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Recently there has been a great deal of interest [l-13] in investigating 
the nature of the relationship between the orthogonal polynomials, the 
recurrence coefficients, and the measure. 

Here we investigate the consequences of assuming that the coefficients in 
the recurrence formula are asymptotically periodic (see (111.3)). This 
problem is an old one and certain aspects of it were considered by Stieltjes 
[14], Perron [ 151, and later by Geronimus [l&18] (see [lS] for further 
references to the Russian literature). 

We proceed as follows: in Section II we consider the case where the coef- 
ficients in the recurrence formula form periodic sequences. The Green’s 
function (see also Geronimus [17]) is constructed and its analytic proper- 
ties discussed. Using the Green’s function we construct a function which is 
conformal in a neighborhood of co and maps co to 0 (see Szegii [19, 
Chap. XVI] and Barnsley, Geronimo, and Harrington [20]). Then 
(Sect. III) we consider the general case as a perturbation of the periodic 
case. The techniques of scattering theory are introduced and used to 
investigate the properties of the general system when it is assumed that the 
coefficients converge to their asymptotic values at certain preassigned rates. 
In Section IV the measure, with respect to which the polynomials satisfying 
the recurrence formula are orthonormal, is constructed and the properties 
of the measure are investigated. It is shown that under certain conditions, it 
falls into the Szegii class. Finally in Section V we investigate the asymptotic 
behavior of the orthogonal polynomials. 

II. THE PERIODIC CASE 

Given aO(n + 1) >O and b,(n) E Iw for y1= 0, 1, 2,... and assuming the 
periodicity condition 

%b + w = dn), n = 1, 2,..., 

Mn + N) = hdn), n = 0, 1, 2 )...) 
(11.1) 

N> 1, we form the following three term recurrence formula 

u,(n+l)q(x,n+l)+b,(n)q(x,n) 

+ a&) 4(x, f? - 1) = xq(4 n), 12 =o, 1, 2,... (11.2) 

(here we take u,(O) = u,(N)). If we impose the boundary condition 

4(x, 0) = 1, 4(x, - 1) = 0, (11.3) 

then q(x, n) is a polynomial of degree IZ with leading coefficient positive 
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and we know from Favard [21], that there exists a probability measure ,u~, 
such that 

s Cc dx, n) 4(X> m) 4-h = ~n,m. --oo 
We can also associate with the above coefficients the kth associated 
polynomials @‘(x, n) satisfying 

a,(n ;c k + 1) q@‘(x, n + 1) + b,(n + k) q’k”(x, n) + ao(n + k) q’k’(x, n - 1) 

= xq@)(x, n), n = 0, 1, 2 )...) 

q(k)(x, 0) = 1, q’Q(x - I \ = 0. 
(11.5) 

9 / 

Given any two solutions ql, q2 of (II.?!), we define the Wronskia 
WCql, cd as 

wq1>9*1 =%Il(n+ l)h( x, 12 + 1) 42(x, n) - qlk n) q&, n + 1 I>, (11.6) 

which is independent of n. Furthermore from the general theory of secon 
order linear difference equations one finds that two solutions 4,) q2 of (II.2) 
are linearly independent in n iff W[q, , q2] # 0. 

As a first application of (11.6) we notice 

WCC?> PI = %(n + 1 )Cq( x, II + 1) q’l’(x, n - I) - q(x, n) p(x, ?z)] 

= -a,(l) #O, (111.4) 

which implies that q(x, n) and q’l’(x, n) are two linearly indepen 
solutions of (II.2). 

To investigate the consequences of the periodicity condition (II.1) we 
begin by constructing a recurrence relation that relates 4(x, n + 2~) and 
dx, f? + NJ to 4(x, n). 

LEMMA 1. Let ql(x, n) be any solution of (11.2) and let the recurrence 
coefficients satisfy (II. I), then 

41(x, n + 2W = qk N) - dN) 
aoW+ 1) 

q(‘)(x, N- 2) ql(x, n + N) 

- 41(x, n), n=O, 1,2 ,.... (KS) 

Proo$ Because of the periodicity of the coefficients, we see that 
4(x, n + N) and q’l’(x, y1+ N- 1) will again be solutions of (II.2) so that, 

q(x, n + N) = Aq(x, n) + Bq’“‘(x, n - 1) (11.9) 

q(l)(x, n + N- 1) = Cq(x, n) + Dq(‘)(x, n - I) (KlO) 
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where A, B, C, and D do not depend on n. Setting n equal to 0 and - 1 we 
find 

A = dx, JO, B= -a$“:),)q(x,N-I), 
(11.11) 

c= q’l’(x, N- l), D= -a”;E)l)q(l)(x, N-2). 
0 

Letting n -+ n + N in (11.9) then eliminating q(l)(x, n + N- 1) using (11.10) 
and q’l’(x, n - l), using (11.5) yields 

q(x, n + 2N) = (A + D) q(x, n + N) + (BC- AD) q(x, n). 

By means of (11.7) one finds that BC-AD = - 1 and this coupled with 
(II.1 1) gives (11.8) for q. Using a similar procedure on (11.10) one arrives at 
(11.4) for q(l) and since all the solutions of (11.2) can be written as a linear 
combination of q and q(l) the result follows. 

COROLLARY 1. Given (11.1) and qck’(x, n), k30 satisfying (11.5) Ooze has 
for k > 0, 

qck’(x, N) - dN+ k) 
ao(N+k+l)q 

(k+l)(~, N-2) 

= dx, N) - 
aoW) 

adN+ 1) 
q”‘(x, N- 2). 

Proof. The polynomials qck)(x, n) satisfy a recurrence relation with 
periodic coefficients and since qck) and q@+ ‘) are linearly independent 
solutions of (11.5) one finds 

qck)(x, n+2N)= qck)(x, N)-a T$y::)l) q@+‘)(x, N-2) 
0 > 

x q@)(x, n + N) - qck)(x n) > > n = 0, 1, 2 ,... 

On the other hand qck)(x, n -k) also satisfies (11.2) and it is a consequence 
of Lemma 1 with n replaced by n + k that qck’(x, n) satisfies (11.8). The 
identification of both relations then gives the corollary. 

Remark 1. Relation (11.8) is again a recurrence relation but with coef- 
ficients constant in n. Certain solutions of this equation will play a fun- 
damental role in what is to follow. 
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Annoying the method of characteristic equations to (YJi.8) we find 

0: 2N - 4(x, N) - 
i 

aoVJ) 
ao(N+ 1) 

q’l’(x, N-2) L!P+ I =O. 
I 

(ILK?) 

Splitting the above equation into two equations of degree N, we define 

w”(x) = wN=k 
i 

q(x, N) - so(N) 
ao(Nf 1) 

4p(x, N- 2) + p(x) 
1 

( 

where 

2 112 
P(X) = ii 4(x, N) - aoWi - 

ao(N+ 1) q’l’(x, 
N- 

2) 1 4 I 
witb the square root chosen such that 

lim f.@=k N N 
= 

z-cc z 

Since the constant term in (11.12) is one, we have 

aoW) 

aoP+ 1) 

q(l)(x, N- 2) -p(x) 

e now examine p(x)‘; setting 

e,(x,N)=q(x,1’)-a~~~)i)q(1’(x.N-2)~2 (11.16) 
0 

we denote the zeros of Q.(x, N) by {x1* }y=, . Let x,..~- 1 and x:,2 _ 1 be the 
zeros of q(x, N- 1) and q(l)(x, N- 1) respectively, ordered so that 

xj,N~~<~j+i,~~-~,andx,!~‘,:_~<x~:)~,~~~,j=~,~,...,N-2. 

