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SUMMARY

The NADPH oxidase enzyme complex, NOX2, is
responsible for reactive oxygen species production
in neutrophils and has been recognized as a key
mediator of inflammation. Here, we have performed
rational design and in silico screen to identify a small
molecule inhibitor, Phox-I1, targeting the interactive
site of p67phoxwithRacGTPase,which is a necessary
step of the signaling leading to NOX2 activation.
Phox-I1 binds to p67phox with a submicromolar
affinity and abrogates Rac1 binding and is effective
in inhibiting NOX2-mediated superoxide production
dose-dependently in human and murine neutrophils
without detectable toxicity. Medicinal chemistry
characterizations have yielded promising analogs
and initial information of the structure-activity rela-
tionship of Phox-I1. Our studies suggest the potential
utility of Phox-I class inhibitors in NOX2 oxidase inhi-
bition and present an application of rational targeting
of a small GTPase-effector interface.
INTRODUCTION

Originally characterized in phagocytes, the multicomponent

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

NOX2 enzyme complex facilitates the production of reactive

oxygen species (ROS) to mediate innate immunity. These

oxygen species are generated from a superoxide anion (O2�)
that is produced by phagocytes in order to kill invading microor-

ganisms (Bedard andKrause, 2007). In humans,mutations in any

of the components of the NADPH oxidase complex can lead to

chronic granulomatous disease (CGD), where the superoxide

production defect results in a patient’s inability to fight infection

and in aberrant inflammation (Roos, 1994). This NADPH oxidase-
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dependent process has now been shown to occur in many

different cell types for both host defense and intracellular signal

transduction (Sundaresan et al., 1996; Takemura et al., 2010).

Thus, beyond its role in pathologies of host defense, inappro-

priate regulation of the NADPH oxidase complex has been

proposed to contribute to a multitude of inflammation-mediated

disorders, including cancer, atherosclerosis, hypertension,

chronic obstructive pulmonary disease (COPD), myocardial

infarction, and stroke (Armitage et al., 2009; Bedard and Krause,

2007; Kleinschnitz et al., 2010; Williams and Griendling, 2007).

Because superoxide and secondary ROS can also cause

tissue damage and initiate inflammatory responses, NADPH

oxidase activity must be stringently regulated. Biochemical

studies over the past two decades have identified a well-defined

molecular mechanism of NOX2 regulation; its activation is

dependent on a series of protein interactions that are initiated

in the cytoplasm and translocate to the cell membrane for full

NADPH oxidase complex activation. In the prototypical phago-

cytic superoxide production event, in response to inflammatory

stimuli, four cytosolic proteins in the ‘‘regulatory complex,’’

that is, Rac1/2, p47phox, p67phox and p40phox, are translocated

to the membrane, where they interact with the plasma

membrane-bound NOX2 and p22phox subunits. Upon assembly

of this complex, electrons are transferred from NADPH to

oxygen to produce the superoxide anion and consequently other

ROS. One limiting step in the assembly of this active NADPH

oxidase complex is the binding of p67phox to the activated,

GTP-bound Rac1 and/or Rac2 (Abo et al., 1991; Diekmann

et al., 1994; Lapouge et al., 2000). To this end, upon stimulation,

cytosolic Rac1/2-GDP is released from the GDP dissociation

inhibitor (Lambeth, 2004), allowing guanine nucleotide exchange

factors (GEFs) to bind to Rac-GDP and catalyze the exchange

of GDP for GTP (Etienne-Manneville and Hall, 2002). Once

activated, Rac1/2-GTP translocate to the plasma membrane

and recruits p67phox by binding to its N-terminus (Koga et al.,

1999; Lapouge et al., 2000). The binding of p67phox to Rac1/2-

GTP allows for the complete assembly of the complex and acti-

vation of NOX2 NADPH oxidase. High-resolution X-ray crystal
vier Ltd All rights reserved
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structures along with mutant data have revealed that the Arg 38

and Arg 102 residues of p67phox create a deep binding pocket

that is necessary for interaction with Rac1/2-GTP (Koga et al.,

1999; Lapouge et al., 2000).

