ATRIAL APPENDAGES HARBOR A VAST AND DIVERSE POPULATION OF CARDIAC PROGENITOR CELLS

ACC Moderated Poster Contributions
McCormick Place South, Hall A
Monday, March 26, 2012, 11:00 a.m.-Noon

Session Title: New Mechanisms from Experimental Models II
Abstract Category: 15. Heart Failure: Basic
Presentation Number: 1220-342

Authors: Jussi Leinonen, Avishag K. Emanuelov, Yardanna Platt, Chaim Lotan, Ronen Beeri, Cardiovascular Research Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel

Background: The regenerative capability of the adult heart has gained evidence during the last decade, but the mechanism remains unknown. Cardiac progenitor cells (CPCs) are a heterogenic population and are thought to be concentrated in certain areas (e.g. ventricular apex). We hypothesized that the atrial appendages, being from an earlier stage of embryological development than the rest of the heart, contain a large amount of CPCs.

Methods: Immunohistochemistry was performed on the frozen left atrial appendage (LAA) sections. LAAs from adult mice were harvested and minced. Digestion of explants was performed with three different concentrations of enzymes. Differentiation was induced through Dexamethasone or 5-Azacytidine. Cells were analyzed with flow cytometry and immunocytochemistry.

Results: The LAA contained a high number of c-Kit+ cells, from which over 50% were Nkx2.5+. These cells were often in clusters inside the myocardium. In culture, tissue from both appendages had an equal growth potential, but the ventricular apex showed only minimal cell growth (40x lower than the appendages). Two distinct progenitor cell populations grew depending on the strength of enzymatic digestion: Type A, which was c-Kit+ and CD45- and Type B, which was c-Kit+ and CD45+. Nkx2.5 and GATA-4 were positive in both cell populations. Sca-1 expression was abundant in Type A cell populations (~90%), in contrast to Type B populations. Both CPC types were found from the apex-derived cells as well. We were able to induce the differentiation of the Type A population using Dexamethasone, with organized expression of sarcomeric proteins and atrial natriuretic factor. Type B population was induced to differentiation with 5-Azacytidine. Possibility of a mast cell contamination was ruled out by RT-PCR.

Conclusion: The atrial appendages contained multiple types of CPCs and a higher concentration of CPCs than the left ventricle. Different enzymatic digestion method caused major differences in the resulting CPC population. The progenitor cells expressed the cardiac lineage marker Nkx2.5 and differentiated into cardiomyocytes in vitro with different mechanisms depending on their cell type.