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SUMMARY

Tumor heterogeneity presents a challenge for infer-
ring clonal evolution and driver gene identification.
Here, we describe a method for analyzing the
cancer genome at a single-cell nucleotide level. To
perform our analyses, we first devised and validated
a high-throughput whole-genome single-cell se-
quencing method using two lymphoblastoid cell
line single cells. We then carried out whole-exome
single-cell sequencing of 90 cells from a JAK2-
negative myeloproliferative neoplasm patient. The
sequencing data from 58 cells passed our quality
control criteria, and these data indicated that this
neoplasm represented a monoclonal evolution. We
further identified essential thrombocythemia (ET)-
related candidate mutations such as SESN2 and
NTRK1, which may be involved in neoplasm pro-
gression. This pilot study allowed the initial charac-
terization of the disease-related genetic architecture
at the single-cell nucleotide level. Further, we estab-
lished a single-cell sequencing method that opens
the way for detailed analyses of a variety of tumor
types, including those with high genetic complex
between patients.
INTRODUCTION

Tumor evolution is an important area in cancer research because

information on fundamental genetic changes that occur as

a tumor develops is essential for effective diagnosis, prognosis,

and therapy (Cairns, 1975; Nowell, 1976). However, character-

izing the underpinnings of this process remains difficult. Current

theories propose that neoplasms arise either from monoclonal

or polyclonal somatic mutant cells, and there is evidence that

supports both a gradual change and an instantaneous change

in the genome to promote progression (Stephens et al., 2011;

Visvader, 2011). The heterogeneous nature of tumors, however,

makes it difficult for researchers to analyze the intratumoral

genetic structure and identify key changes during neoplasm

progression. Without additional cell sorting experiments, hema-

topoietic tumors, in particular, are very heterogeneous, making it

especially difficult to identify genetic mutations that have amajor

impact on cancer development.

Myeloproliferative neoplasms are hematopoietic tumors. They

originate from genetic variations occurring in hematopoietic

stem cells or progenitors, which lead to abnormal differentiation

and myelopoiesis. A typical myeloproliferative neoplasm is

essential thrombocythemia (ET). ET is characterized by malig-

nant myeloid and a sustained proliferation of megakaryocytes,

which leads to an increasing number of circulating platelets,

typically in excess of 600 3 109/l. ET affects about 2 out of

100,000 adults per year, with the incidence rate increasing in
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recent years (Mesa et al., 1999). ET is also a slowly progressing

neoplasm, with �50% of patients being asymptomatic and the

remainder presenting vasomotor, thrombotic, or hemorrhagic

disturbances (Tefferi, 2001).

Previous studies on ET have provided evidence supporting

both a monoclonal and a polyclonal origin for ET initiation and

proliferation (Tefferi, 2010). Approximately 55% of ET patients

harbor JAK2 mutations. However, JAK2 and other rare muta-

tions identified can be found in both ET and other types of myelo-

proliferative neoplasms. Thus, none of these mutations provide

unique markers to infer the evolution history of ET, nor could

they be traced back to a common originating clone (Tefferi,

2010). One approach to revealing the underlying genetic mech-

anisms of ET is to assess mutations within the individual cancer

cells, which would circumvent issues of tumor heterogeneity.

Recent work on breast cancer has demonstrated the potential

applicability of single-nucleus sequencing technology for

characterizing tumor evolution (Navin et al., 2011). Specifically,

Navin et al. (2011) investigated copy number variation (CNV) in

single tumor cells using DOPWGA followed by DNA sequencing

to determine cell population structure and tumor evolution

patterns in a single breast tumor. This study provided an impor-

tant breakthrough for research of tumor evolution and offered

a way to assess the genetic details of tumor structure. This

method, however, is not suitable for assessing the genetic char-

acteristics of single tumor cells at a single-nucleotide resolution,

and, at this stage, it cannot provide high genome coverage;

thus, this approach does not allow the detection of the single-

nucleotide changes that commonly underlie tumor development.

The use of MDA for WGA analysis, however, allows greater

resolution and genome coverage due to the MDA products

being a higher molecular weight DNA (average length > 10 kb),

which results in significantly higher genome recovery (Dean

et al., 2002b). Thus, this technique, as we demonstrate here,

can allow for whole-genome sequencing, with high accuracy at

the nucleotide level.

Here, we present a high-throughput single-cell sequencing

method to analyze tumor evolution in cancers. We use this tech-

nique to perform single-cell genetic analysis of a JAK2-negative

ET patient. We design and test our single-cell sequencing

method using two single cells from a lymphoblastoid cell line

and evaluated its whole-genome recovery, amplification unifor-

mity, sensitivity, and specificity. We then perform whole-exome

sequencing of 90 single cells from a typical JAK2-negative ET

patient and obtain a comprehensive genetic landscape of ET.

Analysis of the somatic mutant allele frequency spectrum

(SMAFS) reveals that this ET neoplasm was likely of monoclonal

origin, and statistical analyses of the genes carrying mutations

provide a list of candidate genes that might be involved in

neoplasm progression.

RESULTS

Whole-Genome Single-Cell Sequencing of Cells Derived
from a Previously Sequenced Individual
To develop and test a method for carrying out whole-genome

single-cell sequencing at a single-nucleotide level, we used cells

that were derived from an individual whose genome had been
874 Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc.
previously sequenced. This genome would serve as a whole-

tissue genome sequence control to assess our method. We

therefore constructed a lymphoblastoid cell line from lympho-

blast cells previously obtained at BGI from the individual (YH)

who provided DNA for the first Asian diploid genome sequence

(Wang et al., 2008). Under an inverted microscope and through

cascade dilution, we randomly extracted two single cells (here-

after referred to as YH-1 and YH-2) from the YH lymphoblastoid

cell line using standard manipulation methods (Spits et al., 2006)

(Figure S1A available online). We then carried out whole-genome

amplification (WGA) based on multiple displacement amplifica-

tion (MDA), which uses theV29 enzyme to amplify DNA in a linear

process (Dean et al., 2002a), on the DNA from each single cell.

