∫

d4x

[
1 −

√
1

4

(
φ − φ

)2 + (
φ + φ

) + 1

]
. (2.4)

Interestingly, however, the redefinitions of eq. (2.1) result in the far simpler, rational form

SBI = − 2
∫

d 4x
Re [ν] + a

1 − a
, (2.5)

an expression that will recur in the following sections.
Schrödinger readily noticed [3] that the BI field equations

∂βα̇ P β
α − ∂αβ̇ P

β̇

α̇ = 0 , (2.6)

where

P αβ(x) = i
δS

δFαβ(x)
, P

α̇β̇
(x) = − i

δS
δF α̇β̇ (x)

(2.7)

are complicated non-linear functions of the Fαβ and F α̇β̇ determined via the “constitutive rela-
tions” (2.7), together with the Bianchi identities

∂βα̇ F β
α − ∂αβ̇ F

β̇
α̇ = 0 , (2.8)

are covariant under the duality rotations

δFαβ = ηPαβ , δPαβ = − ηFαβ , (2.9)

in analogy with the free Maxwell system.
The natural mixing of eqs. (2.6) and (2.8) is indeed strikingly compatible with the origin of 

P and P from the BI action via eq. (2.7). This crucial consistency condition and its multi-field 
extensions were later formulated systematically by GZ in [31] and [34]. In the single-field case 
there is a single constraint,

F 2 + P 2 − F 2 − P
2 = 0 , (2.10)

which holds identically, as one can verify, for the BI theory.
The relevance of the tensor auxiliary variables Vαβ and V α̇β̇ goes well beyond the simplifica-

tions evident in eq. (2.5). While other options have been explored to linearize the BI action, as in 
[16], the auxiliary fields Vαβ, V α̇β̇ possess a special virtue: duality transformations act linearly 
on them, according to



S. Ferrara et al. / Nuclear Physics B 912 (2016) 305–326 309
δVαβ = −i η Vαβ, δV α̇β̇ = i η V α̇β̇ , (2.11)

in a universal fashion that is independent of the dynamics. These relations, whose origin we are 
about to review, clearly imply that a in eq. (2.3) is invariant under the duality, and thus retain 
their form even if Vαβ and V α̇β̇ are rescaled by an arbitrary function “lapse function” h(a).

The reader should appreciate the sharp contrast between eq. (2.11) and the effect of duality 
transformations on the ordinary variables, since the actual nature of the Pαβ and P α̇β̇ reflects 
the specific form of the Lagrangian. The striking simplification inherent in eq. (2.11) makes it 
possible to address dualities and corresponding generalizations of the BI theory in a systematic 
fashion.

2.1. The master action

In addressing generalized dualities, it is convenient to rely on “master actions” that combine 
the dynamical curvature Fαβ and the auxiliary field Vαβ with their complex conjugates. For 
the one-field systems of interest in this section, these are built integrating over space time the 
Lagrangians

L = 1

2

(
φ + φ

) − 2h
(
F · V + F · V ) + h2 (ν + ν) + E

(
ν, ν

)
. (2.12)

These rest on generic Lorentz-invariant interaction terms E
(
ν, ν

)
, and extend slightly the result 

of the second paper in [39], since they also involve the duality-invariant scalar “lapse function” 
h
(
a
)
, which will prove very useful in the following. The BI action is a special case, and is 

recovered if

E = 2a
1 + a

(1 − a)2
, (2.13)

h =
√

2

1 − a
. (2.14)

In the following we would like to characterize, following IZ [39], the subset of actions whose 
equations of motion are invariant under the duality (2.10), where now

Pαβ(F,V ) = i (Fαβ − 2hVαβ) , (2.15)

and to display a deformation of the BI example. Let us notice aforehand that, when combined 
with eq. (2.9), this relation implies the universal linear duality transformations for Vαβ and V α̇β̇

of eq. (2.11).
The equations of motion resulting from the Lagrangian (2.12) and the corresponding Bianchi 

identities can be duality-covariant only for suitable choices of the interaction E (ν, ν). The 
restriction, embodied in the constraint (2.10), can be recast in a form that makes its group-
theoretical meaning quite transparent.

The equations linking Fαβ to Vαβ and V α̇β̇ play a key role in the formalism. They obtain since 
the Lagrangian L(V , F) is to be stationary with respect to variations of the auxiliary fields, and 
read

Fαβ =
(

h + 2ν ∂ah (ν ∂ν E − ν ∂ν E) + h∂ν E

h (4a ∂ah + h)

)
Vαβ (and c.c.) . (2.16)

They relate, for any dynamical model, φ and φ to the quantities listed in eq. (2.3). Using this 
result and definition of P in eq. (2.15), one can recast eq. (2.10) in the form
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ν ∂ν E − ν ∂ν E = 0 . (2.17)

This first-order equation demands that E depend on the auxiliary fields only via the scalar a of 
eq. (2.3), which is clearly invariant under the U(1) duality.