LEMMA 2 (cf. Geronimus 1161, Kac and Van Moerbeke [24], Van 
Moerbeke [25 1). All the zeros of p(x)’ are real (but not necessarily sim- 
ple) and, ordering the zeros of Q i (x) as x’ <xii, 1 one has. 

XN >x,+ 3x N-l,N-1, xj:~,,,~,~x~~,~x,~,~xx,-2,.~~, 

X(l) > ... >XINpl, X(lli?_l~XI-)N>X(l-)N+l. Np2,N-1 

h’thermQre, if lq(Xi,N- 1, N)j = 1, then either + (x; N) or Q __ (x, N) may 
have a double zero. 



256 GERONIMO AND VAN ASSCHE 

ProoJ By means of (11.7) one finds that, 

a,(N)q(Xj,N-l,N)q(l)(Xj,N-l,N-2)=-a,(N+l), (11.18) 

so that 

Q.(Xj,N-l,N)=q(Xj,N-l,N)+ 
1 

q(xj,N- 1) N, ’ 2’ 
(11.19) 

Since the zeros of q(x, N) and q(x, N- 1) interlace one finds that 
sgn q(xj,N- 1, N) = ( - 1)“-j. The above remarks coupled with the fact that 
Ix + l/.x 2 2 for x real imply that Q+ (x, N) change sign N - 1 times, which 
in turn implies, since they are real polynomials, the reality of their zeros 
and the interlacing of their zeros with those of q(x, N - 1). Since the zeros 
of q(‘)(x, N- 1) and q(x, N) interlace an argument similar to the one above 
gives the result for q(‘)(x, N- 1). To arrive at (11.17) we note that for x 
large 

dx> N) - G(N) 
atAN+ 1) 

q’l’(x, N- 2) 

is positive, which implies for large enough x, Q + (x, N) > 0. Consequently 
X$ <Xi. At XN-~,N-~, Q.(xN-l,N-l, N)<O SO that Q+(x, N- 1) must 
have a zero greater than or at xN- l,NP r . Since Q + (x, N) - Q _ (x, N) = 4, 
the next zero of Q.(x, N) is a zero of Q +(x, N) which, because of the 
interlacing property, will be before xN _ 2,NP 1 and on or after xN _ l,N _ r . At 
XN-2,N- 1, Q*(xN-~,N-~, N)30 SO that XN-~,N-~ 6X&, <X$-l. This 
establishes (11.17). If lq(xj,,_ r, N)j = 1 for somej, then from (11.19), ZC~,~- 1 
will be a zero of either Q+(x, N) or Q-(x, N) and we see from (11.17) that 
Q k (x, N) may have a double zero. 

We now define the set E: 

E= [xi, x,] u [X,-l, x;-l] u ... u [X\p+‘, xi-‘“1 (11.20) 

which is composed of at most N disjoint intervals, the set E*: 

E*=(x;-,,x~)u(x,~,,x,~,)u ... u(xi-‘:x$-‘~), (11.20A) 

and the polynomial U(x, N - 1) = Q’+ (x, N) = Ql (x, N). From the above 
definitions, it is obvious that in each of the above open intervals defining 
E* that is not empty there will be one and only one zero of U(x, N - 1) 
(see Fig. 1). 

Let U be the unit circle, D be the open unit disk, and D = D u U. Let c 
be the extended complex plane and G= &\E. Let g(z) be the Green’s 
function for G, that is g(z) is harmonic in G except at co where g(z) -1nlzl 
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Flc;. :. (‘onstructmn of E and E*. The E is in hold line. Ihe set E* arc the inter\& ii> 
5eKtwccn (.V = ?). 

is harmonic, and lim,, E g(z) = 0. We now form the function g(i) by 
adding ih, to g(z), h a conjugate harmonic function of g(z) chosen so that 
d(z) is a multivalued analytic function on G except at ZC, where b(z) -- In I 
is analytic. d(z) has the property that lim,, L Rc d(z) = 0. In our case one 
sets that 

lim 4= 1 i _ -I - k’ ’ .‘r .- - c z 

and iit( = I, z E E and therefore we may choose an appropriate branch 
of the Nth root so that g(z) = In w(z). Thus, the capacity of E is given by 

.\ 
( 1 

I. t 
C(E) = fl do(i) > 0. 

, I 
Since 1~(:)1 = 1, ZE E WC see that iv(z) maps G into the component of the 
complement of C: containing ZC. However, because G is in genera1 not a 
simply connected region, w(z) is in general not single valued. For large 
enough ;. LC(Z) is conformal and we let 7 be the inverse of it’. For each 
(1~ [O, 2n) we define r,(O) to be the minimum number 3 1 such that ;’ may 
be analytically continued from x: along R,] = {rero ( r > Y() 1 (physically they 
are the lines of force). The set s= UC, y(Rn) is called the Green’s star 
domain for G (see Sario and Nakai [22]). In our cast 

w’(z) = 
w(z) U(z. A-- I ) 

Np(z) 



258 GERONIMO AND VAN ASSCHE 

-1 

FIG. 2. The image of G under the mapping l/w (N= 7). 

and w’(z) =0 (ZE G) at the zeroes of U(z, N- 1) that are in E*. Con- 
sequently s = (E u E”)‘. On S, w(z) is conformal and maps s to the exterior 
of U minus radial segments emanating from the roots of unity given by 
(11.13) and ending at the image of one of the zeros of U(z, N- 1) under 
W(Z). In Fig. 2, we have drawn l/w(s). 

Setting 

R(z) = q(z, N) -a ;$:)I) qyz, N- 2) 
( 0 1 

2 

- 4, 

we have by the convention adopted above, ,,/m= +i ,,/q, 
x E E. Let F be the two sheeted Riemann surface which has cuts along the 
disconnected segments E with branch points at the ends of these segments. 
Then F is of genus at most N - 1 and G is one sheet of F. Denoting the 
other sheet as G’ one has that 

lim p(z)= -k 
N N on G’. 

z-cc z 

With this we can now analytically continue wN and wPN onto G’. 
We now return to the solutions of (11.5). 

LEMMA 3. Let qCi)(x, n) satisfy (11.5) then 

Iw-“q(‘)(x, n)l d 
A(n + N) 

N+ll-~-*~j (n+N) 
(11.21) 

where A is a positive constant. 

Proof. From Lemma 1 and Corollary 1, the sequence q*(k) = 
q(‘)(x, kN + S) (i, N, s fixed) satisfies the relation 

ao(N) 
adN+ 1) 

q(l)(x, ti- 2) q*(k) - q”(k - 1). 
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Since \I.--~‘~ and bvkh arc two linearly independent solutions of the above 
equation when p(x) # 0, one has 

q*(k) = c, wkN + c,w -k‘L. 

Setting k = 0 and k = 1, one easily finds, 

,I’ ‘k.“‘y(i)(gt kN+ s) = 1 
1-U 

2,‘r’ {4”:(ur, s)(,c--2k4’- M. 2%) 

+ IV ‘.“‘q”‘(X. N+ ,s)( 1 - w 2”“‘)}. (II.22 

Since lim I; _ .(x/n,) < zo one has 

K= max max sup !u. ‘y!‘!(s, .s)l < z. (II.23 
(I c I < !V (I c Y < 7.v I 1 t (1 

and using this in (11.22) yields 

Now one can use the bound 

to obtain 

where A = ZC’K, from which the general bound follows. 