The amplicon showed a peak size at �23 kb, which is much

longer than the degenerate oligonucleotide-primed (DOP; ran-

domly amplify the whole genome with degenerated PCR primer)

PCR (<1 kb) from the same samples (Figures S1B and S1C)

and from others reports (Navin et al., 2011). We used DNA

fluorometry-based quantitation to select products that were

quantitation qualified (see Experimental Procedures). These

were assayed for genomic integrity using ten housekeeping

gene PCR tests for each single cell. The products that passed

this filter underwent massively parallel whole-genome single-

cell sequencing using paired-end 100-bp reads and �350 bp

size inserts. We uniquely mapped and aligned 42.27 Gb (YH-1)

and 47.65 Gb (YH-2) of high-quality sequences to the human

reference genome (Hg18) with the SOAP program (Li et al.,

2009b) and obtained 97.25% of bases with 15.88 3 mean fold

coverage of the whole genome of YH-1 and 95.64% of bases

with 17.90 3 mean fold coverage of the whole genome of

YH-2 (Table 1). We also carried out massively parallel whole-

genome sequencing on a multicell sample from the YH lym-

phoblastoid cell line as a control and obtained 99.91% of bases

with �18 3 mean fold coverage of the whole genome (com-

parable with the single-cell data) (Table 1). For each sample,

using only the reads that could be uniquely mapped to the refer-

ence genome, we identified single-nucleotide polymorphisms

(SNPs) with SOAPsnp (Li et al., 2009b).

For standard genome sequencing in which researchers are

trying to identify mutations involved in disease, 303 is the typical

sequencing depth. However, here we are using the sequencing

data of two identical YH cells to assess the fidelity of our ampli-

ficationmethod (i.e., allele dropout (ADO) and the false discovery

rate), not to identify mutations. Thus, a mean sequencing depth

of 153–183 is sufficient, given that the sequence for these cells

is already known.

Single-Cell Sequencing Data Are of High Sensitivity
and Have a Distinct Genome Distribution from Tissue
Sequencing
To evaluate the whole-genome recovery, amplification unifor-

mity, and accuracy of single-cell sequencing, we used a Circos

map (Krzywinski et al., 2009) to graphically assess the whole-

genome coverage and characteristics of our single-cell

sequencing data by looking at the sequence recovery and

distribution uniformity on the whole genome (Figure 1). The

sequence from both single cells covered more than 90% of the

human reference genome (Figures 1C and 1D), and additional



Table 1. Single-Cell Sequencing Data Generation and Evaluation

Samples

Whole Genome Coding Region Data Evaluation

mean

depth

% of bases

at R 1 depth

mean

depth

% of bases

at R 1 depth

% of bases

at R 15 depth

% of bases

at R 18 depth

FD#/# ADO #/#

YH-1 15.88 97.25 18.95 94.05 18.09 13.96 2/99,152

(2.02 3 10�5)

18,807/246,314 (7.64%)

YH-2 17.9 95.64 19.13 91.74 35.43 29.50 3/99,152

(3.03 3 10�5)

36,523/246,314 (14.8%)

Control 18.04 99.91 20.53 97.30 62.80 47.20 – –

(FD #/#) False discovery site number/high-confidence homozygous control subsets number. High-confidence homozygous control subsets were

defined as sites that are consistent between control (subset with quality score of 99) and the first Asian diploid genome study (Illumina 1M genotyping

and Illumina sequencing). (ADO #/#) ADO site number/high-confidence heterozygous control subsets number. High-confidence heterozygous control

subsets were defined as the sites that are consistent in the first Asian diploid genome study between Illumina 1M genotyping and Illumina sequencing.
analysis showed that single-cell sequencing retrieved > 95% of

the bases in the reference genome at a 153 sequencing depth

(Figure S1D), which indicated high genome coverage sensitivity.

The cumulative distribution of the sequencing fold coverage

across the coding regions showed that �25% of the bases

were covered by 183 or more in the single-cell sequencing

data, which is 50% less than that of the multicell (unamplified)

control (red and blue in Figure S1E). The lower coverage was

expected, as there was likely bias in the amplification process.

We also looked at the distribution of the sequence data across

the genome to determine whether there were genomic regions

that had a specific impact on the WGA process. The data distri-

bution exhibited a correlation with the GC content distribution

in some regions of the genomes (Figures 1B–1D). Accordingly,

we examined how the single-cell sequencing reads were dis-

tributed across the genome relative to the GC content, and the

distribution pattern of the reads showed that the GC content

effected the even distribution of amplification products from

single-cell WGA, with regions of extreme GC content showing

lower amplification efficiency (Figure S1F). The median GC

content in places with 0 coverage (i.e., amplification failure) in

gene-coding sequence regions and the whole genome was

60.12% and 49.40%, respectively. These percentages were

higher (p value < 0.001, Student’s t test) than the average 41%

GC content of human reference genome (Figure S1G). Similar

assessments of read distribution coverage in repeat regions

or at different chromosomal locations, however, showed no

significant correlation (Figures S1H–S1I). These data indicated

that amplification efficiency was primarily dependent on GC

content.