If E = E(a), eq. (2.16) simplifies considerably and reduces to

Fαβ = (h + p ν)Vαβ (and c.c.) , (2.18)

where

p = Ea

4a ∂ah + h
, (2.19)

and eq. (2.18) implies the two useful results

F · V = (h + p ν)ν (and c.c.) , (2.20)

φ = (h + p ν)2 ν (and c.c.) . (2.21)

In terms of the auxiliary variables, the Lagrangian (2.12) reduces to

L = − 1

2
(ν + ν)

(
h2 − a p2

)
+ I (a) , (2.22)

where

I (a) = E − 2a hp , (2.23)

and on account of eq. (2.19) I is determined by the differential equation

∂aI = − hp + 2a (p ∂ah − h∂ap) . (2.24)

Any choice of I (a) yields a duality invariant model, but one must eventually return to the stan-
dard variables Fαβ and F α̇β̇ , and thus, on account of Lorentz invariance, to φ and φ of eq. (2.2). 
The relevant information is contained in eq. (2.21), but the inversion problem is typically compli-
cated and closed-form expressions for the Lagrangian obtain only in a limited number of cases.

2.2. Explicit solutions

To begin with, in the weak limit for the interactions

p � 0 , (2.25)

and one recovers the Maxwell Lagrangian, which in two-component notation reads

L = − 1

2

(
F 2 + F 2

)
. (2.26)

Formally, one might also contemplate the opposite limit

h � 0 , (2.27)

which amusingly leads to the Lagrangian

L = 1

2

(
F 2 + F 2

)
, (2.28)

where the roles of electric and magnetic fields are somehow interchanged.
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In general, if both h and p are nonzero, it proves convenient to choose the gauge

h = p . (2.29)

The important step, as we have stated already, is to find a in terms φ and φ, and to this end let us 
note the two consequences of eq. (2.21),

ν + ν = φ + φ − 4a h2(a)

h2(a)(1 + a)
, (2.30)

φ φ (1 + a)2 = a
[
h2(a) (1 − a)2 + φ + φ

]2
. (2.31)

Making use of eq. (2.30), the Lagrangian can be recast in the form

L = − 1

2

(
φ + φ

) 1 − a

1 + a
+ 2a h2 1 − a

1 + a
+ I (a) , (2.32)

where

∂a I = − h2(a) . (2.33)

The transition to the final form in terms of space–time fields rests on the elimination of a via 
eq. (2.31), which is simple only for special choices of the “lapse function” h(a), and thus of the 
interaction terms I (a) or E(a).

The family of choices

h2 = β + α
√

a + γ a√
a (1 − a)2

, (2.34)

with α, β and γ three constants leads to simple solutions of eq. (2.31) for a. Indeed, while it 
would turn eq. (2.31) into a fourth-order equations, the latter is the perfect square of√

φ φ (1 + a) = √
a
[
h2(a) (1 − a)2 + φ + φ

]
, (2.35)

which can be easily solved for all this choices, with the end result

I = δ − α + (β + γ )
√

a

1 − a
− (β − γ ) ArcTanh

(√
a
)

. (2.36)

In terms of auxiliary variables, the corresponding Lagrangians read

L = − 1

2

β + α
√

a + γ a√
a (1 − a)

(ν + ν) + I , (2.37)

and the appropriate Maxwell limit obtains provided one chooses β = 0, α = 2 and the integration 
constant δ = 2. Doing this and solving eq. (2.30) for a yields

L = f 2

⎡⎢⎢⎢⎢⎣1 −
√√√√(1 + F 2 + F

2

2f 2

)2

− 1

f 2

√
F 2 F 2

(
1

f 2

√
F 2 F 2 − γ

)
(2.38)

+ γ ArcTanh

⎛⎜⎜⎜⎜⎝
1 + F 2+F

2

2 f 2 −
√(

1 + F 2+F
2

2 f 2

)2

− 1
f 2

√
F 2 F 2

(
1
f 2

√
F 2 F 2 − γ

)
1
f 2

√
F 2 F 2 − γ

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ,
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where we have also reinstated the scale f of eq. (1.1). Notice that these models involve the 

combination 
√

F 2 F 2, which is not analytic at the origin of field space. Still, one can argue 
on the basis of standard theorems of calculus that their behavior is regular enough to grant a 
well-defined Cauchy problem. This type of feature will show up again in the following section. 
The choice γ = 0 clearly recovers the standard BI action, whose form in auxiliary variables was 
already given in (2.5).