THEOREM 1. Set 

Y+(x,n)=q(x,n+1Y)-M.;~Y(I,~?) (II.241 

and 

q. (x, n) = q(x, n + N) - 1(‘ .“q(.u, n), (11.25) 

fhen q + (.r, n) urc two soh.4tions ef (11.2) such [hat q ! (x. n) = ~t’~“c$ + (x, nj. 
byhere d) +. (x, n) is periodic in n of period N. These two solutions are linear!l. 
independint in n .for .fixed x (J’ q(x, N --- 1 ) # 0 md wzv # 1. 
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ProoJ: Since both 4(x, n + N) and q(x, n) are solutions of (11.2) one 
easily sees that q+(x, n) are also solutions. From Lemma 1, one has 

q(x,n+2N)=(wN+w -“I 4(x, n + N) -4(x, n). (11.26) 

Letting n -+ N+ y1 in (11.24) and (11.25) then substituting the result into the 
above equation yields 

(11.27) 

From (11.6) one finds 

(11.28) 

which gives the theorem. 

LEMMA 4. For any n, q+ (x, n) and q-(x, n) are (a) analytic and single 
valued in G - { 00 }, (b) realf orxreaZ#E,and(c)q+(x,n)=q-(x,n)xEE. 
Furthermore, 

Iw-N--nq-(x, n)l <2K, XEC, (11.29) 

and 

IW ‘--++q+(x, n)l <D, XEC. (11.30) 

ProoJ: The analytic properties follow from the definition of q* and the 
following facts: (a) wN and wPN are single valued and analytic on 
G-(cc}, (b) wN and wPN are real for x real x # E, and (c) wN = W-N, 
x E E. (11.29) follows by writing n = kN + s then using (11.27) and (11.23). 
To prove (II.30) one has that 

q+(x,n)q-(x,n)=q(x,n+N)*-(wN+wpN)q(x,n+N)q(x,n) 

+ 4(x, d2 

= q(x, n + N)2 - q(x, n + 2N) q(x, n), 

where Lemma 1 has been used. Now q(” + ‘)(x, IZ - m - 1) is a solution of 
(11.2) and can be written as a linear combination of q(x, n) and q(x, n + N), 
i.e., 

q(m+l)(x,n-m-l)= 
a,(m+l) 1 

a&V dx, N- 1) 

x Cdx, m + W dx, n) - qb, m) dx, n + WI. 
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Repiacing n by m + N and then setting m = n yields 

q(x, N- l)q’““‘(X, N- 1)2y;’ 
0 

x { y(x. n + A’)’ - q(x. n + 2N) q(x, n) j 

Consequently, 

q+(x, n)Y-(x, n)= 
uo(N 

uo(n + 1) 
q(x. N - I ) 4’” ’ ” (x. ,xr- 1). (11.31) 

Now using the fact that q .(x, n) = U(\v” ‘.“‘)? Lemma 3 gives (11.30). 
Equation (II.3 1) leads to the following: 

LEMMA 5. Thrzerosqfq_(x,kiV+s)andq_(x,kn!+.s),k=O, I,... ?.s= 
0. I,.... N - I. are real and may on& he at the zeros qf q(.r, ,V - I ) a&for the 
zeros of q’* + ” (x, N - 1). Furthermore, a zero .Y, of‘ q(x. N -. I ) wiff he a 
common zero oj’ y + (x, n) for all n if and onlv [j’ /q(.r,, X)1 3 I. 

Proof. Only the last part of the lemma needs to be dcmonstratcd. We 
note that x, will be a common zero of q _ (x, n) for ali n if and only if 
q+ (x,, 0) = 0. From (11.24) and (11.13), one sees that this can only happen 
if 

Since 

q(x,, N) + “(“‘) 
2 

a,,(N+ 1) 
qyx,, A- 2) = p(x$ 

we see that q; (xi, 0) = 0 if and only if 

4(x,3 IV + 
uo(-w 

a,(N + 1) 
q”‘( Y ’ ,, N - 2) 

and p(x,) have the same sign. Since the signs of q(xj. N) and p(x,) are the 
same, (11.7) shows that 4+(x,, 0) = 0 if and only if (q(s,, N)I > 1. 

WC note that from (11.25) and (71.31) one finds for large x that 

s+k n) 

q(x, N- 1)=x 
(11.32) 
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III. THE GENERAL CASE 

We now suppose we are given the recurrence relation 

a(n+l)p(x,n+1)+b(n)p(x,n)+a(ra)p(x,n-1) 

= XP(X, n), n = 0, 1, 2 )...) 

P(X, -I)=% Pb, 0) = 1 

with a(n) > 0 and b(n) E R such that 

(111.1) 

(111.2) 

lim /a(n) - a,(n)1 = 0, 
n-*02 (111.3) 
lim /b(n) - bo(n)i = 0, 

n-cc 

where the sequences a,,(n) and b,(n) satisfy (11.1). By Favard’s theorem, the 
polynomials p(x, n) will be orthogonal with respect to some measure on 
the real line. The kth associated polynomials pCk)(x, n) satisfy 

u(n + k + 1) pck)(x, n + 1) + b(n + k) pck’(x, n) 

+a(n+k)pck)(x n-l) 3 

= Xp(k)(X n) > 2 n = 0, 1, 2 ,..., k > 0. (111.4) 

(We will suppress the superscript for k = 0.) Let Gi, G2 be the solutions of 

uo(n + 1) Gi(x, n + 1, m) + b&z) Gi(x, ~1, m) + a&z) Gi(x, n - 1, m) 

- xGi(x, II, m) = 6rq-n > i= 1, 2, 

with boundary conditions 

Gl(x,n,m)=O, n>m, 

G,(x, n, ml = 0, n<m, 

then (Geronimo [9], Atkinson [23]) 

uo(n + 1) G,(x, n, m) = qcn+ ‘)(x, m-n - l), 

= 0, 

and 

u,(m+l)G,(x,n,m)=q(“+l~(x,n-m-l), 

= 0, 

(111.5) 

-ldn<m, 
(111.6) 

m d n, 

-l<m<n, 
(111.7) 

ndm. 



OKTHOGOKAL POLYNOM1AI.S 

THEOREM 2. Let p(x, n) .wti.~/j (III.1 ) u& (111.2) und let 

a(.~, n) = I!j a0 
, _ ] U”(i) p(s. n17 

then 

,,I - I 

p(x,m)=y(x, m)+ c k,(.K, n. m)Ij(.\., n) 
,I i. 0 

263 

(111.X) 

k,(s, n, m) = {h,(n) - h(n)} G,(x, n: m) 

+“()(‘z + ’ ) 
u”(n + 1)) 

’ - (pJn + 1 ),f G,(.K, n + 1. m). (III.9 ) 

Furthermore, jbr x E c, 

k(n) = 
h)(n) -- h(n)1 + u,(n + 1 ) : 1 _ a’(n + i ) 1 

u,,(n + 1) ! U”( n + 2 ) a@ + i)I’ 
(IIr.rl) 

Proof: Equation (111.8) has already been given in Gcronimo [9] end 
can easily be derived using standard manipulations. To obtain the bound 
(111.10) one begins by substituting (111.6) into (111.9) then multiplying by 
Ill’; Irn ‘I’ and using Lemma 3 which yields 

. __,. ,, . m - 12 i X 
!iZ‘ -I”’ “‘k,(x, n. m)l d k(n) 

IV + 1 + I!‘ ?;.V (177 - II + N) 
(111.;2) 

d Ak(n) 
m + X 

TV+ 11 - it.~.m7.yI (m + N)’ 

Now using the method of successive approximations on (III.8) we may 
write 

I1t.1 --“’ b(x., m) = C g,(s, n2) jIII.13) 
, .- 0 
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where 

&,(X9 ml = I4 m Y(& m) 
and 

m--I 
gi(X, m) = C I)Vj - (‘n-n) k,(x, n, m) gi 1(x, n). 

