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Abstract

Users of location-based services (LBSs) may have serious privacy concerns when using these technologies since

their location can be utilized by adversaries to infer privacy-sensitive information about them. In this work, we analyze

the mainstream anonymity solutions proposed for LBSs based on k-anonymity, and point out that these do not follow

the safe assumptions as per the original definition of k-anonymity. We propose an alternative anonymity property,

LBS (k,T)-anonymity, that ensures anonymity of a user’s query against an attacker who knows about the issuance of

the user query within a time window. We evaluate the vulnerability of the approaches in the literature to this type of

attack that we believe is very basic and important, and assess the performance of our proposed algorithm for achieving

LBS (k,T)-anonymity in terms of providing optimal solution.
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1. Introduction

Location-based services (LBSs) are able to provide location specific information to (mobile) users, enabling more

convenient and effective ways to access information. However, despite rapid technical developments in the area, it

seems that they are lagging behind in deployment and leverage by providers and consumers. Privacy concerns are

believed to be one of the major obstacles to the full-fledged emergence of these services. People are becoming more

aware of privacy implications of using technologies nowadays, and LBSs are not exception to that. In fact, LBSs deal

with large amounts of spatio-temporal data related to user movements, among other privacy-sensitive information in

user queries. Once possibly collected by LBSs, such privacy-sensitive data are at risk of further analysis for malicious

purposes. Although removing real identifiers (de-identification) or using pseudonyms instead may enhance privacy

preservation, researchers have shown that other pieces of information may be used to re-identify user records in a

de-identified table. In the context of LBS, user’s location provided in the queries may be used to link a query to a user.

The idea of employing anonymization for LBSs is to anonymize user queries by cloaking the location area before

submitting them to an LBS. The cloaked area is a coarse-grained location information that results in uncertainties,

and therefore anonymity, in case an adversary attempts to relate the queries to the users. In a typical anonymization
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scenario, users submit their queries to a trusted anonymizer, which submits an anonymized version of the query to the

LBS on behalf of the user, and later relays back its responses.

The k-Anonymity principle [1, 2] has been predominantly adopted by researchers for use in the context of LBSs.

It essentially ensures that any linking attack cannot succeed by a probability exceeding 1/k. Most of the proposed

approaches for LBS privacy in the literature, such as NewCasper [3], Privé [4], and PrivacyGrid [5], choose a cloaked

area as the location context of a query such that there are at least k users in the area at the time of its submission. We

shall refer to this approach as LBS k-anonymity hereafter. We observe that the lack of complete compliance with

the original k-anonymity idea makes it difficult for these approaches to provide acceptable anonymity for LBS users

in practice. More specifically, LBS k-anonymity neglects to follow a safe approach regarding user population in

k-anonymity (discussed in detail in Section 3) that imposes an unrealistic implicit assumption on the adversary’s

background knowledge. This unsafe assumption leads to vulnerability of these approaches to a very simple and

basic anonymity attack as follows. Suppose Oscar knows that Alice has issued a query to an LBS at noon from her

workplace. If Oscar has access to the anonymized queries received by the LBS, he can check every query in a relevant

time window, say from 12pm to 1pm, and identify a subset of queries with cloaked locations that include Alice’s

workplace; this subset would include Alice’s query. As the value k in LBS k-anonymity does not control the size

of this subset, the above-mentioned approaches fail to provide proper anonymity in case of this attack. Therefore,

Alice’s query may be identified, either exactly or with a high probability. We believe that such an attack is very likely

to occur in practice in the LBS context. Exception to this trend is Gedik’s et al.’s approach in [6] that strictly follows

the original definition of k-anonymity. However, it has performance issues and introduces delays in query submission.

In this paper, we analyze the predominant interpretation of k-anonymity in the LBS context and point out its subtle

but important nonconformance to the original definition of k-anonymity, and its impractical, implicit assumptions as

a result of this. We propose LBS (k,T)-anonymity which has safe assumptions regarding user population and aims to

thwart an adversary’s attack based on the knowledge of the existence of victim’s query. Moreover, we formulate LBS

(k,T)-anonymization as a spatio-temporal problem, and provide a greedy solution and some experimental results. We

emphasize that our approach to temporal aspect of anonymization is different than what is considered in the related

work on anonymizing continuous LBS queries [7, 8]. In this paper, we do not consider such scenarios, and limit our

scope to one-time LBS queries.