Allele Dropout and FalseDiscovery Affect the Sensitivity
of Single-Cell Sequencing
To detect the specificity and fidelity of the genomic sequence

from the single cells, we first evaluated the allele dropout

(ADO), which shows whether nonamplification occurred in one

of the alleles present in a heterozygous sample, as loss of hetero-

zygous sites would lead to calling false negatives in the single-

cell sequencing data. We calculated the false negative ratio

per sequencing depth using the multicell sample sequence as

a control and determined the ADO per cell as the median of

false negative ratios (Figure S2A). The average ADO ratio for all

single cells was 11% (Table 1), which is comparable to that of
previous analyses (Spits et al., 2006), indicating that the single-

cell sequences are of standard quality. As an additional means

to determine the specificity and fidelity of single-cell sequencing,

we evaluated the false discovery rate in the single-cell se-

quencing data. The false discovery ratio is defined as a false

discovery (FD) heterozygous site in a homozygous sample,

which might arise due to amplification, hybridization, or

sequencing errors. Taking the multicell sample sequence as

control, we found that only two�three bases in the single-cell

sequencing were discrepant within a subset of 99,152 high-

confidence homozygous background sites, indicating that our

single-cell sequencing had an extremely low error rate. The

average false discovery ratio of our single-cell sequencing was

�2.523 10�5 (Table 1), which was similar to that of the multicell

sample sequencing using the same sequencing platform,

according to a previous report (Bentley et al., 2008). As YH

was a male, we further assessed our data quality by determining

the false heterozygous allele rate across the X chromosome

between each single cell and the multicell sample sequencing

data (Figure S2B). We also examined the sequencing data of

the mitochondrial DNA from the two YH single cells and found

no false discovery site, further indicating the low amplification

error of our methodology.

Allele Dropout and False Discovery Show No Bias
Relative to Genomic Region or Base Type
To assess the impact of ADO and false discovery artifacts in our

sequence, we analyzed the distribution of these artifacts relative

to genomic region and base type. We analyzed the distribution

across chromosome 1, and, with the exception of regions near

the telomeres and centromere, there was an even distribution

of the ADO and false discovery bases (Figure 2A), indicating

that the artifacts occurred randomly. Additionally, we built

a high-resolution map of the artifact distribution to assess

whether there was a prevalence of common artifacts between

two single cells (Figure 2A) and found very few that were in

common. These analyses also provided a method by which

to detect true nucleotide changes from amplification and

sequencing artifacts when mutations are present in a substantial

number of individual cells.

We next evaluated the per base characteristics of these

artifacts. We determined whether the ADOs were random with

regard to different bases by calculating the number of ADO for
Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc. 875



Figure 1. Graphic Representation of the Whole Genome of Two Single YH Cells

(A) Karyotype of the human reference genome (Hg18).

(B) GC content distribution of the reference genome (height of orange rectangles ranges from 0%–70%, bin = 1Mb). (C) Whole-genome coverage of YH-2 (height

of blue rectangles ranges from 03–403, bin = 1 Mb).

(D) Whole-genome coverage of YH-1 (height of blue rectangles ranges from 03–403, bin = 1 Mb).

(E) Gene density across the reference genome (Hg18) (gradually changing green represents from 0 to 30 genes per 100 kb).

See also Figure S1.
each of the four base types of YH-1 and YH-2 in heterozygous

SNPs of the multicell sequence data (Figure 2B). We observed

no significant difference (Fisher’s exact test, p = 0.3) between

the ADO numbers for the four base types. We also evaluated

the ‘‘mutation change’’ base distribution spectrum of the false
876 Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc.
discovery sites. Unlike the ADO, the false discovery bases

showed a preference for C:G to T:A changes (Fisher’s exact

test, p < 0.01) (Figure 2C). This same pattern has been observed

previously in other tumor sequencing data (Greenman et al.,

2007) and is also fit with the expectation that transitions occur
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(A) Distribution of ADO and false discovery bases across chromosome 1.

(B) Evaluation of ADO on the four different base types.

(C) Evaluation of false discovery on different types of base changes.

(D) The fraction of genes that failed to amplify in all captured genes.

(E) Relative distribution of amplification failure ratio of biological categories of genes.

See also Figure S2.
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Table 2. Whole-Exome Sequencing Data Production of the ET

Mixed Multicell Sample and the Oral Mucosal Epithelium Mixed

Multicell Sample

Sample

Mean Fold

Coverage

Fraction of

Targets

Covered by

at Least 13

Fraction of

Targets

Covered by

at Least 20 3

Tissue

sequencing

LN-T1 57.62 0.97 0.58

LC-T1 91.12 0.99 0.88

Whole exome that we captured was 36,184,808 bp. LN-T1 is the oral

mucosal epithelium mixed multicell sample, and LC-T1 is the ET mixed

multicell sample.
more readily than transversions during cell division. These data

indicated that the presence of artifacts will have very limited

artifactual impact on the mutation pattern that we would see in

our ET by single-cell sequencing. Additionally, our analyses

here allowed us a means to detect and remove artifacts that

do occur and thus improve the quality of our mutation calling

quality, and this was incorporated into our SNP calling method

described below in our ET single-cell sequencing.

WGA Errors Do Not Selectively Affect Genes with
Specific Biological Functions
We further assessed whether the genomic regions that were not

sufficiently covered in our single-cell sequencing data were likely

to influence our biological analysis. Here, we selected genes

from areas in which amplification failed and identified 640 genes

in which a total of 643 amplification failure exons (Figure 2D).