,I - 0 

From Lemma 3, one has that 

I gdx, m)l d 
A(m + N) 

N + I 1 - M: 2,vI (m + N) 

and by induction that 

Igi(x, m)l d 
A(m + N) k,(n)(n + N) 

N+ll-~r-~“l (m+N)i! A~~~~~~+,l-w2N~(n+N)}i. 

Taking the magnitude of (III.1 3) then using the above two equations gives 
(111.10). 

We now search for solutions pl(x, n) such that 

lim Ip+(~,n)-y~(x,fl)l=O. n - ST 

To this end we temporarily impose the following condition on coefficients 

u(n,+j+ l)=u,(n,+,j+ 1) 

b(n0 +A = Mb +.A .j=O, 1, 2 ,.... 
(I11.14) 

We denote the solutions of (III.l), (111.2), and (111.14) by p(x, m; no) and 
we define p+ (x, m; no) as a solution of (ITl.1) such that 
p+(x,m;no)=yL(x,m) form>n,. 

LEMMA 6. Let p + (x, m; n,) be dejined as uboce and set 

B+(x, w n,d= fj 
44 
-p +(T m; 4 

i--m+ 14(i) 

then 

fi,(x,m;n,)=y+(x,m)+ 2 k2(i,n,m)~+(x,n;n,) (III.15) 
n-m+1 
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where 

+ .,(n){~-~]G2(x,a- I.m). 
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(111.16) 

(Here x;, = ,,f, = 0 fir i > j.) 

Pro~$ To find (111.15) one begins by multiplying (111.1) by 

and (II1.5) by i, +(x, n: n,,) then subtracting and summing the result from 0 
to CC. This yields using the appropriate boundary condition. 

=aJn,+ l){C/, (x, no) G,(x, n,+ I. m)- y _ (s, n,,+ 1) G&u, wg, 1771; 
)I” 

+ c k,(.K, n, m) p _ (x, n; n,,). (111.19) 
n 03 + 1 

The first term on the right-hand side is WIG,I q ] which equals q-(x, nz) 
and gives (111.15). 

THEOREM 3. Let H = G v (:G and suppo.se 
ic 
c k,(n) < x (111.20) 

,I - 0 

where 

k,(n) = ‘h,(n) - h(n)\ + ug(n + 1) 1 .-- 
a2(n + 1) 

u&7 + 1 ) - 

then there exi.sf.s a solution p , (x, n) of (111.1) such that w “p +(x, m) IF 
analytic and single valued on G and continuous on H\( wZN = 1). Furthermore 

lim 1 wCk ““(fi+(x,m)-q, (x,m))l =O, m=k”\:+.s. (111.21) 
m .T. 

un$ormIy on closed subsets of fl( We’d = 1 ). If 

:I; 
.Fo (n + NJ k,(n) < = (111.22) 

then K-“p-(x, n) is continuous on H and (III.21) conwrges unifbrmly thtlre. 
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ProoJ: We begin formally by letting n, + cc in (111.15). This gives us an 
integral equation for p+(x, n). Now using the method of successive 
approximations we write 

W+lq?+(X, m) = f gi(x, m) (111.23) 
i=O 

where m = kN + s, 

2,(x, m) = w(~-~)~~+(x, m) 

and 

gi(x, m) = f wm-nk2(x, II, m) ii- 1(x, n). 
n=m+l 

Since 1 WI > 1 on H, it follows from Lemma 4 that, 

Ii?,(x, m)l < Iw~+~~,(x, m)l CD, m=kN+s. 

Now using (III.lG), (111.7), Lemma 3, the fact that the a(i)‘s are strictly 
bounded away from zero, and the above inequality yields 

1211 <D f ok, (n+N) 
n=m+l N+ ll-~-~~I (n+N) 

where again the fact that /w-i/ 6 1 on H has been used. By induction one 
finds, 

l&l+,{ f &(n)N+ ll(:Lw-:; (n+N)}i 
. n=m+l 

which upon substitution into (111.15) (with no = co) gives 

Iw(k-l)Np+(x, m)l = (111.24) 

Since each of the ii are analytic and single valued on G and continuous on 
H, (111.20) and (111.24) imply that (111.23) converges uniformly on closed 
subsets of H\(wzN = 1). Consequently, ~(~-r)~p + (x, m), m = kN + s is 
analytic and single valued on G and continuous on H\(w~~= 1). If (111.22) 
holds then (111.23) converges uniformly on H giving the continuity of 
~(~-~)~p+(x,rn) on H. Subtracting q+(x,m) from both sides of (111.15) 



ORTHOGOSAI. POI.YN0MIAI.S 267 

(after setting n,, = x ) and then taking magnitudes and using (111.24) shows 
that (111.21) converges uniformly on closed subsets of H\(\r*” = I) if one 
has (111.20), while (111.21) converges uniformly on H if one has (III.22). 

CORO1.Id~Ry 3. !f‘ (111.20) holl.~ then 

lim 1~” l’“(i)+(s. m) -.. jj i (x. m: tz,,)I = 0. tt1= lis + s (IH.2S? 
?,I? . I 

unijormly on closed subsets of’ H\,(w’” = 1 ). [f (111.22) holds fhen (III.25) 
concerges uttlfbrrnly on H. 

Proof: Subtracting the integral equation for p (.x1 tnj from (1lI.l.i) 
yields 

,(.G yp (.Y. m--b-(x. 172, n,,)) 
I 

= 1 k,(s. t7. m) ~1,‘~ “‘fi (s. t7) 
!I - ,I:: -_ I 

+ 1 k,(s3 n, m) Mu” ““(i, , (.x: nj - fi (.\‘. II, n,,)). 

The method of successive approximations now gives 

/ ,(.lh- “‘(fi (x. m)-/i (x, tt7. tz,,)i 1 

from which the conclusions of the corollary follow. 

COROLLARY 4. I,et H’= G”u r’G’, if‘ (111.20) kold.~ then rhere o.ui.s~.s ci 
.sohrliott qf (III. 1 ) such that 

,,‘hrn=, 1\t.“-. ““(i, (x, n) q (.Y. n)), = 0 

uniformly on closed sets of ij’\( it’,’ = I ). If’ (II 1.22) holds the cont’ergetzce is 
un$orm on H’. On E. p-.(x, n)=p+(x, n). 