The rest of the paper is organized as follows. We provide an overview of the privacy threat model in LBSs in Sec-

tion 2. In Section 3, we discuss and analyze the limitations of the generally-conceived interpretation of k-anonymity

in the LBS context. We propose our approach, LBS (k,T)-anonymity, and formulate the problem of achieving it and

a greedy solution in sections 4 and 5, respectively. The proposed algorithm is evaluated in a simulation framework

in Section 6. Section 7 highlights the related work. We conclude the paper and provide future research directions in

Section 8.

2. LBS privacy threat model

We consider a general anonymization architecture consisting of mobile users, an LBS, and an anonymizer, depicted

in Figure 1. From users’ point of view, the anonymizer is a trusted entity that mediates queries between them and

the untrusted LBSs; users submit their queries to the anonymizer; the anonymizer performs query anonymization

and sends the anonymized queries to the LBS on behalf of the users. The LBS sends back the query responses to

the anonymizer, which can forward them to the corresponding users. The anonymizer may also perform some post-

processing on the responses before sending them back to the users in order to reduce the uncertainties in the answers

as a result of query anonymization.

In the setting described above, we assume that an adversary may be able to access to the queries at the LBS side,

and therefore making LBS an untrusted entity in the system. The goal of adversary is to identify the query that a

specific target user has issued. We assume the attacker knows the exact location of the target user as background

knowledge. Figure 1 summarizes the architecture described and the threat model.

3. Analyzing the predominant k-anonymity approach for LBSs

In this section, we present an interpretation of k-anonymity in LBSs that is widely captured by the existing ap-

proaches such as in [3, 4, 9, 5]. Let relations AQ(location, query) and UL(user, location) represent, respectively, the
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Figure 1: LBS privacy threat model

submitted anonymized queries to the LBS and the exact locations of the LBS users. Note that these relations are

snapshots of the data at a specific time point. As the LBS is not considered trusted, relation AQ is considered known

to the adversary. In the predominant interpretation of k-anonymity for LBSs, which we call LBS k-anonymity, the idea

is to cloak a query’s location area such that at least k − 1 users other than the one submitting the query are enclosed in

the location area. Therefore, an adversary cannot associate a query to a user with a probability more than 1/k.

Definition 1 (LBS k-anonymity). Relation AQ is LBS k-anonymous iff for every query in AQ there exist at least k
users in UL whose locations match the query’s location. Formally:

∀q ∈ AQ, |{u ∈ UL|q.location covers u.location}| ≥ k.

We show that the above interpretation of k-anonymity in the LBS context is not consistent with the original

definitions of the k-anonymity principle [1, 2], which in turn results in not delivering the expected anonymity to the

LBS users. For this purpose, we provide a brief background on the original definitions of k-anonymity. Central to the

k-anonymity principle is the concept of quasi-identifier. A quasi-identifier is a combination of a relation’s attributes

that can be used to uniquely identify at least one individual with the help of other externally available datasets (while

the unique identifier is removed from the relation). k-Anonymity has been proposed to protect against such a linking

attack by proposing the following requirement [1].

Definition 2 (k-anonymity requirement). Every combination of values of quasi-identifiers must indistinctly match
with those of at least k individuals.

However, as the exact population of individuals that are represented in an external relation is not known to the data

anonymizer, a safe approach has been followed to assure k-anonymity [1]. Assuming that an individual is only

associated with one tuple in a privacy-sensitive relation, the following definition ensures that for each tuple in a

k-anonymous relation, there are at least k individuals that would match based on the quasi-identifier [2, 1].

Definition 3 (k-anonymity). Let P be a relation and QI be the quasi-identifier associated with it. P is said to satisfy
k-anonymity iff each sequence of values in P[QI] occurs at least k times in P[QI].

Mapping LBS k-anonymity to the above-mentioned definitions, AQ is the privacy-sensitive relation with the quasi-

identifier {location}, which can be linked to location in UL. We observe that LBS k-anonymity captures the k-

anonymity requirement (Definition 2) by matching at least k user locations in UL for every query’s location in AQ.

However, it fails to follow the safeguard implied in Definition 3. Note that Definition 3 requires at least k occurrences

of each sequence of quasi-identifier in order to rule out any assumptions regarding the population in the linkable

external information. In the context of LBSs, this means that there should be at least k queries with the same cloaked

location for every existing location in the AQ relation. Definition 1 clearly does not ensure this property.