3. Two-field models with extended dualities

We can now move on to a less explored territory. Our next aim is to construct examples of 
non-linear Lagrangians for a pair of field strengths F i

αβ, F
i

α̇β̇ , (i = 1, 2). As we have anticipated, 
we shall rely on a slight generalization of the approach spelled out in the last paper in [39], which 
will rest again on a “lapse function” h. Our main result will be a new explicit solution with U(2)

duality, but the same techniques will also recover, in a clear fashion, other models that we had 
recently obtained less systematically in [40], with SU(2) and U(1) × U(1) duality groups. On 
the other hand, the model in eq. (3.13) of [40] with manifest U(1) symmetry does not belong to 
this list, despite its double self-duality under Legendre transforms of both F and G. It lacks in 
fact the simultaneous presence of electric and magnetic duality generators, which is instrumental 
in making the IZ method particularly effective.

We shall restrict again our attention to Lagrangians

L(F k, F
l
) (k, l = 1, 2) (3.1)

that are manifestly invariant under Lorentz transformations and under the O(2) transformation

δξF
k
αβ = ξkl F l

αβ , δξF
k

α̇β̇ = ξkl F
k

α̇β̇ , ξ kl = −ξ lk . (3.2)

As in the previous section (see eq. (2.2)), Lorentz invariance leads one to define complex 
scalar variables, which are now the matrices

φkl = Fk · F l , φ
kl = F

k · F l
, (3.3)

and to regard the Lagrangian as a real function of them. The resulting non-linear equations of 
motion

Ek
αα̇ ≡ ∂β̇

α P
k

α̇β̇ (F ) − ∂
β
α̇ P k

αβ(F ) = 0 (3.4)

involve the dual nonlinear field strengths

P k
αβ(F ) ≡ i

∂L

∂F kαβ
= 2 i F l

αβ

∂L

∂ϕkl
(and c.c.) , (3.5)

while the ordinary field strengths Fk
αβ , F

k

α̇β̇ obey the Bianchi identities

Bk
αα̇ ≡ ∂β̇

α F
k

α̇β̇ − ∂
β
α̇ F k

αβ = 0 . (3.6)

As in the last paper in [39], the master actions for these manifestly U(1) invariant Lagrangians 
rest on complex auxiliary tensor fields V k

αβ , V
k

α̇β̇ . However, here they also depend on a “lapse 
function” h, and read

L = 1 (
φt + φt

) − 2h
(
Fk · V k + F

k · V k
)

+ h2 (νt + νt ) + E
(
νkl, νkl

)
, (3.7)
2
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where

νkl = V k · V l , νt = Tr (ν) (and c.c.) . (3.8)

From now on, the subscript t will identify, for brevity, a trace of the corresponding matrix. 
Eq. (3.7) implies that

P k
αβ = i

(
Fk

αβ − 2hV k
αβ

)
, (3.9)

and in all these constructions the function h will be invariant under the full duality at stake.

The algebraic equations for V k
αβ, V

k

α̇β̇ obtain varying L(V , F) with respect to V k
αβ, V

k

α̇β̇ , de-
fine the ordinary field strengths in terms of the auxiliary tensors, and are of the form

Fk = hV k + gkn V n (and c.c.) , (3.10)

where

gkn = 1

h

[
∂E

∂νkn
− R

∂h

∂νkn

]
, (3.11)

with

R = νml ∂E
∂νml + νml ∂E

∂νml

νml ∂h
∂νml + νml ∂h

∂νml + 1
2 h

. (3.12)

Depending on the actual duality symmetry, the following “magnetic” GZ constraints

Mkl ≡ (P kP l) + (F kF l) − c.c. = 0 , (3.13)

or at least some combinations thereof, will hold. On the other hand, the “electric” GZ constraint

Ekl ≡ (F kP l) − (F lP k) − c.c. = 0 , (3.14)

which is unique in the two-field case, will always hold as a result of the manifest U(1) symmetry 
that we have assumed for the Lagrangians. In detail, this U(1) symmetry means that all terms in 
the Lagrangian can only depend, a priori, on the five independent variables

νt ≡ Tr (ν) , νt ≡ Tr (ν) , at ≡ Tr (A) , νd ≡ Det (ν) , νd ≡ Det (ν) , (3.15)

where the Hermitian matrix A is defined as the product of the two matrices ν and ν:

A = ν ν , ad = Det (A) . (3.16)

Clearly the determinant of A, which we shall call ad in the following, is not an independent 
quantity. Rather, it is simply the product of νd and νd .