Prooj Letting II?.’ + M’ I’, q , (x. m) 4 y (s, m), and p(~, m) --* 
p (.u, m) in the above discussion gives the first two assertions of the 
corollary. The third follows from integral equations satisfied by p + (x, n) 
and the facts that on E, MI.‘= C ,’ and y . (.Y, n) = q (sl 11). 
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LEMMA 7. Given (111.20) then for x $ E, 

a(n+1)CP+(x,n+l)p+(x,n)-p+(x,n+l)p+(x,n)l 

=(x-3 f Ip+(x, i)12, (111.26) 
i=n+l 

a(n+1)Cp+(x,n+l)p+(x,n)‘--p+(x,n+1)’p+(x,n)l 

= i=~+l~+(x, 0”. (111.27) 

For x E E\( w2N = 1 ), one finds 

p(x 
3 

n)=f-(x)p+(xY n)-f+(x)p-(x, n) 
a,(O) q(x, N- l)[w-N- w”] 

(111.28) 

where 

f*(x)= w2APi1=4O)P.(x> -1). (111.29) 

ProoJ: Since p+(x, n) satisfies (III.l), (111.26) and (111.27) follow from 
routine manipulations and the facts that lim,, co p+(x, n) = 0 and 
lim, + m p + (x, n)’ = 0 for x $ E. To show (111.28) we note that p + (x, n) and 
p _ (x, n) are solutions of (III.1 ) that are continuous for x E E. Since 
W[p-,p+]=a,(0)q(x,N-l)[w-N-wN], we see that p- and p+ are 
linearly independent for x E E\(w~~ = 1). Writing p(x, n) = Ap, (x, n) + 
Bp _ (x, n) one finds 

A= WP,P+l 
WCP-7P+l 

and B= _ WCPTP-1 
VIP-?P,l 

which yields the results. 

We now divide the zeros of p+ (z, n) into two categories: category R,(n) 
contains all the roots of p+(z, n) that are also zeros of p + (z, n - l), while 
R,(n) contains all the other zeros of p+(z, n). 

LEMMA 8. Suppose (111.20) holds, then all the zeros of p+(x, n) in 
G- {a} are real, and p+(x, n)#O for XEE\(W~~= 1). If x1 eR2(n) and 
x1 E G, then x1 is a simple zero of p + (x, n). Between two consecutive zeros of 
p+(x, n) belonging to R,(n) that are not separated by an interval of E there 
is a zero of p+(z, n- 1) and a zero of p+(z, n+ 1). 

ProoJ: From (111.26) one finds that all the zeros in R,(n) are real and 
from (111.27) simple. Let x1 and x2 E R,(n). be two consecutive zeros of 
p+(z, n) such that an interval of E does not lie between them. Then the 
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sum in (111.27) is positive at xi and x2. Since p+(x, n) is real for all 
x1 6 x 6 x2, p+(x, n)’ must change signs between x1 and x2 irn~lyi~~ 
through (111.27) that p+(x, y1- 1) and p+(x, n + 1) change signs. Since 
~+(x,n-l)andp+(x,n+l)arerealforx,~x~x,theyeachmusthavea 
zero inside that interval. To show that the zeros in RI(n) are real, we begin 
by noting that if x1 eR,(n), x1 ERR Vi. Now consider the system of 
polynomials satisfying (111.1) and (111.14). Since p + (z, m, n,) = q+ (z, m) for 
m > no, x E R?(n) only if it is a common zero of q+ (z, i), i > n,. 
(II.24) any common zero of q+ (z, i) must be a zero of q(x, N- I 
real, implying all the zeros in R;O(n) are real. This coupled wi 
arguments above show that all the zeros of p+(z, m, no) are 
reality of the zeros of p+(z, n) now follows from Corollary 3 and Hurwitz’s 
theorem. That p+ (x, n) # 0 for x E E?,(w~~ = I ) is a consequence of (III.28 ). 
For if we replace p(x, n) by pck’(x, n) we must replace p+(x, - 1) by 
p+(x, k- 1). Therefore if p+(x, k- 1) has a zero for XEE\(W~~= 1) then 
so would p- (x, k - 1) by Corollary 4 implying that ail the p@)(x, m) woslld 
have a zero at that point contradicting the well-known interlacing property 
of their zeros. 

Let J,- 12 be the infinite dimensional matrix representation of (III.1). 
Then xi is an eigenvalue of J iff there exists a nonzero $ E I, such that 
J$ = xi!). 

LEMMA 9. Suppose (111.20) holds. If (a) f, (xi) = 0, x1 E R,( - l), and 
xllE: or (b)f+(x,)=O,f’,(x,)=O, x,ER,(-l)andx,$E, thenx, isan 
eigenvalue of J and 

P(x,, n) = 
P+(x1, n) 
P+(xl>o) 

(111.30) 

P+(x, n)=P+(x, n) zfa holds, 
(III.3 I) 

=p+(x,n)l(x-x1) ifb holds. 

ProoJ We begin with case (a) and consider the vector 
$= {p+(x,,n)},“_,. Then $c12, $ f 0 and J$=xi$ showing that x, is 
an eigenvalue of J. In the case of (b) we note that p+(x,, n) = 0 and 
q + (xi, n) = 0 for all n. Consequently we can divide p + (x, n) by x - x 1 and 
not change equations (111.1) or (111.15). Since 

4+(x, nN- 1) 
f 0, 

x-x1 x = x1 
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it follows that for large enough n, 

P+(X, al- 1) # 0. 
X-X1 x = x1 

Consequently, the vector Ic/ = {p+( xi, .)}pEO is an eigenvector of J with 
eigenvalue xi . 

THEOREM 4. If (111.22) holds then p+ (x, n) has a finite number of zeros 
on H. 

ProoJ: We need only consider the number of zeros of p+ (x, n) on 
E*u(w 2N = 1 ), since on E\( Wan = 1) p + (x, n) has no zeros, while for x E [w, 
x$E*uE, p+(x,n) n= -l,O, l,... has only a finite number of zeros 
(Geronimo [9, Theorem 111.11). Consider now an interval E$ of E* and let 
xi and x2, xi <x2 be the end points. We suppose there exists a q+(x, m) 
such that 4+(x1, m) # 0. For if this is not the case then x1 E R:(m), where 0 
denotes the periodic system, and q+ (xi, j) = 0 Vj. Consequently we may 
divide the integral equation for p+(x, n) ((111.15) after setting no = co) by 
(x-x1) and use the same manipulations that led to (111.21) to show that 
lim,,, Iw (k-l)N(B*t(~,m)-qq*,(x,m)l =O, m=kN+s uniformly on H. 
Here 3$(x, m)=$+( x, m)/(x-xl), q$(x, m)=q+(x, m)/(x-x,). If there 
does not exist a q$(x, m) such that 4:(x,, m) # 0 one repeats the above 
procedure once again. (111.31) shows that this procedure will be necessary 
at most two times. Suppose that q + (xi, m,) # 0, then (11.27) shows that 
4+(x1, m,+jN)#O. Let xOe (+(x1 +x2), x2) such that 4+(x0, m)#O Vm, 
and let D,,,,, be the open disk centered on the real axis with x1 and x0 on 
its boundary. Writing m, = k,N+ so we see from (III.21 ) and (11.27) that 
there exists a j, such that for all j aj,, 

IW (ko+jP1)N(P+(~, mo+jN)-q+(x,m,+jN))l 

< Iw(ko+j-l)Nq+(x, m, +jN)l, (111.32) 

x E ~x,.xo~ Consequently, by Rouche’s theorem p + (x, m, +jN) for j >j, has 
the same number of zeros inside D,,,,, as q + (x, m, +jN), i.e., a finite num- 
ber No. Lemma 8 now tells us that p + (x, n) Vn has a finite number of zeros 
in %,x, that does not exceed some number N, . One now repeats the above 
argument for the open disk DRO,xZ, where i. E (xi, (x1 +x2)/4) and 
q+(cZo, m) # 0 Vm. This shows that p+(x, n) has a finite number of zeros in 
the interval [xi, xJ. Repeating the above argument for the other at most 
N- 2 intervals of E* gives the result. 
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e now return to the system of polynomials satisfying (III.1) an 
(111.14). 