Let us illustrate the privacy issue of such inconsistency in an LBS anonymization scenario. Suppose user queries

are anonymized according to LBS k-anonymity. This means that if victim Alice has issued a query, her query’s

location has been cloaked to include at least k users’ locations. However, if adversary Oscar simply knows that Alice

has in fact issued a query and there are no other anonymized queries matching Alice’s location, he can easily associate

the query to Alice! The adversary’s knowledge of existence of the victim’s record in the anonymized table is a basic
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Figure 2: LBS k-anonymity (a) vs. our approach (b)

assumption in linking attacks and k-anonymity [2], which seems to have been neglected in the approaches that employ

LBS k-anonymity.

In fact, LBS k-anonymity implicitly considers a very strong assumption regarding adversary’s background knowl-

edge: the adversary believes that all the users located in the area enclosed by a query’s location are potential issuers

of the query. This is an impractical assumption. Because, first, it is very likely that the adversary does not have access

to the exact location of every LBS user; access to such data is impossible maybe except for mobile network operators.

Second, in a real-world scenario, the adversary may simply obtains knowledge of existence of the victim in the query

table by observing/monitoring the victim, which can help him easily associate the victim’s record as mentioned above,

without the need for much more complex background knowledge.

4. An alternative approach to anonymity for LBSs

In this section, we propose an alternative formulation of the k-anonymity principle for LBSs that better adopts the

original principle (Definitions 2 and 3) compared to LBS k-anonymity. The idea is to avoid an adversary from being

able to link less than k anonymized queries to a target user’s location. Intuitively, this can be achieved by ensuring

that every query issuing user’s location is covered by at least k queries in AQ. Suppose the star-shaped point in Figure

2 is the location of the victim that issues a query and k = 4. Figure 2b depicts requirement of our approach in terms

of k-anonymity, i.e., four queries should cover the victim’s location, while Figure 2a shows the approach of LBS k-

anonymity, i.e., assuring four users in the victim’s cloaked location. It is worthwhile to note that these two approaches

are somewhat dual of each other; LBS k-anonymity ensures k users for each tuple in AQ, while our approach ensures

k queries in AQ for each issuing user.

Although our approach enjoys a more practical assumption regrading the adversary’s background knowledge, it

might be too rigid to enforce in practice. As shown in Figure 2, our approach requires cloaking of k − 1 other query

locations to anonymize a query, while LBS k-anonymity involves only one location cloaking per query. In order to

compensate for this complexity to some extent, we relax our approach to consider less precise adversary’s knowledge

of the issuance time of the query as follows. The intuition is that even the attacker knows the exact location of the

victim, he might not know he exact point in time that the query has been issued. For instance, Oscar may know that

Alice has requested a service around noon, between 12:00pm to 12:10pm. But he might not know the exact time at a

second granularity. We consider that our anonymized query table AQ includes also a time field that indicates the time

query has been submitted. Note that this is not considered as a new background knowledge for the attacker, since the

untrusted LBS knows about the time of query submission. We formally propose our anonymity approach as follows.

Definition 4 (LBS (k,T)-anonymity). Relation AQ is LBS (k,T)-anonymous iff for any submitted query qi at time ti,
issued by user ui, there exist at least k−1 other queries in any time window of size at least T that includes ti. Formally:

∀t1∀t2(t1 ≤ ti ≤ t2) ∧ (t2 − t1 + 1 ≥ T )⇒ |{q ∈ AQ[t1,t2]|q.location covers ui.location}| ≥ k.

In the above definition, a superscript represents a selection of records in a table in a specific time window. The time

window size T should be chosen in a way that it is less than or equal to the potential size accuracy that is expected for

an attacker. Note that the special case (k,1)-anonymity essentially assumes precise attacker’s background knowledge

regarding query time.
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Figure 3: Time window of size T, ending at current time, that is considered in (k,T)-anonymization

5. LBS (k,T)-anonymization

In this section, we formulate the LBS (k,T)-anonymization problem as per Definition 4, i.e., cloaking query lo-

cations such that the location of every user issuing a query is enclosed in at least k − 1 other anonymized queries

in any time window of size T (and greater) that includes the query. Ensuring that the submitted queries to the LBS

comply with the LBS (k,T)-anonymity principle while performing minimum cloaking for quality of service purpose

is a complex spatio-temporal problem.