Gene ontology (GO) mapping analysis showed that there was

no enrichment with regard to any specific biological function

for any of these genes (Figures 2E and S2C). The correlation

coefficient (R2) of each proportion of biological process category

between amplification failure genes and all captured genes

was 0.99 (Figure S2D), showing that these data were highly

consistent and had no systematic bias in gene amplification

failure. Thus, it is unlikely that WGA led to selective loss of genes

involved in specific biological pathways, and thus it would have

limited influence in subsequent biological analyses. Taking

together all of the above error bias analyses, these results

indicated that our single-cell sequencing strategy is of high

sensitivity and specificity and can be used to carry out accurate

genetic analyses.

Single-Cell Exome Sequencing of a JAK2-Negative
ET Patient
Having established the single-cell sequencing technology as

a qualified means to explore genetic changes at a single-cell

nucleotide level, we used this method to investigate intercellular

genomic heterogeneity and tumor evolution in ET. We applied

our single-cell sequencing method to individual cells from a

previously healthy 58-year-old Chinese male ET patient without

a family history of leukemia. This patient is a typical JAK2V617F

wild-type (validated by PCR-Sanger sequencing) ET patient

with more than 80% abnormal myeloid cells within his bone

marrow (Figure S3A), from whom we could infer neoplasm

evolution and could potentially also obtain novel genetic infor-
878 Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc.
mation on this type of cancer in this individual (see Extended

Experimental Procedures for detailed clinical report).

Using sufficient dispersion and cascade dilution of cells, we

randomly selected 82 cells from a sampling of fresh bone

marrow and 8 cells from a sampling of normal oral mucosal

epithelium by micromanipulation, as described above. We

sequenced matched tissue samples from fresh bone marrow

and normal oral mucosal epithelium. Here, to provide a more

cost-effective means of analysis and because our interest was

to look at genes involved in cancer development, we used a

standard exome sequencing strategy instead of whole-genome

sequencing to assess genetic variation within the coding regions

of the single cells.

In the ET single-cell study, on average, we sequenced the

37 Mb targeted exome regions of each cell (90 cells total) to a

mean depth of 303 (Table S1). We evaluated the whole-exome

single-cell sequencing and defined the genetic characteristics

of ET using the bioinformatics analysis pipeline shown in Fig-

ure S3B. We filtered out the cells that had coverage < 70%, as

the information from these is more likely to be negatively influ-

enced by amplification/capture errors. The cells from the mature

oral mucosal epithelium all had average target base coverage

< 70%; thus, the 58 cells that we used for further analysis were

all from the bone marrow (Table S1). In all, we obtained 58 single

cells, with an average of�70%of target bases atR 5 depth. This

coverage is sufficient for confident population variant calling

when multiple cells carry the same variant (Table S1) (Li et al.,

2010; Yi et al., 2010). For instance, if five of the cells contain

the same variant at a specific site, then having a 5-fold coverage

for each cell is the equivalent of calling the variant of this site

at �25-fold coverage, and this coverage is sufficient to call

mutational variants when mathematical models (e.g., Bayesian

estimation, maximum likelihood estimation) is incorporated into

the analysis (Li et al., 2010; Yi et al., 2010).

For the corresponding tissue sequencing control, we se-

quenced the 37 Mb targeted exome regions of ET-mixed

multicell sample (more than 1 3 106 cells) to a mean depth of

91.123 and the oral mucosal epithelium mixed multicell sample

(more than 1 3 106 cells) to a mean depth of 57.623 (Table 2).

Thus, we obtained more than 88% of target bases at R 203 of

the ET mixed multicell sample.

Population Somatic Mutation Calling and Validation
of This Patient
To carry out a tumor cell population variant analysis, we needed

to detect SNPs within all of our samples from which to create an

overall genotype spectrum for the tumor tissue. We first used the

unique reads from each sample to detect SNPs in the exome

regions using SOAPsnp and assembled a consensus sequence

for each individual cell and the two tissue samples. We then

grouped these to define a cell population genotype, as is used

in population genetic analysis (Behar et al., 2010; Yi et al., 2010).

To determine the accuracy of the whole-exome single-cell

sequencing, we determined the ADO and false discovery ratio

as described previously (see also Table S2). The average ADO

of single-cell sequencing of ET was determined by the ADO of

the 58 ET cells in the heterozygous SNPs in both tissue

sequencing of the normal and ET samples using dbSNP as the
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as the genome of single tumor cell.
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See also Figure S3 and Tables S1, S2, and S3.
background control. We obtained an average ADO of 43.09%.

The false discovery ratio was 6.04310�5, which was determined

using eight oral mucosal cells compared to 4,923,547 homozy-

gous sites in oral mucosal tissue sequencing. The higher ADO

and false discovery ratio observed here, as compared to those

we obtained from the whole-genome sequencing of YH-1 and

YH-2, may be due to differences in cell status and cell pattern

and to loss of heterozygosity during the exome capture step.

To detect high-confidence point somatic mutations and

circumvent the influence of amplification artifacts among the

single-cell population, we defined a true mutation only if it

occurred in a specified number of cancer cells (Figures 3A–

3C). We carried out an extremely rigorous binomial test based

on false discovery ratio, qualified ET cell number, and whole-

exome length size to eliminate false somatic mutations that

might have been caused by random single-cell sequencing

errors. We also required that the somatic mutant loci be present
in at least five ET cells and be homozygous normal in the oral

mucosal epithelium tissue sequence data. We identified a total

of 712 point somatic mutations in the exomes and flanking

regions (within 100 bp) (Tables S3 and S4). We further assessed

the coverage of each identified mutation, and 100% of the

mutant alleles were covered by 103 or more reads, which is

sufficient for our mutation calling by binomial test and also

more rigorous than previous exome sequencing (R83) (Li

et al., 2009a). Analysis of the base mutation type revealed that

the majority of mutations were base substitutions between C:G

and T:A (Figure S4A) in both the single-cell sequencing and

tissue sequences, which is concordant with that seen in other

cancers (Greenman et al., 2007).