LEMMA 10. If q(xj, N-1)=0 and p(xj)=O then p~(~~,m,n,)=O,fiw 
all m. Consequently, (weN - wN)/ft(x, n,) is conthous on &3. Further- 
more. 

f+(x, %)f-(x, no)=%(O) 4(x, N- 1) 

x Cao(no)p(x, no + N- 1, ~o)P(x> no, no) 

- 4no)p(x, no - 1, no)p(x, no +-W no)i. (III.33) 

Proof: If q(xj, N - 1) = 0 and p(x,) = 0, then by Lemma 5 q + (x,, i) = 0 
for all i. But then xI E R;O(n) which implies that p + (x,, m, no) = 0 for all m. 
Since q.- (x, m) = q+ (x, m) on E the result follows for p ~ (x, ~YZ, no). To 
show the second part of the lemma we note that from (IIT.28) one has for 
x E dG\(W2N = 1) 

where 

From the definition of pP and p+ one finds that lS(x)l = 1, 
x E ~G\(w~~ = 1). Since 

P + (x2 m, noI 
4(x, N- 1) ’ 

P ~ (x, m, noI 
qtx,N-1)’ 

f+(x, no) and f-.(x, no) 

are continuous on aG, (w PN - wN)/f+(x, no) is continuous there also. To 
find (111.33) we note that p-(x, m, no) can be analytically continued onts 
G. Therefore we can use (111.28) on G. Setting n =no and n = tzo + N in 
(IPI.28) then multiplying by p + (x, no + N, no) and p + (x, no, no) respectively 
and subtracting yields 

~+(x,~o)C~(x,~o+N,~o)-~-~p(~,~o,~o)l 

= f+(xs no) 4+(x, no) 4-(x, no) 
a,(N) dx, N- 1) . 
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Here we have used the facts that p+(x, ~1~ + IZ, n,) = qk (x, no + n) and 
q*(x, n,+ N) = wrNq+(x, no). Now using (11.31) yields 

f + (4 no) = X,IZ~ + N,no) - +“p(x,n,, no)]. (111.35) 

Consequently, 

f+k no)f-(x3 no) = aobo + 1 I2 
q(no+ 1)(x, N- 1) 4+(x, no) 4-k no) 

x [p(x, no + N, no)* +p(x, no, nJ2 - (w” + w-“) 

x P(X, no + N no)p(x, no, no)]. (111.36) 

Since p(x, n, no), p(x, 12 + N, no), and qcno+ ‘)(x, y1 -no - 1) satisfy the same 
recurrence formula for n > no, one can write p(x, n + N, no) = 
Ap(x, 12, no) + Bq(“O’ “( x, n - ~1~ - 1). Setting n = ~1~ gives A, and setting 
IZ = no + 1 gives B. Now setting n = izo + N yields 

q(no+l)(x, N- 1) 

P(X, no + N no)’ -P(x, no, ~o)P(x, no + 2N no) 
= ~6, no + N ~,)P(x, no + 1, no) -P(x, no, no)p(x, no + N+ 1, no)’ 

Substituting (11.31) into (111.36) and then substituting the above equation 
into (111.36) yields 

I-+ lx, noIf-k no) = a,(O) ao(no + 1) 4x> N- 1) 
x CP(X, no + N, no) P(X, no + 1, no) 

- P(X, no, no)p(x, no + N+ 1, noI1 

where the fact that p(x, no + 2N, no), p(x, no + N, no), and p(x, no, no) 
satisfy (11.8) has been used. Now incrementing p(x, no + 1, no) and 
p(x, no + N+ 1, no) down by one using (111.1) gives (111.33). 

IV. CONSTRUCTION OF THE MEASURE 

We now proceed to construct the measure associated with the three term 
recurrence formula (111.1) whose coefficients satisfy (111.3). We will begin 
by considering the systems satisfying (111.1) and (111.14). 

THEOREM 5. Suppose the coefJicients in (111.1) satisfy (111.14), then the 
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measure p with respect to which the polynomials p(xi m, n,) are orthono~ma~ 
can be writtea as 

where 

dp=odx+ f p,6(x-xi) 
i=l 

1 
+) = 2nlf+(x, n,)12 a&V 4(x, N - 1) 

a&V q(l)(x N-2) 
a,(N+l) ’ 

and 

(IQ.3) 

Here E is given by (11.20) and @+(x, n), n = - 1, O,..., by (IK3P). xk is such 
that xk E E* andy( xk, no)=a(o)p+(xk, -1, noj=o. 

Proof. Consider the contour r= rl u Tz, where 

rl = (2; 12~1 = 1, ~#.e*(~~‘~)~, t= 1,2, . . . . N- 1) 

and r, is the union of 2N-2 contours that encircles the 2N - 2 images sf E* 
under w-l (see Fig. 3). 

Now consider the integral (m d n), 

I=- - s s P& m, d P + (4 n, 4 

wf, (x, no) h’(z) dz = I, ?- I,, (IQ.4) 
J-1 r2 

FIG. 3. The contour J? The set rl is indicated in thick lines, the contours Tz are in thin 
lines. The arrows indicate the direction (N = 7) 
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where h(z) is the inverse mapping of 
Since from (11.15), 

VAN ASSCHE 

W 
--I . 

, i.e., z = w -l(x) and x=/z(z). 

= -N(W-N-WN) dN) 
dN+ 1) 

q(l)(x, N - 2)’ , 

(IV.5) 

it follows from Lemma 10 that I is well defined. We first consider I,. Using 
(111.28) to eliminate p+(x, ~1, n,) and using the fact that f+(x, n,) = 
f-(x, n,,) on T1 yields 

P(X, m, 4 P-(X, n, noI h’(z) dz 
f-(x, noI 

W[P+, P- 1 p(x, m, no) P(x, n, %) h’(z) dz. (1v.6) 
If+ (x, ndl 2 

Writing z= eis in the first integral in the above equation then letting 
8 -+ -Q and using the fact that under this change of variables, 
p-(x, n, n,)-+p+(x, n, no) for all n while by (IV.5) eieh’(eiB)+ 
-eC’eh’(e-‘e) gives 

4=;j 
WP+, p-1 P(X, m, 4 pb, n, noI h’(z) dz 

r1 If+(xt noI 

Writing r,=r+uTP, where r+=r,n{z:Imz>O} and C=r,n 
{z: Im z < 0} then performing the same operation on the integral of r- that 
one used on the first integral in (IV.6) yields 

I1=f-!j 
WP +, P- 1 P(X, m, 4 P@, n, no) h’(z) dz 

r+ If, lx, ndl’ 