5.1. Problem formulation

LBS (k,T)-anonymization is an optimization problem spanning over both spatial and temporal dimensions. Ideally,

the cloaked locations should be optimized not only according to the current queries, but also the previous and future

queries. However, we avoid further complexities by breaking the problem into several iterations. In each iteration, we

ensure LBS (k,T)-anonymity for queries within a time window of size T that ends in the current time point. Figure

3 depicts the time window of size T that ends in the current time point (tc). The queries in the time window can be

categorized into two groups: newly issued queries by users at the current time, and the queries issued and processed in

the past T − 1 time points. According to the LBS (k,T)-anonymity principle, the location of the issuer of a previously

issued query such as qx, that is issued at time ti, should be covered by at least k query locations. There could be

a number of previous queries such as qy, issued at time t j, that cover the issuer of qx. Any remaining coverage

for the issuer of qx towards k coverage needs to be provided by the cloaked locations of the newly issued queries.

Analogously, locations of the issuers of the newly issued queries may be covered by locations of the previously issued

queries in the time window. The remaining coverage for such issuers should be provided by the newly issued queries

themselves. The problem is to determine the cloaked locations for newly submitted queries such that all the coverage

requirements are fulfilled, while the total area of such queries are minimized. Iteratively solving this problem at each

time point ensures LBS (k,T)-anonymity for all queries. We formally define the simplified LBS (k,T)-anonymization

as follows.

Definition 5 (Simplified LBS (k,T)-Anonymization). Let collection L be the issuers’ locations of the newly issued
queries; let collections L′ and CL′ be the issuers’ locations and the cloaked locations of the queries issued in the
past T − 1 time points, respectively. The simplified LBS (k,T)-anonymization problem is to determine set of cloaked
locations CL for the newly issued queries, i.e., mapping function A : L→ CL, such that

• ∀l ∈ L, A(l) covers l,

• ∀l ∈ L ∪ L′, |{cl ∈ CL ∪CL′|cl covers l}| ≥ k, and

•
∑

cl∈CL

Area(cl) is minimum, where Area(cl) represents the area of cloaked location cl.

5.2. A greedy algorithm

Algorithm 1 shows the pseudo code of our greedy solution to the simplified LBS (k,T)-anonymization problem

that should run at each time point. We use the following notations in the pseudo code. For a query q, q.cl represents

its cloaked location and q.ul represents its issuer’s location. Also, coverage(q) represents the number of queries

which their cloaked locations cover the issuer’s location of the query q. The algorithm iterates until all queries (both
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Algorithm 1 KT-Anonymize(QN , QI , k, T )

Input: new queries QN , issued queries in past T − 1 time points QI , parameters k and T in LBS (k,T)-anonymity

Output: cloaked locations in QN .cl
1: Q← QI ∪ QN

2: for each q ∈ Q do
3: coverage(q)← |{qi ∈ QI |qi.cl covers q.ul}|
4: for each qn ∈ QN do
5: qn.cl← qn.ul
6: while ∃q ∈ Q, coverage(q) < k do
7: for each q ∈ Q, coverage(q) < k do
8: for each qn ∈ QN do
9: Compute cost of expanding qn.cl to cover q.ul

10: Let 〈q′n, q′〉 be the expansion with the minimum-cost among the possible expansions in line 9 (q′n.cl
expands to cover q′.ul)

11: Let 〈q′′n , q′′〉 be the expansion with the maximum-cost among 〈q′n, q′〉s computed in line 9

12: Expand q′′n .cl to cover q′′.ul
13: coverage(q′′)← coverage(q′′) + 1

14: Updates coverage for all other queries due to the above expansion

previously and newly issued) have coverage value of k. It is greedy in the way that it chooses the best expansion to

be applied in each iteration without considering possible optimizations using previous or possible future expansions.

In each iteration, the cost for expanding a cloaked location of a newly issued query to cover an insufficiently covered

query issuer is computed. For each insufficiently covered query issuer, the the potential expansion with minimum-cost

is selected as a candidate. After selecting the candidate expansions (one for each insufficiently covered query), our

heuristic is to choose the one with the maximum cost to be applied in the iteration. The rationale is that since such a

choice results into a greater query location expansion among other candidates, it might end up covering other issuers

also or at least dramatically reduce the cost of their coverage in future iterations. Note that ultimately our solution

has to provide enough coverage for every query issuer, regardless of its cost. The time complexity of Algorithm 1

is O(k|Q|2|QN |), where Q is the set of all queries in the past T time units that have inadequate coverage in the time

window, and QN is the set of newly issued queries.