Rac1/2 GTPases of the Rho family of small GTPases are

pleiotropic regulators of a multitude of downstream cellular

processes (Etienne-Manneville and Hall, 2002). In response to

extracellular signals, the interconversion of Rac-GDP and Rac-

GTP occurs via interaction with GEFs and GTPase-activating

proteins (GAPs) (Bosco et al., 2009; Etienne-Manneville and

Hall, 2002; Van Aelst and D’Souza-Schorey, 1997). The outcome

of Rac activities hinges on their ability to interact with specific

effectors, which regulate cell growth or survival programs, actin

dynamics, or ROS production machinery. Since upregulated

expression or activity, rarely mutation, of Rac GTPases, is often

associated with human pathologies, recent studies have shown

that targeting Rac activation by GEFs may serve as a tractable

therapeutic option in various pathological settings (Bosco

et al., 2010; Gao et al., 2004; Müller et al., 2008; Thomas et al.,

2007). Previous rational design and drug discovery approaches

utilizing structural information to predict high-affinity binding

small molecules that dock to a specific region of Rac1 involved

in GEF interaction have yielded successful results in identifying

inhibitory molecules in the Rac signaling axis (Gao et al., 2004;

Nassar et al., 2006). However, given the multifacet role of the

Rac1/2 GTPases, it can be expected that strategies targeting

Rac effectors may be more beneficial in reducing undesired

effects at the level of Rac signaling, as higher specificity may

be achieved downstream from Rac.

To specifically inhibit the effector function of Rac1 in the NOX2

NADPH oxidase signaling axis, we have performed an in silico

screen to identify inhibitors of the Rac1-p67phox interaction.

This unprecedented approach of targeting a small GTPase

effector may afford greater specificity and circumvent the

blockade of multiple Rac-mediated functions, such as actin

reorganization by Rac activity inhibitors like NSC23766 (Gao

et al., 2004) or Compound 4 (Ferri et al., 2009). We found that

small molecules that bind to the Rac1 binding pocket of

p67phox can readily inhibit Rac1 interaction and abrogate ROS

production with a high degree of specificity. This targeting

strategy has generated a class of lead inhibitors of a pathologi-

cally relevant inflammatory pathway of Rac signaling with

a defined structure-activity relationship.

RESULTS

Virtual Screening for Compounds Targeting the Rac1
Binding Site of p67phox

The three-dimensional structure of p67phox in complex with Rac1

(Protein Data Bank [pdb] 1E96) was visually analyzed using

PyMOL in order to determine the contact region between the

two proteins. Extraneous objects, such as water molecules

and ions, that did not belong to the protein complex were

removed. The structure of the Rac1-p67phox complex is shown

in Figure 1A, where Arginine residues 38 and 102 of p67phox

surround the site within the Rac1 interaction interface, and

Rac1 residues 25–27 (Thr-Ans-Ala motif in Switch I) are buried

upon complex formation and are sandwiched by Arg38 and

Arg102. Next, the Rac1 chain was then displaced from the
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complex and the molecular surface representation of p67phox

residues involved in the interaction with Rac1 was visually in-

spected to identify suitable small-molecule binding sites. A

concave surface comprising Arg 102 and Arg 38 was qualita-

tively selected as the binding site for virtual screening (Koga

et al., 1999; Lapouge et al., 2000). This crystallographic structure

of p67phox was subsequently overlapped and aligned with the

N-terminal region of another p67phox structure (pdb 1HH8) crys-

tallized not in complex with Rac1. Negligible differences were

observed from the root mean square deviation (RMSD) analysis

in the spatial region involved in the Rac1-p67phox interaction,

suggesting the conformation of the chosen docking pocket is

mostly conserved before and after Rac1 binding and is suitable

for virtual screening.