These results can be understood as follows. To begin with, eqs. (3.2), (3.9) and (3.10) imply 
that the “electric” U(1) transformations within U(2) act on V k

αβ and V
k

α̇β̇ according to

δV k
αβ = ξkl V l

αβ (and c.c.) , (3.17)

and therefore

δν = [ξ, ν] , (3.18)

so that νt , νd and at and, a fortiori, ad , are all invariant under the “electric” U(1).
Making use of eqs. (3.9) and (3.10), the GZ constraints take the form
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Mkl ≡
(
gkn νnl + gln νnk

)
− c.c. = 0 , (3.19)

Ekl ≡
(
gkn νnl − gln νnk

)
+ c.c. = 0 . (3.20)

Notice also that, on account of the manifest U(1) “electric” duality symmetry, the matrix g
reduces to

gkn = p νkn + q
(
ν−1

) kn + r δkn , (3.21)

where p is a real function while q = q1 + i q2 and r = r1 + i r2 are complex functions, all built 
out of derivatives of the “interaction” term E and of the “lapse function” h with respect to the 
five invariants of eq. (3.15). In detail:

p = 1

h

[
∂E

∂at

− R
∂h

∂at

]
, q = νd

h

[
∂E

∂νd

− R
∂h

∂νd

]
, r = 1

h

[
∂E

∂νt

− R
∂h

∂νt

]
.

(3.22)

At this point, the “electric” GZ (3.20) constraint is identically satisfied while the three “mag-
netic” GZ constraints (3.19) can be cast in the convenient form

M12 ∼ r1 Im [ν12] + r2 Re [ν12] , (3.23)

M11 + M22 ∼ 2q2 + r1 Im [νt ] + r2 Re [νt ] , (3.24)

M11 − M22 ∼ r1 Im [ν11 − ν22] + r2 Re [ν11 − ν22] , (3.25)

where the second of these equations only involves invariants of the “electric” U(1) duality group. 
More in detail, the second constraint corresponds to the U(1) generator in U(2) that commutes 
with all others, while the first and third constraints correspond to the two generators that close, 
together with the “electric” generator, into the SU(2) algebra.

These equations merely identify the types of the solutions, which fall into three classes associ-
ated with U(2), SU(2) and U(1) ×U(1) duality symmetry. Arriving at explicit examples entails 
a main complication, the inversion problem to recover their forms in terms of standard variables.

3.1. A model with U(2) duality

In order to attain U(2) duality, all three equations of the system (3.23)–(3.25) must be satisfied 
for generic values of the νij . Thus, r1, r2 and q2 must vanish, and these conditions imply that h
and E can only depend on at , the trace of A, and on its determinant ad .

One can also state, equivalently, that two-field models admitting the maximal U(2) duality 
symmetry must be also compatible with three “magnetic” transformations realized as

δηF
k
αβ = ηklP l

αβ , δηP
k
αβ = − ηklF l

αβ . (3.26)

Here the symmetric matrix ηkl encodes three real parameters, and the equations of motion (3.4)
and the Bianchi identities (3.6) are to be covariant under eq. (3.26). The U(2) transformations 
for the auxiliary tensor fields V k

αβ and V
k

α̇β̇ read

δV k
αβ =

(
ξkl − i ηkl

)
V l

αβ , δV
k

α̇β̇ =
(
ξkl + i ηkl

)
V

l

α̇β̇ , (3.27)
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where the antisymmetric matrix associated to the “electric” U(1) was introduced in eq. (3.2). 
These transformations imply corresponding ones for the complex scalar variables νkl, νkl , which 
can be summarized in the compact matrix form

δν = [ξ, ν] − i{η, ν} , δν = [ξ, ν] + i{η, ν} . (3.28)

Consequently, the Hermitian matrix A transforms as

δA = [ξ + i η,A] , (3.29)

and one can indeed recover the two U(2) invariants that we had identified starting from 
eqs. (3.23)–(3.25), the trace at of A and its determinant ad .

Eqs. (3.23)–(3.25) all vanish for this class of models, and as we have explained r = 0 and 
q is purely real and equal to q1. As a result, the field strengths Fk

αβ and their duals P k
αβ can be 

represented as

Fk
αβ =

(
hδkl + p νkl + q1 ν−1 kl

)
V l

αβ , (3.30)

P k
αβ =

(
−hδkl + p νkl + q1 ν−1 kl

)
V l

αβ , (3.31)

where p and q1 take the form

p = 1

h

h∂at E + 8ad

(
∂ad

h ∂at E − ∂at h ∂ad
E
)

4at ∂at h + 8ad ∂ad
h + h

, (3.32)

q1 = 1

h

had ∂ad
E − 4ad at

(
∂ad

h ∂at E − ∂at h ∂ad
E
)

4at ∂at h + 8ad ∂ad
h + h

. (3.33)

Notice that q1 is a key new ingredient, which had no analogue in the one-field case. One is thus 
led to Lagrangians of the form

L =
[

1

2

(
−hδkn + p νkn + q1 ν−1 kn

) (
hδnl + p νnl + q1 ν−1 nl

)−1
ϕlk + c.c.