6. Experimental evaluation

We have implemented an LBS anonymization evaluation framework in Java that leverages Network-based Gen-
erator of Moving Objects [10] to simulate generation of queries by mobile users on a given road network, performs

anonymization schemes, and measures statistics regarding the quality of the anonymization and anonymized queries.

6.1. Evaluation setup

In order to compare our approach with LBS k-anonymity, we implemented PrivacyGrid [5], a recent work that

employs this idea. We also implemented a grid-based version of our proposed algorithm described in Section 5.2. As

input to the moving object simulator, we used the road network of SF Bay Area (approx. 26k km2). The area was

divided into a grid network of 270 × 358 square-shaped cells. We simulated movement of 1000 users for 100 time

units (increase in simulation time did not show any significant effect). Users generate queries with probability pq with

a uniform distribution. The parameters k and T were by default set to 10, unless otherwise mentioned.

In the evaluation of the anonymization techniques, we distinguish between k as input parameter to an algorithm,

and its post measurement after performing the anonymization, which we call actual k. In our results, we report

the average of this value for the collection of all submitted queries. In LBS k-anonymity, the number of users in

any query’s cloaked location is its actual k value. In LBS (k,T)-anonymity, the average number of queries that their

location enclose the location of the user who issued a specific query, in any time window with size T that includes the

query, is considered as its actual k.
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Figure 4: Experimental results (n = 1000 and k = 10)

6.2. Results

We investigate the vulnerability of the LBS k-anonymity approach when the adversary knows about the issuance

of the query by the victim. This is a more practical adversary’s background knowledge than what assumed in LBS

k-anonymity, as explained in Section 3. We consider the relaxed version that is captured by LBS (k,T)-anonymity

property, setting parameters k = T = 10, i.e., the attacker knows that the victim has issued a query in a specific time

window of size 10, and should not be able to identify the victim’s query with a probability higher than 0.1. Figure 4a

depicts the rate of actual k, in the sense of LBS (k,T)-anonymity, matching parameter k in the PrivacyGrid algorithm

at different query rates. The results show that even for a very high rate of query generation such as 0.15 roughly 23%

of the queries are vulnerable based on the above-mentioned background knowledge. Note that 0.15 is considered

a very high query generation rate, i.e., every user issues a query at each time point with 15% chance. Query rate

is expected to be much lower in practice, which as shown in the figure has even much lower conformance to LBS

(k,T)-anonymity.

Figure 4b shows the average actual k measurement with regards to LBS (k,T)-anonymity on our proposed al-

gorithm and PrivacyGrid, at different query rates. As expected, LBS k-anonymity does not support the proposed

k = 10 on average. Even when the average actual k meets proposed k, many individual queries fail to conform with

(k,T)-anonymity property. On the other hand, our algorithm, while conforming completely to the principle, seems to

provide much larger actual k values than the proposed. This can be attributed to the heuristic-based greedy algorithm

that cannot perform good optimization. Setting the k value to lower values may improve the results, but will void the

foolproof provision of the anonymity property. However, our technique shows better performance for larger window

sizes. Figure 4c shows the improvement trend of actual k by adjusting parameter T , ranging from 5 to 50 (pq = 0.05).

A window size of 50 brings down the actual k to about 17, which is over 800% improvement compared to T = 10 in

achieving closer value to the expected k value. Note that if time is measured in the scale of seconds, such a window

size is completely reasonable to be considered as attacker’s uncertainty regarding issuance time.
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Although we are dealing with a different problem than LBS k-anonymization techniques, we found it interesting to

compare our method with PrivacyGrid in terms of the size of the generated cloaked areas. Figure 4d shows the average

area ratio of the cloaked locations using our algorithm to the ones using PrivacyGrid, for a fixed query rate of 0.05.

The results show that for low T values our algorithm generates cloaked area of about 22 larger than PrivacyGrid’s.

However, as we increase T , we get more acceptable cloaking performance (about 4 times larger at T = 50). This is

partly because of the much more challenging optimization problem in the case of LBS (k,t)-anonymization compared

to LBS k-anonymization. We emphasize again that any direct comparison like this may not be very insightful as we

are dealing with two completely different problems, although in the very much the same context.