Now mapping back to the set E and using the fact that on r+ 

WCP+,P~I=-~~,(N)~(~,N-~) 

x J4 - (dx, W - (dWh(N+ 1)) q”‘(x, N- 2)j2 

gives 

x, m, no) P(X, n, noI 4x1 dx (IV.7) 
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where G(X) is given by (IV.2). Now r is a closed contour and one ca 
evaluate the integral using the residue theorem. The possible s~~g~la~ities 

be at z = 0 and the zeros off, (x, n,) that are inside r. For large x one 
that 

while from (I1.24), (II.32), and (II.15) one finds that 

Now z= w(x)-‘tz Cx-‘, where C=( ;“= 1 so(j))‘!” is the capacity of E. 
Gonsequently, 

P(X, m 4 P + (x, n, 4 h’(z) - _ 

.f+ (X> no) 

where the fact that h’(z) - - C/z’ has been used. Therefore one sees that the 
residue at z = 0 is - 6,,,, m 6 ~1. To evaluate the other residues we note 

at all the zeros of p+ (x, - 1, no) inside A’- are in R;o( ~ 1). 
(1X30), one finds 

I= 6??,??? - y, 
P(hCzi), m, no) p(h(z,), ns a~) P + ChCzi), 0, ~0) 

I (4dz)f+ (h(z), no) I== :, 
h’(zJ (HV.9) 

where f + (h(z,), no) = 0 and the sum is a finite sum. n order to evaluate the 
contribution due to r, we make the change of va z +x = h(z). The 
contour F, is mapped to the intervals E (circumsc twice), while the 
contour r; is mapped to N - 1 contours, eat contour containing one 
component of E* (see Fig. 4). Therefore 

1 
I 

P(X, m, noI P + (x, nz, mJ 
27ci r2 .f+(-% no) 

h’(z) dz 

h DZ D3 D4 D5 06 

FIG. 4. The images of the contours r and r2 through the mapping h(z). The thick line is 
the set E and the small contours are the images of Tz (N=7). 
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where Dj is the contour around E;“. The only zeros off+ (x, n,) that will 
contribute are those in R’;o( - 1) and those in Ry( - 1) such that 
f’, (xi, n,) = 0, xi E Rl”( - 1). Consequently, 

P(X, m, 4) P + (x2 n, m,) 
f + (4 no) 

h’(z) dz 

= - Cp(xk, m, h)p(xk, n, 4 p”+(xkY 0, no) (IV.10) 
k ybk> %I) 

where the minus sign comes from the fact that one is going around the con- 
tours Dj in the clockwise direction. Changing variables in (IV.9) then sub- 
stituting the result along with (IV.7) and (IV.10) into (IV.4) gives the 
theorem. 

One may eliminate the a,(N) q(x, N- 1) in (IV.2) using (111.33) to 
obtain the result found by Geronimus [16]. Furthermore, in this case we 
may analytically continue p-(x, IZ, n,) on to G and evaluate p+(x, n, n,) at 
a zero of f+ (x, no) using (111.28). Supposing f+ (x,, n,) = 0 and 4(x,, 
N- 1) #O one finds that 

1 
Pk =y+ ( 

xk> nO)f-(Xk> %) 
aCI(o) dxk, N- l) 

dxk, N) - 
a&V 2 

X q(“(x, N-2) 
a,(N+ 1) ’ 1 i -4 

Eliminatingf, (x, n,-,)f_ (x, n,) using (111.33) gives the formula for the mass 
obtained by Geronimus [16]. Geronimus [17] has also obtained 

COROLLARY 11. Let fi be the measure associated with (III.3) then 
P(X) = lim,,, m ,uno(x) and p(x)=,uC(x) +~~(x), where ,uC(x) is continuous 
nondecreasing function whose points of increase are dense in E, and pd is a 
jump function. Let E, contain all the points of discontinuity of pd and let E; 
be the derived set of E,, then E; c E, 

ProoJ That am, + p(x) follows from Helly’s theorem and the uni- 
queness of the moment problem. To show the second part let J and JO be 
the infinite Jacobi matrices given by (111.1) and (11.2) respectively and set 
J= J, + Jp, where Jp = J- J,. By (111.3) J, is a compact operator and it is 
a consequence of a theorem of Weyl [26] that the essential spectrum of J is 
the same as the essential spectrum of JO thus giving the result. 

THEOREM 6. If (111.20) holds then 

dp=c(x)dx+&,S(x-xl) (IV.11) 
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where 

277 

4x) = &3(N) 4(x, N - 1) 

x (4- Mx, N) - (~o(w&dN+ 1)) 4%, N- 21)2P2 
22-c If+(x12 

(pv.p2) 

with x E E\(w~~ = 1) and 

for xi E EC. If (111.22) holds then the sum over i is finite. 

ProoJ: The theorem follows from Theorems 4 and 5, Corollary 3, an 
Lemma 8. 

THEOREM 7. Suppose C,“=O ln(n + N+ 1) k,(n) < co then 
k’(pc,), where pe is the equilibrium measure on E, i.e., 

In C(X) E 

A(B) =&s, 
dx, NY - (Mw&AN+ 1 )I 4’Y% N- 2) 

J i 

dx 
2 

4- q(x, N)- G,(N) 
adN+ 1) 

qyx, N- 2) 

= s A(x) dx; 
B 

B a Borel subset of E. 

ProoJ: From Jensen? theorem one finds 

f E 
ln+zdpe<j. o(x)dx<a 

E 

and 

s In+ 
1 

-dp,d dx<cc 
E A(x) 

s E 

which implies SE In + C(X) d,uJx) < co. 
We must now show that J,ln+(l/o(x)) dp, < co. Consider the integral 

I= s In+ If+(x, no)1 dh, 
E 
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where f+(x, no) is given by (111.35). Substituting (111.24) into the above 
equation and observing that In + exp g(x) = g(x) if g(x) > 0 yields 

(n+N) 
N+ ll-~-~~I (n+N) he. 

Since jEf(x) dp, = jpf(h(e”))(dO/2n) (Sari0 and Nakai [22]) we find 

which gives 

Z6C+AC, 2 ln(n 
n=O 

+ N+ 1) k,(n). 

Now letting ~1~ -+ co and then using Corollary 3 and (IV.12) gives the 
result. 

V. ASYMPTOTIC BEHAVIOR 

We begin this section by deriving a formula first obtained by Geronimus 
CW. 

LEMMA 11. Let pl(x,n) be any solution of(III.1) then 

pI(x, n + 2N)p’“+“(x, N- 1) 

= pl(x, n + N)p@+‘)(x, 2N- 1) 

a(n+ 1) - 
a(n+N+l) zh(x, n) p (n+N+1)(~, N- 1). (V.1) 

ProoJ We will begin by showing that the above formula is true for 
p(x, n). Since p(x, n), p(“)(x, n -m), and p@+‘)(x, n -m - 1) are solutions 
of (111.1) one finds 

p(x, n) =p(x > m) p’“‘(x, n -m) 

-~(~m+‘,)p(x,m-l)p”““‘(x,n-m-1). (V.2) 

Multiplying the above equation with n = n + N and m = n + 1, and with 
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n=n+2Nandm=n+l byp(“+‘)(x,2N-1)andp(“+“)(x,N-d)res 
tively and then subtracting the resulting equations yields 

p(x,n+N)p(“+‘) (x, 2N- 1)-p(x, ~+~N)P@+~)(x, N-l) 

a(n+l) 
= n(rzp(x, n){~(“+~)(x, 2N-2)p’“+“(x, N- 1) 

- P@+~)(x, N--2)~‘“+~‘(x, 2N- I)>. 