Virtual screening was performed using Autodock 4 for docking

calculations of 350,000 diverse drug-like compounds from the

proprietary University of Cincinnati Drug Discovery Center

(UCDDC) compound library and from the public ZINC library,

which contains over 700,000 compounds (Irwin and Shoichet,

2005; Morris et al., 2009). Automated docking was performed

according to the docking flowchart (Figure 1B). The Autodock

4-conformed UCDDC and ZINC libraries were screened using

theLamarckiangenetic algorithm (LGA) in three successive steps

(Figure 1C). During the first two steps, the docking results were

ranked for the lowest binding energy change, and the two subli-

braries containing the selected hits were populated using

a DGbinding cut-off of �6.7 and �8.0 kcal/mol, respectively, for

subsequent docking steps. The top hits derived were visually

inspected using the AutoDockTool (ADT) by considering several

parameters, such as DGbinding, cluster convergence, hydrogen

bonding, and predicted molecular geometry. The selected top

100 hits were ranked for predicted water solubility (LogS), and

compoundswith LogS<�4.3were chosen for further evaluation.

The chemical structure of one of the top hits, Phox-I1, in

complex with p67phox is shown in Figure 1D. Hydrogen donor/

acceptor interactions occur between the two nitro groups of

the inhibitor and the Arg 102 and Arg 38 on p67phox. The pre-

dicted binding energy (DGbinding) was �8.90 Kcal/mol, which is

equivalent to a Ki of 2.93 10�7M�1. Further, Lipinski parameters

and Ki’s were calculated for the top nine predicted candidates

specific for p67phox (Figure 1E).

Phox-I1 Binds to p67phox Target
To test the ability of the lead compounds identified by virtual

screening to bind to the p67phox protein in the N-terminal 200

amino acid region necessary for Rac1-GTP interaction (Ahmed

et al., 1998; Diekmann et al., 1994; Han et al., 1998), we em-

ployed microscale thermophoresis (Wienken et al., 2010). This

technology probes for fluorescent changes in the hydration shell

of molecules in order tomeasure protein-protein or protein-small

molecule interactions with high sensitivity in near-native condi-

tions. The p67phox N-terminus showed binding activity to the

Phox-I1 compound in titration assays, yielding a Kd value of

�100nM (Figure 2A). Mutagenesis of R38 residue of p67phox,

which is critical for Rac1-GTP binding, disrupted the binding

ability of Phox-I1 to p67phox (Figure 2B). As a positive control,

a mutant made at residue R188 of p67phox, outside of the region

critical for interactionwith Rac1-GTP (Koga et al., 1999; Lapouge

et al., 2000), retained the binding activity to Phox-I1 (Figure 2C).
–242, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 229



Figure 1. Virtual Screening of p67phox Inhibitors from the ZINC and UC DDC Small Molecule Libraries

(A) The structure of the Rac1-p67phox complex is shown. Rac1 is shown in yellow, whereas p67phox is shown in green, respectively. Arginine residues 38 and 102 of

p67phox, which surround the site within the interaction interface that was targeted by virtual screening, are shown using red spheres. Rac1 residues 25–27 (Thr-

Ans-Alamotif in Switch I), which are buried upon complex formation and are sandwiched by Arg38 and Arg102, are shown inmagenta. Arg38 is directly involved in

interface formation.

(B) The flowchart reports the strategy that was implemented for automated docking. Autodock 4 and related scripts were utilized to assign charges and perform

docking energy calculations.
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To demonstrate the ability of Phox-I1 to compete with active