We validated the somatic mutations from the single-cell

sequencing in two ways. First, we compared all of the single-

cell sequencing somatic mutations to those identified in the ET

tissue sequencing. The correlation coefficient (R2) of the somatic
Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc. 879



mutation allele frequency between single-cell sequencing and

tissue sequencing was 0.75, which indicated a highly consistent

frequency (Figure 3D). Second, we validated the identified

somatic mutations by randomly selecting 30 somatic mutations

and assessed their presence in 52 randomly selected cells using

PCR-Sanger sequencing; 90% (27 out of 30) were present in the

PCR data.

The Use of 58 ET Cells Is Suitable for Identifying
the Main Clonal Makeup of the ET Sample
Before carrying out additional genetic analyses on the identified

mutations, we first determinedwhether 58 cells were sufficient to

provide sufficient information on the genetic changes that

occurred during ET development. The most important prerequi-

site of our evaluation is that we had randomly selected single

cells from the bone marrow sample of the ET patient. To assess

this, we examined the number of somatic mutations observed

using an increasing number of cells. As expected, the number

of somatic mutations increases with the use of data from greater

cell numbers, but the number of somatic mutations reaches

a plateau of cumulative somatic mutations at 25 single cells

(Figure S4B). Statistic analysis showed that sequencing more

cells would almost not increase the number of somaticmutations

called from the cell population (cell number from 25 to 58, kappa

square test, p = 0.57). This indicated that we have covered the

majority of the somatic mutations within the ET sample; thus,

this sample size is sufficient for identifying the main clonal

architecture of this neoplasm.

Although it is possible that we might observe clones that were

more highly selected, our single-cell exome sequencing data

is comparable with the tissue exome data with regard to the

capability of detecting different frequencies of mutations from

different clones. Additionally, given that the sensitivity of exome

capture in tissue sequencing is about 95%, the tissue sequence

data might contain 5% of the heterozygous sites that are lost

(Figure S4C). However, for single-cell sequencing, the likelihood

of the same sites being lost in different cells by chance is

extremely low. These results were also consistent with the

observations of sequencing errors in multicell sequencing and

of the ADO and amplification artifacts in single-cell sequencing

(Figures S4D–S4F).

Population Analysis Indicated that None of the
Sequenced ET Cells Were Normal Cells
Given the potential that normal cells could have been collected

bychanceduringour isolation of ETcells,wedeterminedwhether

there were some normal bone marrow cells among the 58 cells

from the neoplasm. We performed a principle component

analysis (PCA) (Jolliffe, 2002) based on the somatic mutations

(Figure 4A) and found that the first component (eigenvector 1)

showed that the ET cells were clearly different from the oral

epithelium (tissue sequencing), indicating that no obviously

normal cells were mixed with the ET cells. We also observed

that, on each eigenvector, the ET cells were also separated

from each other, indicating that the ET cells have substantial

genetic diversity. However, we did not detect any significant

subclusters among the ET cells on each eigenvector, indicating

that the ET cells may be of monoclonal origin (discussed below).
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The JAK2-Negative ET Patient Harbors a Distinct Set
of Mutations
To confirm that this ET patient did not carry mutations in genes

previously reported in ET studies and that this form of ET was

truly JAK2 negative, we first tested whether any of our identified

somatic mutations were present in reported ET-mutated genes:

TET2, MPL, ASXL1, CBL, IDH, and IKZF1. All of these genes

were appropriately covered by our sequencing reads, but none

hadmutations (mutant reads inmore than two of the single cells).

Further screening of the reads mapping across JAK2 exon 12

and exon 14, MPL exon 10 in tissue sequencing data of ET,

and in the control data indicated that the previously reported

hot spots were not altered in our ET patient.

Copy number alterations are rare in essential thrombocythe-

mia (Kawamata et al., 2008; Stegelmann et al., 2010). We per-

formed loss-of-heterozygous (LOH) analysis across the whole

exome by comparing the heterozygous rate between the paired

tissue sequencing data. There were no obvious LOH changes

around these hot spots across the genome (Fisher’s exact test,

p > 0.05; Figure S4G). These data all confirmed that this patient

was truly JAK2 negative and further demonstrated that an eluci-

dation of the genetic underpinnings of this type of ET required

further genetic analyses to identify mutations that are important

for cancer development in this patient.

The Population Genetic Pattern Indicates Monoclonal
Origin of ET Cells
Our PCA analysis provided the first indication that this ET likely

was of monoclonal origin. To make full use of our single-cell

sequencing data to reconstruct the intratumoral genomic archi-

tecture and infer the possible developmental pattern, we exam-

ined the somatic mutant allele frequency spectrum (SMAFS)

of our ET cells. It is important to note that, if the sequence cover-

age was insufficient to determine the genotype with certainty for

each individual cell, the population genetic inferences based

on called (inferred) somatic mutations would potentially lead

to serious biases and possibly false inferences. We therefore

used a Bayesian estimation-based method to call the site

frequency spectrum to calculate the somatic allele frequency at

each site for all ET cells (Yi et al., 2010). Given the randomness

of ADO for each base type, the SMAFS is likely to be an unbiased

site frequency spectrum. No significant selection signal was

observed (Figure 4B), as there were no more nonsynonymous

SNPs than synonymous SNPs at the lowest or highest somatic

mutant allele frequencies. The SMAFS also showed an apparent

increase in the number of sites at the�50%somaticmutant allele

frequency, both for synonymous and nonsynonymous somatic

mutations. This indicates that all of the single cells contain

specific heterozygous somatic mutant alleles or that half of the

single cells contain homozygous somatic mutant alleles (but

this is extremely unlikely). Thus, this patient’s ETmost likely orig-

inated from one clone or expanded from a single clone that had

gained sufficient growth advantage after neoplasm expansion

during progression to become the primary initiating clone.