By analogy with (V.2) one has 

P (n+m)(~, 2N-~z)=p(~+‘@(x, N-m)p(“+N)(~, N) 

a(N+ n) 
a(N+n+ 1)’ 

(n+m)(~, N-m- 1) 

x p(n+N+l)(X, N- 1). 

Multiplying the above equation with m=l, and with m=2 by 
P(~+~)(x, N- 2) and p@+‘) (x, N- I) respectiveiy and then subtracting the 
resulting equations yields 

P (n+2)(X, 2N-2)p’“+“(x, N- ~)-p(n+l)(x, 2N- f)p(n+2)(X, N-2) 

a(n + 2) 
= a(N+n+ l)P 

(n+N+l)(~,N- 1). 

In the above equation the fact that W[p(“+1),p(n+2)] = -a(n i-2) 
been used. Inserting (V.5) into (V.3) gives (V.I) forp,(x,n)=p(x,n). Usip1 
similar arguments one finds that p(l)(x, n + 2N - I ), p’l’(x, n + N - I), asp 
p”)(x, IZ - 1) satisfy (VA) and, since ail solutions of (1II.I) can be written 
as a linear combination of p(x, n) and p(‘)(x, n), the lemma is prove 

It is possible to convert (V.l) into two recurrence relations whenever 
(III.3) holds. The following lemma is a generalization of a result given by 
Geronimo and Case [S]. 

LEMMA 12. Equations (111.1) and (111.2) with recurrence coefficients that 
satisfy (III.3) are equivalent to the two following relations 

p(x,n+N)= 
a,(n+ l)p@+r)(x, N- I) 
a(n+ 1) q@+l)(x, N- 1) 

x ((wFN- B(n,x))p(x,n)+tv’N1//~(x,Yk)j (V.6) 

640/46/3-S 
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and 

l+b’(x,n+N)= 
aO(n + l)p@+l)(x, N- 1) 
a(n + 1) q@+ “(x, N- 1) 

x w’“lp(x,n)+ 
i L( ( 

l- a(n+i) 
a&+ 1) 

@+l)(X, N- 1) 2 
x ~(n+ljcx 

2 
N-1J ) w’N-f+A]PW4]. (V.7) 

where 

- a(n+l) 
B(n,x)=wN+w-N- 

a&+ 1) 
q@+l)(X, N- 1) 

X 

1 
p’“‘(x iv) 

pcn+l)(x,‘N-- 1) 
a(n) P +-N+yx, N-2) 

-____ 

a(n+ l)pcnPN+l)(x, N- 1) I ’ (v’8) 

and $‘(x, O)=p(x, 0)= 1. 

ProoJ: Solve (V.6) for II/ ‘(x, n) and substitute this result into (V.7). 
The resulting equation is (VA), where one replaces p@’ + i)(x, 2N- 1) by 
(V.4) with m = 1. 

If one subtracts (V.6) from (V.7) one finds 

$‘(x,n+N)=p(x,n+N)- a@+ 1) P+l)(x, N- 1) WTNp(X n). 
a,(n+ l)P@fl)(X, N- 1) ’ 

(v.9) 

Consequently for the system satisfying (111.14) one finds, using (111.35), 
that 

This leads to 

THEOREM 8. Suppose that (111.20) is fulfilled, then for any integer j the 
following limit holds: 

lim w-““p(x, kN+j) = 
q(i+l)(x, N- l)f+(x) 

k-cc a&+ 1) s+(~,j)C~N-~-N1 

uniformly on closed subsets of G. 

ProoJ: If (111.20) is fulfilled we can let no + co in G to obtain 

f+(x)= lim a&0 + 1) 4 + (4 4 
qh+l)(X, N- 1) Wv+(X, no). (V.11) no + m 
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Now setting n, = kN +j in the above equation and using the properties of 
the periodic system one finds 

f+(x) = ‘,(j+ l) 4+(x’j) lim W-(k- 1)N + 

qcJ+l)(x, N- 1) k+m 
$ (x, kN+j). (V.12) 

If one subtracts the two equations given by (VA) from each other and then 
multiplies the result by wekN one has 

w -““p(x, kN + j) = w 
-(k-l)N$+(~, kN+j)-w-‘k+l’Nt/p(x, kN+j) 

WN- W-‘” 

(V.13) 

Consequently, the result will be proved if one can show that 
lim,, m w -(k+l)N$-(~, kN+j)=O uniformly on closed subsets of G. 
Finding the analog of (111.8) for p’“+ “(x, N - 1) shows that 

lim 
$kN+jtl)(~, N- 1) = 1 

k+m q(j+ ‘)(x, N- I) 

uniformly on closed subsets of G\(zeros of q”+ l”(x, N - I)}. Thus, from 
(V.9) and (111.10) we see that the result will be demonstrated if one can 
show that 

lim w-(~+*)~~(x, (k+ 1) N+,Y)-w~(~+‘)~@(x, kN+s)=O 
k-m 

uniformly on closed subsets of G. Now from (III.8) we have 

w-(~+*)~~(x, (k+ 1) N+s)-~-(~+~)‘+‘fi(x, kN+s) 

=w -(k+2)Nq(x, (k+ 1) N+s)-~~(~+‘:~q(x, kN+s) 
kN+s- 1 

+ ,,zo [Iw- 

(k+2)Nkl(x, n, (k+ 1) Nfs) 

-W --(k + ‘jNkl(x, ~1, kN + s)] 6(x, n) 
(k+l)N+s-1 

+ c w-(k+2)Nkl(x, n, (kt 1) N+s)p(x, n). (V.14) 
n=kN+s 

From (III.10) and (111.12) we see that the last term goes to zero as k tends 
to infinity uniformly on closed subsets of G. From (I .24) and (II?@) we 
find 

Iw- (k+2)Nq(x, (k+ 1) N+s)- w-(ktl)Nq(x, kN+s)l = /~-~*~+*)~q+(x, s)i 

<II lW-*kNI, (V.15) 
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which leaves only the second term to be discussed. From (111.6) and (111.9) 
one finds 

(bo(n)-b(n))W(ir+2)N(y(n+1)(X (k+l)N+s-n-l) 

= a&+1) 
7 

- wNq(“+l)(X,kN+s-n-l)) 

+ a,@+ 1) 
ao(n f 2) 

1-a2(n+l) 
ugn + 1) 

W-(k+W{q(n+2) (x, (k+l)N+s-n-2) 

- wNq(“+yX,kN+s-n-2)}. (V.16) 

Now setting IZ = mM+p and using (11.22) and (11.23) yields 

IW-(k+2)Nk,(X, n, (k+ 1) N+s)-w+k+l%l(X, n, #W+s)l 

Substituting this result into the second term in (V.14) then using (111.10) 
gives the result. 

On the spectrum we have, from (111.28), (111.21), Theorem 1 and the 
properties of w(x) and A(z). 

THEOREM 8. Zf (111.20) holds then for every x E E\(w2” = 1) 

- cos(klw + qe, s)) 1 = 0, 
where 8 = arg w(x) and T(‘(e, s) = - argf, (h(e”)) + arg q + (h(e”), s) + 7-c/2. 
Furthermore the convergence is uniform on compact subsets of E\(w~~ = 1). 
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