]
+ I ,

(3.34)

where

I = E − 2at p h − 4q1 h (3.35)

is to satisfy the two conditions

∂at I = − hp + 2at

(
p ∂at h − h∂at p

) + 4
(
q1 ∂at h − h∂at q1

)
, (3.36)

∂ad
I = hq1

ad

+ 2at

(
p ∂ad

h − h∂ad
p
) + 4

(
q1 ∂ad

h − h∂ad
q1
)

. (3.37)

In analogy with the one-field case, it is convenient to regard p and q1 as independent variables, 
but here one is also to verify the integrability condition

ad ∂ad
h
[
3p + 4

(
at ∂at p + 2 ∂at q1

)]+ ∂at h
[
q1 − 4ad (at ∂ad

p + 2 ∂ad
q1)
]

+ h
(
∂at q1 − ad ∂ad

p
) = 0 . (3.38)

One can recast the Lagrangian in a form that only involves the auxiliary variables,
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L = 1

2

(
−h2 + 2p q1 + at p

2
)

(νt + νt ) + 1

2

(
−p2 + q2

1

ad

)
(νt νd + νt νd) + I ,

(3.39)

but the eventual conversion of L into normal variables rests on the possibility of solving the 
algebraic equations

φkl =
(
hδkn + p νkn + q1 ν−1 kn

)
νns

(
hδsl + p νsl + q1 ν−1 sl

)
(3.40)

and their complex conjugates for the five variables of eq. (3.15).
So far we have been completely general, but our aim is to provide some instructive examples, 

and one can see that the Lagrangian (3.39) simplifies drastically if

q1 = √
ad p . (3.41)

Choosing, as in the one-field case, the gauge h = p, the self-consistency condition (3.38)
reduces to

√
ad ∂ad

h − ∂at h = 0 , (3.42)

which is simply solved provided h depends on at and ad only via the combination

a = at + 2
√

ad . (3.43)

Let us stress that the solution considered in [37] does not belong to this class. We shall return to 
this point shortly.

All in all, in this fashion the Lagrangian (3.34) reduces to

L = − (1 − a)h(a)2 Re[νt ] + I (a) , (3.44)

with

∂aI = − h2 , (3.45)

in striking analogy with eq. (2.32) for the one-field case.
Using the definition (3.40) of the matrix φ in terms of the auxiliary variables, one can set up 

the inversion problem to ordinary field variables via the following relations:

φt = h2[νt + a(νt + 2)
]
, (3.46)

Det(φ − φ) = h4 (1 − a)2 (νd + νd + a − νt νt − 2
√

ad

)
= h4 (1 − a)2

[
(
√

νd −√νd)2 + a − νt νt

]
, (3.47)

φd = h4

νd

[
νd(1 + νt ) + √

ad(νt + a)
]2

= h4
[√

νd(1 + νt ) + √
νd(νt + a)

]2
. (3.48)

Using these expressions, one thus arrives at the important equation

a
(
h2

1 + 2Re [φt ]
)2 − (1 + a)2

[
Det[φ − φ] + |φt |2 − 2

(
Re [φd ] −

√
|φd |2

)]
= 0 ,

(3.49)

where
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h1 = (1 − a) h , (3.50)

which is the counterpart of eq. (2.31) of the one-field case. Notice however the presence of the 
square root in the last term, which brings this construction beyond the framework considered by 
[37], and the implicit positivity condition on the last group of terms, which will be important for 
the final Lagrangian that we are about to display.

The simplest choice for h1 that makes it possible to solve eq. (3.49) analytically is

h1 = √
2 −→ h =

√
2

1 − a
. (3.51)

In this case eq. (3.49) becomes quadratic, and the Lagrangian (3.44) takes again the form that we 
already came across in eq. (2.5),

L = − 2

1 − a

(
Re [νt ] + a

)
, (3.52)

where the choice in eq. (3.51) also guarantees the correct weak-field limit. This Lagrangian is 
formally identical to the one previously considered in the last paper in [39] with reference to 
the construction in [37], but for a crucial difference. We started from the condition (3.41), which 
was motivated by the simplifications it brought about and led to identify the combination a of 
eq. (3.43). On the other hand, the authors of [37] demanded that there be no dependence on ad , 
which led to the identification of a with at and to the condition that q1 vanish, as can be seen 
from eq. (3.33). All in all, it was then impossible, in [37], to perform the inversion analytically.