However, this does not rule out the possibility that cells of other

clonal origin are present in an extremely low number.

To provide further genetic evidence of the proposed mono-

clonal origin, we calculated the likelihood of these ET cells
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Figure 4. Genetic Characteristics of the ET Patient

(A) Principle component analysis (PCA) of the mutations in the ET cells (red) and thematched normal tissue (green). (B) Somatic mutant allele frequency spectrum

(SMAFS) of ET. The SMAFS of ET was calculated for each mutation site of the ET by taking the oral mucosal epithelium mix as a control. The mutations are

indicated as synonymous (green), nonsynonymous (purple), and noncoding (blue) mutations.

(C) Monoclonal and polyclonal evolution simulation of ET. The SMAFS of simulated one (orange), two (yellow), three (purple), four (green), and five (blue) clonal

evolutions was calculated and compared with the SMAFS of ET (red) in the coding regions.

See also Figure S4 and Table S4.
having monoclonal evolution by carrying out an in silico clonal

modeling simulation. For the simulation, we used a modified

mathematical model with fit parameters from several previous

reports (Abramson and Melton, 2000; Haeno et al., 2009; Lynch

and Conery, 2003; Yachida et al., 2010) (see Extended Experi-

mental Procedures for details). To simplify the evolution model,

we only calculated the SMAFS of clones originating and

proliferating from 1, 2, 3, 4, and 5 clones by the average of

100 times simulation. We started our simulation with the muta-

tions obtained during each cell cycle across the human whole-

exome region, which was comparable with our observations

for single-ET cell sequencing. When comparing these simulated

models with that observed in our ET patient, we found that

the single-clone simulation (monoclonal evolution) was most

similar to the SMAFS distribution that we obtained (Figure 4C).

Taken together, these data indicated that a monoclonal evolu-
tion pattern of this neoplasm was most likely. This pattern might

also be observed under conditions in which there was a brief

polyclonal origin of the neoplasm but in which a specific clone

subsequently had a very strong growth advantage over all

other mutated clones; this would also produce a monoclonal

evolution pattern and would provide the same genetic char-

acteristics of monoclonal evolution.

Mutated Genes and Their Potential Roles
in ET Monoclonal Progression
To identify key genes underlying ET monoclonal initiation and

progression, we carried out a series of analyses as outlined

in Figure S3C. Here, we assessed the 171 somatic mutations

out of the total 712 somatic mutations (Table S4A) that were

present in the coding regions that have a higher likelihood of

having a functional impact. Of these coding somatic mutations,
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Table 3. Key Genes and Their Known Biological Functions in ET Neoplasm Progression

Gene Name Mutation Type Amino Acid Changes Functional Data

SESN2 Missense P87S SESN2 encoded a member of the sestrin family of SESN1-related proteins

and was an antioxidant activated by p53. Mutation in SESN2 may lead to DNA

damage and genetic instability.

ST13 Nonsense Q349* ST13 encodes an Hsc70-interacting protein that controls the activity of regulatory

proteins such as steroid receptors and regulators of proliferation or apoptosis.

A mutation in ST13 may contribute to loss of apoptotic control and may lead

to abnormal proliferation.

NTRK1 Missense N323S A known oncogene; a mutation in NTRK1 may contribute to sustained angiogenesis

and cell proliferation.

ABCB5 Missense G365V Upregulation of ABCB5 has been shown to be responsible for multidrug resistance

in several cancers.

FRG1 Missense C205Y May be involved in pre-mRNA splicing.

ASNS Missense D118V Is an asparagine synthetase.

TOP1MT Missense S479L Acts as a DNA topoisomerase important during mitochondrial DNA synthesis.

DNAJC17 Missense A292P Is a DnaJ homolog subfamily C member 17
78 were nonsynonymous and present in a total of 71 genes

(Table S4B).

We determined which of these 71 genes were likely to contain

protein-damagingmutations or had been identified previously as

associated with cancer. Using SIFT (Kumar et al., 2009), we

found that 15 genes were likely to contain protein-damaging

mutations (including protein truncation). We also found that three

additional genes of the 71 (MLL3, NTRK1, and PDE4DIP) were

present in the COSMIC Cancer Gene Census database (Futreal

et al., 2004).

We further assessed the relative likelihood of these 18 genes

being important to ET development using a modified Poisson

model, whereby we proposed that driver genes were likely to

contain significantly more nonsynonymous mutations than

background mutations (Youn and Simon, 2011). Such driver

gene prediction methods have previously been used in anal-

yses of a variety of tumor types (Carter et al., 2009; Youn

and Simon, 2011) and have been based on the mutation

frequency in different samples from different patients. Of our

18 candidate genes, we identified 8 genes that had a signifi-

cantly higher prevalence of protein-function-alternative somatic

mutations, with a Q score R 1.0 (%10% false discovery rate)

(Table 3). Thus, these genes would have the highest likelihood

of being involved in ET initiation and/or progression. Of interest,

among these eight genes, four (SESN2, ST13, DNAJC17, and

TOP1MT) had Q scores that were significantly higher than all

other candidate genes (Figure 5). We propose that these

genes may be of interest for future biological investigation in

relation to ET.