Rac1 for the binding pocket of p67phox, we first validated the

high-affinity binding activity of the constitutively active

Rac1V12 mutant with p67phox by microscale thermophoresis

(Figure 2D). Rac1-GDP was unable to bind to p67phox in this

assay and thus showed specificity of this interaction for the

active Rac1 (Figure 2E). Next, to perform a competition binding,

p67phox protein was first incubatedwith either 5 mMPhox-I1 or an

equal volume of vehicle control for 15min prior to titration of puri-

fied Rac1V12 protein. The disruption of p67phox binding to

Rac1V12 by Phox-I1, but not vehicle control, was evident (Fig-

ure 2F). Furthermore, as a control for specificity, Rac1V12

protein was incubated with various concentrations of Phox-I1,

but no detectable binding was observed (Figure 2G). Thus,

Phox-I1 binding to p67phox is specific and not due to nonspecific

effects, such as aggregation (McGovern et al., 2002). Together,

these studies indicate that the lead p67phox inhibitor Phox-I1

can bind to the Rac1 interactive site of p67phox specifically and

interfere with Rac1-GTP interaction with p67phox.
Phox-I1 Is Active in Suppressing ROS Production
in Neutrophils
To validate the hits from virtual screening in cells, we performed

several cellular functional assays using different cell types to

measure the effect of compounds on inhibition of ROS produc-

tion. ROS levels were first analyzed by fluorescence-activated

cell sorting (FACS) in HL-60 pre-incubated with compounds for

2 hr prior to stimulation of ROS production. Because inhibitors

of ROS production and NADPH oxidase activity are well studied

in vitro and have been tested in clinical applications, we tested

the lead p67phox inhibitor, Phox-I1, against NAC (a ROS scav-

enger), DPI (a broad range inhibitor of NADPH oxidase), and

NSC23766 (a Rac-GTP inhibitor; Figure 3A). Phox-I1, at 20 mM,

was able to attenuate ROS production similarly to 100 mM DPI

or 100 mM NSC23766 and slightly more efficiently than 5 mM

NAC. H2O2 added to the cells was included as a positive control

for ROSmeasurement. Second, to test the capacity of Phox-I1 to

inhibit ROS production in a primary cell context, primary murine

neutrophils isolated from mouse bone marrow were treated with

increasing concentrations of Phox-I1 and the efficacy of inhibi-

tion of fMLP-stimulated ROS production was analyzed. DPI

treatment was included as a positive control for inhibition of

ROS production (Figure 3B). Both 10 mM and 20 mM concentra-

tions of Phox-I1 were able to inhibit ROS production nearly as

well as DPI at 100 mM concentration. Next, to ascertain the

optimal effective dose for ROS inhibition in cells, a dose titration

series of Phox-I1 was administered to dHL-60 cells (Figure 3C).

Optimal cellular response to this compound was achieved at

doses of 10 mM with an IC50 of �3 mM.

In addition to using the 20-70-dichlorodihydrofluorescein
diacetate (DCFDA)-based FACS analysis of ROS generation

in primary murine neutrophils, we validated the efficacy of

Phox-I1 in primary human neutrophils by the luminol chemilumi-
(C) The main docking parameters adopted in the three different phases of the scr

bonding, and lowest predicted docking energy criteria have been used to select

(D)Molecular surface representation of p67phox in complex with a predicted inhibit

our grids and is highlighted in yellow. Docked Energy: �8.77 Kcal/mol; Binding e

(E) A summary of the candidate inhibitors specific for p67phox; parts of their Lipin
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nescence assay. As shown in Figure 3D, Phox-I1 was able to

suppress fMLP-induced ROS production in human neutrophils

dose-dependently, with an IC50 �8 mM, based on a one-site

competition model. Further, Phox-I1 did not affect the exoge-

nous glucose oxidase-produced ROS (Figure 3E) or the

PMA-induced ROS production that is mediated through

a PIP3-independent pathway (Figure 3F), suggesting that the

fMLP-Rac-p67phox axismaymediate a pathway for NOX2 activa-

tion independently from the PMA pathway, consistent with

previous studies indicating that fMLP and PMA induce super-

oxide generation through distinct pathways (Dong et al., 2005;