With our choices one can now revert to the ordinary variables φkl , solving eq. (3.49) for a
with h1 as in (3.51) and substituting in the Lagrangian (3.52). The end result (with the scale f
of eq. (1.1) set to one for brevity),

L = 1 −
√

(1 + Re [φt ])2 − |φt |2 − Det[φ − φ] + 2

(
Re [φd ] −

√
|φd |2

)
, (3.53)

has U(2) duality and reduces to the BI theory if the two Abelian field strengths coincide. Notice 
the peculiar inner square root, whose argument is positive semi-definite but is not analytic at the 
origin of field space. Notice also that, on account of eq. (3.49), the combination of the last four 
terms inside the outer square root is bound to be negative, in analogy with the standard BI case, 
which is recovered if the two fields are identified.

3.2. A model with SU(2) duality

In models with SU(2) duality, only eqs. (3.23) and (3.25) must be satisfied. This requires, 
in general, the vanishing of r1 and r2, but not anymore the vanishing of q2. Alternatively, the η
matrix in the transformations of eq. (3.26) is now traceless, and one can see that the remaining 
conditions imply that f and E can now depend on at and on the two combinations Re [νd ] and 
Im [νd ]. As a result, in the SU(2) case the field strength Fk

αβ can still be represented as

Fk
αβ =

(
hδkl + p ν kl + q ν−1 kl

)
V l

αβ , (3.54)

but now q is complex.
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In general, in auxiliary variables one is confronted with expressions of the form

L =
[
−h2 + p2 at + 2p q1 − Re [νd ]

(
p2 − q2

1 − q2
2

ad

)
+ 2Im [νd ] q1 q2

ad

]
Re [νt ]

+
[

2p q2 − Im [νd ]
(

p2 − q2
1 − q2

2

ad

)
− 2Re [νd ] q1 q2

ad

]
Im [νt ] + I , (3.55)

I = E − 2at hp − 4hq1 , (3.56)

but in analogy with what we did in Section 3.1 we shall again restrict our attention to a subclass 
of Lagrangians that are relatively simple, since they do not depend explicitly on Im [νt ]. This 
condition leads to a quadratic equation for q2, whose solutions are

q2 = ±√Re [νd ]2 + Im [νd ]2 + Re [νd ]
Im [νd ]

(
±p

√
Re [νd ]2 + Im [νd ]2 − q1

)
. (3.57)

Moreover, ratios disappear if one restricts the attention to a particular choice for q1,

q1 = Re [νd ]p . (3.58)

Indeed, in this case eq. (3.57) reduces to

q2 = Im [νd ]p , (3.59)

and the sign choice in it becomes immaterial.
Working again in the gauge h = p one ends up, once more, with the Lagrangian in terms of 

auxiliary variables of eq. (3.44),

L = − (1 − a)h(a)2 Re [νt ] + I (a) , ∂aI = − h2 . (3.60)

Now, however, a is the combination of SU(2) invariants

a = at + 2Re [νd ] , (3.61)

and taking, as in the previous section,

h =
√

2

1 − a
, (3.62)

the end result is again eq. (3.52) for the Lagrangian in terms of auxiliary variables. To reiterate, 
the key difference between the U(2) and SU(2) examples that we are presenting lies in the 
definition of a: in Section 3.1 it was the U(2)-invariant variable of eq. (3.43), while here it is the 
SU(2)-invariant one of eq. (3.61).

Reverting to the field strengths, the Lagrangian takes finally the form

L = 1 −
√

(1 + Re [φt ])2 − |φt |2 − Det[φ − φ] . (3.63)

Notice how, in this two-field generalization of the BI theory with SU(2) duality, which also 
reduces to it if the two Abelian field strengths coincide, the square root simply lacks the last 
contribution present in eq. (3.53). This model was recently discussed in [40], where we obtained 
it making a peculiar choice for the quartic terms.
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3.3. A model with U(1) × U(1) duality

We can now turn to retrieve a Lagrangian with U(1) × U(1) duality. In this case only the 
“magnetic” GZ equation (3.24) is to be satisfied, together with the “electric” one that we enforced 
to begin with. Once more, our aim is displaying an example where the inversion problem can be 
solved in closed form. To this end, a further simplification obtains setting q2 zero, which leads to 
the constraint

r1 Im [νt ] = − r2 Re [νt ] . (3.64)

Solving it while taking into account the definitions (3.22), one ends up with a neat result: with 
this choice the “interaction” function E and the “lapse function” h depend only on ad , at and 
νt νt . As a further simplification, we shall assume that the expressions be also independent of 
at and ad , which automatically implies the vanishing of p and q1. Choosing the gauge h = r1, 
again with

h =
√

2

1 − a
, (3.65)

where now

a = νt νt , (3.66)

one ends up, once more, with the Lagrangian (3.52) in terms of auxiliary fields. The difference 
with respect to the preceding examples originates, once more, from the particular choice of a
variable, now given in eq. (3.66).