DISCUSSION

Here, we developed a robust MDA-based single-cell sequenc-

ing method by carrying out whole-genome single-cell se-

quencing of two lymphoblastoid cell line cells. The data

analysis indicated that it provides a higher sensitivity (more

than 95% of bases with �18 3 mean fold coverage of a whole

genome of a single cell) than does DOP-PCR-based single-cell
882 Cell 148, 873–885, March 2, 2012 ª2012 Elsevier Inc.
sequencing and a comparable specificity (false discovery

rate: 2.52 3 10�5�6.04 3 10�5) with other amplification-based

methods.

We next applied this single-cell sequencing method to a

typical myeloproliferative neoplasm, ET. Based on the popula-

tion genetic analyses of 58 qualified single cell exomes, we

used somatic allele frequency data to demonstrate that this ET

was likely of monoclonal origin and identified several genes

that may play roles in ET neoplasm initiation and progression.

These analyses demonstrate the ability of the method to begin

characterizing the genetic architecture of the neoplasm, its

clonal evolution, and candidate driver genes.

In particular, as SESN2 is known to be involved in DNA

damage and genetic instability (Sablina et al., 2005), change

in SESN2 function could lead to more rapid accumulation of

additional somatic mutations. In addition, our identification of

a mutation in the NTRK1 gene is especially intriguing, given

that it is a tyrosine kinase receptor that functions in a similar

biological pathway as JAK2, the gene that has been found to

be the most commonly mutated gene in ET. Because this patient

was JAK2mutation negative, it raises the possibility that interfer-

ence of this type of biological process through a variety of

genetic mutations may be important for ET progression. Other

genes like the tumor suppressor ST13 (Yi et al., 2010) and the

oncogene ABCB5 (Frank and Frank, 2009) may also be involved

in ET progression in concert with ASNS, DNAJC17, TOP1MT,

and FRG1, which may be of interest for future biological investi-

gation as well.

Overall, in addition to shedding light on ET development, our

study demonstrates that single-cell sequencing enables the

detection of numerous point mutations and that whole-exome

sequencing of single tumor cells provides an excellent tool for

assessing the complexity of small genetic changes in a variety

of tumors tumor at a greater resolution (Xu et al., 2012, this issue

of Cell). Accompanying single-cell sequencing with SMAFS and

matched clone-evolution simulation analyses also enables

researchers to define whether a tumor arises from a single or

polyclone evolution process. Our method further opens the
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Figure 5. Key Gene Identification of the ET Patient

The driver gene prediction analysis of the 18 ET candidate genes is indicated

as Q score. The vertical axis is the Q score, and the circle size (diameter)

indicates the cell mutation frequency.
way for carrying out studies on a variety of complex diseases and

biological processes that would benefit from the advantages of

single-nucleotide resolution from individuals cells. This would

be especially useful for diseases that develop additional and

multiple mutations over time, which alter disease progression

and would therefore impact treatment strategies.

EXPERIMENTAL PROCEDURES

Sample Collection

YH lymphoblastoid cell line, which was constructed from the healthy individual

who provided DNA for the first Asian genome sequence (http://yh.genomics.

org.cn/), was obtained from BGI. For ET patient, fresh bone marrow cells

and normal oral mucous epithelium were obtained from a 58-year-old Chinese

JAK2 V617F-wild-type ET male patient. The platelet count was 600 3 109/l,

whereas the white cell count and the hemoglobin level were normal. Informed

written consent was obtained from the study participant. The studies were

conducted in accordancewith the Declaration of Helsinki II andwere approved

by the local Ethical Committees.

Collection, Lysis, and WGA of Single Cells

Every step during the experiment was reduced to strict minimum. With

sufficient dispersion and cascade dilution of cells, single cells were randomly

isolated from bloods or digested (collagenase I and IV) tissues into PCR-ready

tubes using an inverted microscope and a mouth-controlled, fine hand-drawn

microcapillary pipetting system made in house. The single-cell isolation was

visually confirmed by microscopy and documented as micrographs. The

cells were washed three times using the elution buffer. WGA of single cells

was performed with REPLI-g Mini Kit (QIAGEN, Inc.) according to the instruc-

tions of the manufacturer, along with a no cell reaction as a negative control

and a reaction of human tissue genomic DNA as positive control.

Quantitation and Genome Integrity Assessment of the WGA

Products

The DNA concentration of the WGA products was measured with Quant-iT

assays (Invitrogen Life Science, Inc.) according to the manufacturer’s instruc-

tion. Then, genomic integrity of the qualified products (>60 ng/ml) was assayed

by PCR amplification of ten housekeeping genes representing ten genes

interspersed across ten different chromosomes. WGA products of best per-

formance in relation to housekeeping PCR (R8/10) and Qubit (>60 ng/ml)

were selected for downstream experiments. Every step was performed along

with a sample of human tissue genomic DNA as positive and a no template

reaction as negative control, respectively.

Sequencing of Two Lymphoblastoid Cell Line Cells

For single cells from YH lymphoblastoid cell line, 2 mg genomic DNA from the

selected WGA products was used to construct �350 bp sequencing libraries

and then subjected to massively parallel sequencing using the HiSeq2000
(Illumina, Inc.), with the paired-end 100 bp read option, according to themanu-

facturer’s instructions.