Perisic et al., 2004). All together, these data indicate that Phox-

I1 can efficiently inhibit ROS production in the mM range in

both human and murine neutrophils.
Structure-Activity Relationship Analysis of Phox-I1
Structural Analogs
As discussed previously, the virtual screen led to the identifica-

tion of Phox-I1 as a lead inhibitor of p67phox. While this com-

pound showed promising activity, progression to more

advanced testing is limited by the generally poor solubility of

the compound and toxicological concerns from the presence

of nitro groups in the structure, as nitro groups are often associ-

ated with toxicity in animal studies and are rarely seen in clinical

candidates. To develop a preliminary understanding of the struc-

ture-activity relationships (SAR) in these classes, we conducted

a substructure search of the University of Cincinnati Drug

Discovery Core chemical library. Thirty-five compounds from

this search were visually screened in an attempt to explore the

structural space with the goals of (1) retaining or improving

activity, (2) improving solubility, and/or (3) seeking a replacement

of the nitro groups. Toward that end, 16 compounds bearing

more polar functional groups and with replacement or altered

positions of the nitro groups were selected for further screening

(Figure 4A).

To validate the relative potency of the compounds identified in

the analog screen, we performed a cellular functional assay of

ROS inhibition in differentiated HL-60 cells. Cells were pre-incu-

bated with analogs from Figure 4A for 2 hr prior to stimulation of

ROS production and analysis of ROS levels by FACS (Figure 4B).

Comparing with cells treated with vehicle control, analogs 4, 10,

16, and Phox-I1 displayed the greatest inhibition of ROS produc-

tion, whereas analogs 1, 7, 11, 12, and 13 showed little or no inhi-

bition of ROS production. It is noteworthy that the structures of

analogs 4 and 16, both of which displayed a high ROS inhibitory

activity, are similar with the exception of one substituent,

providing evidence of a core structure that is necessary for

potency. Based on the improved ROS inhibitory activity dis-

played by analog 16, we termed it a second-generation lead

inhibitor, Phox-I2. Although Phox-I2 serves as an attractive

lead based on its improved ligand efficiency (maximum potency

relative to size), it suffers from the presence of two nitro

functions. Future plans are to further modify the structure and
eening are displayed. The molecular geometry, cluster convergence, hydrogen

the best 50% of candidates coming from the third screening step.

or is displayed. The region comprising p67phoxArginine 102 and 38 is defined by

nergy: �8.90 Kcal/mol, Ki 2.9 3 10�7 M�1.

ski parameters and predicted Ki are reported on the side of each molecule.
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Figure 2. Binding Affinity and Specificity of Phox-I1 to p67phox

(A) Using microscale thermophoresis, p67phox recombinant protein (1-200) was able to bind Phox-I1 with a Kd of �100 nM.

(B) Similar to (A), the ability of Phox-I1 to bind a recombinant mutant of p67phox at the site critical for Rac1-GTP binding, p67R38Q, was tested by microscale

thermophoresis.

(C) Experiment described in (B) was repeated with a random p67phox mutation, R188A.

(D) Constitutively active Rac1V12 mutant protein binds p67phox with a Kd of �31 nM using microscale thermophoresis.

(E) However, Rac1 wild-type protein (predominantly in GDP- bound state) cannot bind p67phox using microscale thermophoresis.

(F) Competitive binding of p67phox with Phox-I1 or vehicle control, followed by titration of RacV12 protein using above methods.

(G) Phox-I1 is unable to bind RacV12 recombinant protein via above technique.

Error bars represent standard derivations.
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adhere to standard guidelines of oral drug-like properties, such

as the Veber and Lipinski rules (Lipinski et al., 2001; Veber

et al., 2002).

To stringently confirm the effectiveness and specificity of

these potential ROS inhibitors, it is advocated that multiple

methods ofmeasuring ROS production assays should be utilized

(Jaquet et al., 2009). Therefore, to complement the DCFDA-

based FACS analysis and the luminol chemiluminescence

method, we performed nitroblue tetrazolium (NBT) assays in

fMLP-activated primary murine neutrophils (Figure 4C). These
232 Chemistry & Biology 19, 228–242, February 24, 2012 ª2012 Else
experiments revealed that a 10 mM dose of Phox-I1 resulted in

a significant blockade of superoxide production, which was

heightened by similar treatment with Phox-I2. Both Phox-I1

and Phox-I2 were more effective at a lower dose than were our

working concentration of DPI, which was included as a positive

control for ROS inhibition. Thus, the results of these combined

assaymethods validated that the lead inhibitors could effectively

inhibit ROS production by neutrophils.