In terms of the field strengths, the Lagrangian becomes

L = 1 −
√

(1 + Re [φt ])2 − |φt |2 . (3.67)

This is a two-field generalization of the BI theory with U(1) × U(1) duality, and reduces to it if 
the two Abelian field strengths coincide. This model was also recently discussed in [40].

4. Supersymmetry

The construction that we have illustrated was driven by a search of simple examples realizing 
the duality groups that are possible with two field strengths. We thus made some choices along 
the way, which were aimed at attaining handy analytic forms in the inversion. One may wonder 
whether the explicit Lagrangians that we have built afford a supersymmetric extension. There 
is a convenient necessary (but not sufficient) condition for N = 1 supersymmetry in multi-field 
Lagrangians depending on chiral field strengths Wi

α ≡ D
2
Dα V and their conjugates. This con-

dition was spelled out in [11]: in a supersymmetric extension, the quartic terms must be of the 
form

I4 =
∫

d4θ Cijkl W
αi Wj

α W
α̇k

W
l

α̇ , (4.1)

and this expression is the supersymmetric completion of

IB
4 =

∫
d4θ Cijkl

(
F 2

D

)ij (
F 2

A

)kl

, (4.2)
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where the subscripts D and A identify (anti)self-dual combinations. In the two-component nota-

tion of the preceding sections, these originate from F i
αβ (or F

i

α̇β̇ ). One can now verify whether 
the quartic terms in eqs. (3.53), (3.63) and (3.67) are of this form.

In the N = 2 case, it is convenient to introduce complex combinations of the two field 
strengths (here in two-component notation),

F± = F 1 ± i F 2 , (4.3)

or of the corresponding F1 and F2 in four-component notation, and then with a manifest “elec-
tric” U(1) there are three possible quartic terms,

I++−−
4 =

(
F 2

D

)++ (
F 2

A

)−−
, (4.4)

I−−++
4 =

(
F 2

D

)−− (
F 2

A

)++
, (4.5)

I+−+−
4 =

(
F 2

D

)+− (
F 2

A

)−+
. (4.6)

Notice that all these invariants are real, since(
F+

D

) = (
F−

A

)
,

(
F−

D

) = (
F+

A

)
. (4.7)

Making use of the standard relations

F±
D = 1

2

(
F± + i F̃±) ,

F±
A = 1

2

(
F± − i F̃±) , (4.8)

in four-component notation the three quartic terms compatible with supersymmetry read

I++−− = 1

4

[
F+ ·F+ F− ·F− + F+ · F̃+ F− · F̃−

+ i F+ · F̃+ F− ·F− − iF+ ·F+ F− · F̃−] (4.9)

I−−++ = 1

4

[
F+ ·F+ F− ·F− + F+ · F̃+ F− · F̃−

− i F+ · F̃+ F− ·F− + iF+ ·F+ F− · F̃−] (4.10)

I+−+− = 1

4

[
F+ ·F− F+ ·F− + F+ · F̃− F+ · F̃−] . (4.11)

Finally, if one demands the presence of an even number of F and F̃ , as in the BI Lagrangians, 
only two combinations are left, I+−+− and the sum of the first two.

One can now verify that, while I+−+− reproduces the quartic term of the U(1) ×U(1) model, 
the other combination does not reproduce the corresponding term of the SU(2) model, due to 
first contribution present in both eqs. (4.9) and (4.10). Similar considerations apply to the quartic 
terms of the U(2) model, which also contains the peculiar last term in eq. (3.53). The indications 
for the U(1) × U(1) model are consistent with [37], since a BI of this type can be recovered, 
freezing the scalar, from the N = 1 case of their generic U(N, N) models, and supersymmetric 
versions were also given there. In superspace, the supersymmetric U(1) ×U(1) model is indeed 
obtained replacing in [11] Wα Wα with

W 2 +− ≡ W+α W− , (4.12)
α
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so that the Lagrangian becomes of the form

L = Re

∫
d2θ W 2 +− +

∫
d4θ W 2 +− W

2 +−
�
(
D2 W 2 +− , D

2
W

2 +−)
, (4.13)

where � is in principle an arbitrary function, to be adapted to the present case.