Whole-Exome Capture and Sequencing of Samples from the ET

Patient

For matched tissues from the ET patient, high molecular weight genomic DNA

was extracted from freshly frozen bone marrow cells and normal oral mucous

epithelium. For each DNA sample (both single cells and matched tissues) from

the ET patient, whole-exome capture was accomplished based on liquid

phase hybridization of 2 mg sonicated genomic DNA to the bait cRNA library

that was synthesized on magnetic beads using SureSelect Human All Exon

kit (Agilent Technology, Inc.), according to the manufacturer’s protocol. The

captured targets were subjected to massively parallel sequencing using

HiSeq2000 with the paired-end 100 bp read option, according to the manu-

facturer’s instructions.

Public Data Set Access

Human (Homo sapiens) reference genome sequence (Hg18) and its annotation

files (dbSNP v128) were downloaded from University of California Santa Cruz

Genome Bioinformatics (http://genome.ucsc.edu/). The YH reference genome

and the YHSNPs files were downloaded from the First Asian Diploid Genome

database (http://yh.genomics.org.cn/). The target region files of exome

capture were downloaded from the Agilent website (http://www.genomics.

agilent.com).

Reference Guide Genome Assembly and SNP Calling

SOAPaligner/SOAP2 version 2.20 was used to align all sequencing reads to

the Hg18 reference genome with a maximum of two mismatches and nongap

parameters. For YH single cells and matched tissue, all reads mapping

uniquely to the whole genomewere selected for SNP calling; for the ET patient,

all reads mapping uniquely to exome regions and 100 bp flanking regions were

selected for SNP calling. SOAPsnp version 1.03 was used for calculating the

likelihoods of genotypes for each cell and matched tissue (see Extended

Experimental Procedures).

Data Evaluation by ADO and False Discovery Ratio

With the final SNPs, the ADO was defined as the random nonamplification of

one of the alleles present in a heterozygous sample. The false discovery ratio

was defined as a false heterozygous site in a homozygous sample. The eval-

uation of ADO and false discovery ratio were performed comparing the

single-cell data and the tissue sequencing control data (see Extended Exper-

imental Procedures).

Randomness Evaluation of ADO and False Discovery Ratio

We evaluated randomness of ADO by calculating the counts of ADO of the four

base types in YH-1 and YH-2 among the previously noted high-confidence

heterozygous SNPs. We evaluated the randomness of false discovery ratio

by separating the artifacts into six different mutation types. The numbers of

different base types of ADO were normalized. We used Fisher’ exact test to

calculate the p value of the variation between base types.

High-Confidence Somatic Mutation Identification and Experiment

Verification

To eliminate random errors induced by single-cell sequencing, we created

abinomial test todetect high-confidencepoint somaticmutations. Theputative

somatic mutations were filtered by the following criteria: (1) the oral mucosal

epithelium tissue sequence was normal homozygous for the site, and (2) the

mutation was present in at least five ET cells among the total 58 qualified ET

cells, with criterion (2) set using a binomial test with false discovery ratio, qual-

ified ET cell number, and whole-exome length size to eliminate random errors.

PðiÞ=Ci
np

ið1� pÞðn�iÞ

PðiÞ$S<1

wherein i is the cell number of mutants of a specific mutation, n is the qualified

ET cell number, p is the false discovery ratio, P(i) is the probability under
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binomial distribution, and S is the whole-exome length size after which

criterion (2) was set according to the minimum cell number that fulfilled the

above equation. High-confidence somatic mutations in ET cells were then

randomly selected for PCR-Sanger experiment verification.

Principal Component Analysis

To identify the most variable factors in classifying subgroups among single

cancer cells, we utilized an R package, pcaMethods v1.12.0 (http://rss.acs.

unt.edu/Rdoc/library/pcaMethods/), in performing the PCA based on the

genotyping result at all somatic mutation sites on each single cell. Missing

values were automatically estimated by probabilistic method within the

R package.

Correlation of Somatic Mutant Allele Frequency between

Single-Cell Sequencing and Tissue Sequencing

Correlation coefficient of determination is a goodness-of-fit measure for

models based on the proportion of explained variance. The somatic mutant

allele frequency in ET single-cell sequencing was indicated as the unfolded

(that is, each genotype is taken as two alleles for a diploid-genome cell) site

frequency of mutant alleles, and the somatic mutant allele frequency in ET

tissue sequencing was indicated as read frequency of mutant alleles.

Somatic Mutant Allele Frequency Spectrum Analysis

To take uncertainty in genotype calling and allele frequency estimation into

account, instead of utilizing a Bayesian estimation-based method called

site frequency spectrum (SFS) on population individuals (Yi et al., 2010), we

used this SFS to calculate the somatic mutant allele frequency in each

SM site of all single cells, based on the same methods of estimating allele

frequencies from reads in one site and additional estimating of sample allele

frequencies.

In Silico Clonal Modeling Simulation

In our simulation, we used a modified mathematical model with fit parameters

from several previous reports (Abramson andMelton, 2000; Haeno et al., 2009;

Lynch and Conery, 2003; Yachida et al., 2010) (see Extended Experimental

Procedures). Using fit parameters, we calculated the SMAFS of monoclonal

evolution and polyclonal evolution (originating and proliferating from 2, 3, 4,

and 5 clones) by the average of 100 times simulation, respectively.

Driver Gene Predication

We used amodified Poissonmodel that hypothesized that driver genes lean to

contain significantly more nonsynonymous mutations than the background

mutations (Youn and Simon, 2011) (see Extended Experimental Procedures).
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