7. Related work

Anonymization principles have originated from the relational database community, where there is need to anonymiz

datasets before releasing them for research or other purposes. The k-anonymity principle [2] requires that each record

is indistinguishable from at least k − 1 others to protect the dataset from linking attacks. Subsequently proposed

anonymity principles provide more advanced protection; for instance, l-diversity [11] ensures diversity of sensitive

values in equivalency classes.

The related work in the location privacy area can be categorized into two groups: preserving user’s location

privacy and providing anonymity. In the former group, several approaches exist for obfuscating user location in

order to hide the exact location information from LBSs [12, 13]. The latter group adopt the k-anonymity principle,

however, the majority of the approaches in this group follow the LBS k-anonymity interpretation as discussed in 3.

New Casper [3] is an LBS anonymizer that allows user-specified k values and minimum cloaking area. It leverages

pyramid-shaped levels of grid structures to find the appropriate grid cell as cloaked region for a query. Privé [4]

provides a distributed anonymization architecture with an anonymization algorithm based on Hilbert filling curve.

The authors define a reciprocity requirement for cloaked locations, based on which if a user happens to be in a

cloaked location of another user’s query, the latter user should also be located in queries issued by the former user.

Although this requirement makes this approach more consistent with the original definition of k-anonymity, it does not

completely remove the limitations regarding attacker’s belief of user population. In a complementary work, Kalnis et

al. propose an alternative approach to Hilbert cloak, called Nearest Neighbor Cloak, which protects against heuristic

attacks such as considering a user closer to the center of a query’s cloaked area as the query issuer [9]. PrivacyGrid

[5] is another grid-based location anonymization framework that supports user-specified parameters for location k-

anonymity, l-diversity, and maximum spaial/temporal cloaking. Although it is similar to New Casper, it has better

cloaking performance it allows flexible cloaking strategies (i.e., bottom-up, top-down, and hybrid), and dynamic

expansion of grid cells (instead of static quad-tree scheme). All of these approaches follow the LBS k-anonymity

approach, which is a problematic interpretation of the original k-anonymity principle, as discussed in Section 3.

In contrast to the above-mentioned approaches, CliqueCloak [15, 6] follows the original definition of k-anonymity

more strictly. It groups at least k number of queries together and submits them all together to the LBS using the

same cloaked location. However, as the algorithm relies on finding a clique on a constraint graph, it faces severe

performance issues. Moreover, it needs to delay the queries in order to submit them in groups, and does not minimizes

the size of the cloaked areas. Our approach is less rigid than CliqueCloak. In fact, LBS (k,1)-anonymization, a special

case of our approach where the time window size is one, is almost the same as this approach.

In an anonymization scheme for continuous queries, Chow et al. propose k-sharing property [16], which states

that a cloaked region not only contains at least k users, but the region is also shared by at least k of these users. If this

property results in submission of k queries with the same region at the same time to the LBS, as in the CliqueCloak

approach, it satisfies the original k-anonymity property. However, the proposed algorithm in [16] does not seem to

enforce it in that way. It only requires that users in the same group share the same cloaked region.

8. Conclusion and future work

In this paper, we studied the conformance of the predominant interpretation of k-anonymity in the LBS context

to the original k-anonymity principle. Our analysis shows negligence of this interpretation in its assumption about

the user population, and consequently vulnerability to a very basic attack against LBS users. We formulated a gener-

alized alternative solution, called LBS (k,T)-anonymity, in order to avoid the mentioned limitations. We empirically
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showed the vulnerability of the predominant interpretation, and presented acceptable performance of our approach for

reasonably large window sizes.

Based on our experiments, the proposed LBS (k,T)-anonymization generally provides larger actual k values than

requested k. This is partly due to the non-optimal, greedy nature of the proposed solution, and partly because of

our conservative approach to fool-proof against linking attacks. In short, in each step of the algorithm, the expected

coverage for all the queries in the past T time points is achieved. But this strategy is only vital for the queries that are

issued in exactly T previous time points. The rest of the queries in the window will still have chance to be provided

with the remaining coverage in the future time points. However, since there is no guarantee that there will be enough

future supporting queries, we take the conservative approach to fulfill required coverage sooner. This apparently

results to the excess of coverage in later time points. As a future work, we plan to investigate a less-conservative

approach that relies on the possibility of utilizing the future queries for coverage purpose and therefore address both

the coverage excess and large cloaking area issues. We will also consider uncertainty in the adversary’s background

knowledge regarding the issuer’s location, and independent parameters k and T per query.
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