5. Concluding remarks

We have displayed three two-field extensions of the BI theory that realize the possible duality 
groups, namely U(2), SU(2) and U(1) × U(1). They were derived systematically from the IZ 
formalism and all rest on the same expression depending on a single auxiliary variable a,

L = − 2

1 − a
(Re [νt ] + a) , (5.1)

while different definitions of a give rise to the differences among the various cases:

a = Tr (ν ν) + 2
√

Det (ν ν) U(2) ; (5.2)

a = Tr (ν ν) + 2Re [Detν] SU(2) ; (5.3)

a = |Tr (ν)|2 U(1) × U(1) . (5.4)

Amusingly, the same type of expression entered, as we reviewed in Section 2, a similar formula-
tion of the standard BI theory that was first presented in [38].

Passing to the ordinary field strengths Fμν of the four-component formalism, via the redefini-
tions (4.8) and their complex conjugates, one obtains well-distinct forms for the three examples 
of Lagrangians. For the sake of brevity, let us now introduce complex combinations of the four-
component field strengths, as in Section 4,

F+ mn = F 1 mn + iF 2 mn , F− mn = F 1 mn − iF 2 mn . (5.5)

The results that we have illustrated are then as follows (here we are not reinstating f ):

1. Lagrangian with U(1) × U(1) duality:

L = 1 −
√

1 + 1

2

(
F+ ·F−) − 1

16

∣∣∣F+ · F̃−
∣∣∣2 ; (5.6)

2. Lagrangian with SU(2) duality:

L = 1 −
√

1 + 1

2

(
F+ ·F−) − 1

16

∣∣∣F+ · F̃+
∣∣∣2 ; (5.7)

3. Lagrangian with U(2) duality:

L = 1 −
√[

1 + 1

4

(
F+ ·F−)]2

− 1

32
C − 1

32

√
D , (5.8)

where
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C =
∣∣∣(F+)2∣∣∣2 + (

F+ ·F−)2 +
∣∣∣F+ · F̃−

∣∣∣2 +
∣∣∣F+ · F̃+

∣∣∣2 , (5.9)

D =
[(
F+ ·F−)2 − (

F+ · F̃−)2 +
∣∣∣F+ · F̃+

∣∣∣2 −
∣∣∣F+2

∣∣∣2]2

(5.10)

+
[(
F+)2 (F− · F̃−) + (

F−)2 (F+ · F̃+) − 2
(
F+ ·F−) (F+ · F̃−)]2

.

As we have seen in Section 2, in the single-field BI case L takes again the form in eq. (5.1), 
with νt replaced by ν and a = ν ν. Moreover, in Section 2.2 we have displayed a one-parameter 
family of one-field models compatible with U(1) duality, which also includes some unusual 
terms that are not analytic at the origin of field space. We built this simpler class of models since 
terms of a similar type also show up in our U(2) example. Their emergence cannot be disentan-
gled from the simplifying assumption of eq. (3.41), which on the other hand was instrumental 
to arrive at a closed-form inversion. Clearly, we are not excluding that more conventional U(2)

solutions exist, but a closed-form inversion from IZ variables seems unlikely in more general 
cases. Our results should thus be contrasted with the earlier analysis in [37], which led to formal 
power-series presentations of models that apparently lack this peculiarity.

Energy positivity is clearly an important feature, which we are investigating further in these 
generalized BI constructions. While in the U(1) × U(1) and SU(2) models positivity follows 
from the corresponding result for the BI theory, in the U(2) example (or in its simpler one-field 
counterpart of eq. (2.38)) it is less obvious. U(2) duality ought to play a role in these considera-
tions for the more complicated U(2) model, but so far we have verified this key property only in 
a number of special field configurations, finding however no problems.

Finally, we have explained how the U(1) × U(1) model allows a straightforward N = 1
supersymmetric completion, which can be simply deduced from [11] replacing in the standard 
BI action W 2 with W 2 +−, along the lines of what happens for its bosonic counterpart.

It would be interesting to explore point-like solutions in all these models with extended du-
ality. The extension to N -field Lagrangians with U(N) duality or subgroups thereof is another 
interesting problem. It would rest on generalizations of the invariants described here for the 
N = 2 case, but no similar simplifications have emerged, so far, for N > 2.

The authors have had the privilege to contribute, with M. Porrati, to the last paper of Raymond 
Stora [14]. Incompatible academic commitments made it impossible to contribute together with 
Massimo, as we had originally planned, to this issue dedicated to the memory of Raymond.
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