We next confirmed the biochemical binding activity of Phox-I2

to p67phox protein with a titration series of Phox-I2 using
vier Ltd All rights reserved



Figure 3. fMLP-Stimulated ROS Production Is Abrogated by Phox-I1 in Human HL-60 Cells and Primary Murine Neutrophils

(A) Ability of Phox-I1 to inhibit ROS production in fMLP-stimulated differentiated HL-60 cells as compared to standard ROS inhibitors was assessed by

H2-DCFDA staining and FACS analysis. Levels of ROS production in non-fMLP-treated controls were subtracted from all samples; data was then normalized to

fMLP-stimulated vehicle-treated control.

(B) Experiment described in (A) was repeated with primary murine neutrophils.

(C) As described in (A), HL-60 cells were treated with various concentrations of Phox-I1 and an IC50 curve was generated.

(D) Dose response of fMLP-induced ROS production to Phox-I1 by primary human neutrophils. Levels of ROS production in non-fMLP- or fMLP-stimulated

human neutrophils were assayed by the luminol chemiluminescence method in increasing concentrations of Phox-I1. Data was normalized to fMLP-stimulated

vehicle-treated control.

(E) Effect of Phox-I on glucose oxidase-generated ROS.

(F) Effect of Phox-I1 on PMA induced ROS production in human neutrophils assayed by the luminol chemiluminescence method.

Error bars represent standard derivations.
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microscale thermophoresis (Figure 4D). As predicted based on

in silico docking (data not shown) and core structural similarity

to Phox-I1, Phox-I2 displayed a high-affinity binding to the

p67phox target with an approximate Kd of �150nM. Additionally,

the dose-dependent potency of Phox-I2 was assessed in dHL-

60 cells by the DCFDA assay, which revealed an IC50 �1mM

(Figure 4E), and in primary human neutrophils by the luminol

chemiluminescence assay, yielding an IC50 �6 mM (Figure 4F).

As shown in Figure 3D, Phox-I1 was able to suppress fMLP-

induced ROS production in human neutrophils dose-depen-

dently. To validate our preliminary SAR information and as
Chemistry & Biology 19, 228
a negative control, analog 13 displayed no ROS inhibitory activity

in dHL-60 cells (Figure 4B) and was unable to bind to p67phox

protein (Figure 4G). Analog 13 was thereby unable to dose-

dependently inhibit ROS production in the dHL-60 DCFDA

ROS production assay (Figure 4H).

Specificity of Phox-I1 and Phox-I2 in Cells
Because several existing ROS inhibitors are associated with low

potency and high cytotoxicity, we next assessed the levels of

apoptosis in undifferentiated HL-60 cells treated with 20 or

100 mM Phox-I1, Phox-I2, or NSC23766 by FACS analysis for
–242, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 233



Figure 4. Phox-I1-Analog Analysis Yields Compounds with Improved or Similar Cellular ROS Inhibitory Activity

(A) List of analogs derived from a search of the UCDDC and ZINC compound libraries for Phox-I1-like structures with medicinal chemistry optimized features.

(B) H2-DCFDA staining in fMLP-stimulated dHL-60 cells treatedwith Phox-I1 analogs. Analogs 4, 10, and 16 (Phox-I2) all display improvedROS inhibition over Phox1.
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Annexin V (Figure 5A). There was no detectable effect on cell

apoptosis by NSC23766, Phox-I1, or Phox-I2 at either concen-

tration as compared to the untreated control, indicating that

these compounds have minimal cytotoxicity in the dosage range

of maximal ROS inhibition. To analyze the biochemical speci-

ficity of these lead inhibitors on the effector pathways of active

Rac1, undifferentiated HL-60 cells were treated with Phox-I1,

Phox-I2, or NSC23766 for 18 hr. Immunoblot of the cell lysates

was performed to probe the activity of a Rac effector other

than p67phox, Pak (Figure 5B). The phosphorylated Pak levels

were abrogated by treatment with the Rac inhibitor NSC23766

but not Phox-I1 or Phox-I2, suggesting that Phox-I1 and Phox-

I2 compounds are specific for the p67phox signaling arm of

Rac-GTP, as opposed to Rac-GTP signaling in general, as is evi-

denced by NSC23766 treatment. Another method of addressing

Rac-signaling specificity in neutrophils is by monitoring their

ability to polarize actin to the leading edge upon fMLP stimula-

tion. Importantly, neither Phox-I1, Phox-I2, nor an inactive

analog 13 (all at 10 mM), were able to block the Rac-mediated

dynamic process of F-actin polarization to the leading edge of

primary murine neutrophils as observed by F-actin immunofluo-

rescence imaging (Figure 5C, left panel). F-actin polarization was

evident in about 80% of each treatment group of cells as in the

control, untreated cells (Figure 5C, right panel). In contrast, No-

codazole (200 nM), a microtubule disrupting agent that was

used as a positive control for disruption of the cytoskeleton,

treated cells showed drastic reduction of polarized cells from

80% to �20%. These data indicate that the Phox-I1 and Phox-

I2 p67phox targeting agents do not affect Rac-mediated F-actin

assembly. To test if the inhibitors are specific for the NOX2

enzyme, we carried out a xanthine/xanthine oxidase assay and

found that Phox-I1 or Phox-I2 does not affect xanthine

oxidase-mediated ROS production (Figure S2 available online).

We further applied Phox-I1 to primary murine neutrophils ex-

pressing the constitutively active NOX4. As shown in Figure 5D,

expression of NOX4 cDNA in neutrophils by nucleofection re-

sulted in an elevated ROS production that is unresponsive to

Phox-I1 treatment, in contrast to the fMLP-induced NOX2-medi-

ated ROS response as assayed using a luminescence assay of

L012 in the presence of HRP. To further rule out that Phox-I1

and Phox-I2 may simply act as scavengers of ROS, we pre-stim-

ulated dHL-60 cells with fMLP for 30 min prior to treatment with

Phox-I1 or Phox-I2. Unlike the ROS scavenger NAC, Phox-I1 and

Phox-I2 do not affect the levels of superoxide that have already

been produced, similarly to apocyanin, DPI, and NSC23766 (Fig-

ure 5E). Therefore, these lead p67phox inhibitors do not display

antioxidant activity and are specific, consistent with their lack

of inhibitory effect on glucose oxidase-induced ROS, as shown

previously in Figure 3E.
(C) Freshly isolated primary murine neutrophils were stimulated with fMLP to initia

Phox-I2 and a Nitroblue tetrazolium (NBT) assay was performed and imaged (lef

displaying ROS production were quantified from the images and non-fMLP treate

sample (right panel).

(D) Using microscale thermophoresis, p67phox protein binds to Phox-I2 with high

(E) IC50 for Phox-I2 was assayed by H2-DCFDA ROS production method in dHL

(F) Phox-I2 dosage response of ROS production in human neutrophils assayed b

(G) As a negative control, analog 13 was unable to bind p67phox.

(H) Anolag 13 showed no cellular ROS inhibitory activity in HL-60 cells.

Error bars represent standard derivations.
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The relevance of therapeutically targeting neutrophils in a

pathological context is underscored by recent reports that the

circulation time of human neutrophils in the periphery is longer

than previously believed (<1 day versus 5.4 days; Pillay et al.,

2010). We next performed a stability experiment to determine

the duration of effectiveness of the compound in suppressing

neutrophils. To analyze the relative affinities of these compounds

for the p67phox target in cells, we performed DCFDA ROS

production assays in dHL-60 cells treated with compound for

2 hr followed by wash and recovery for 4 hr or 2 hr in normal

media prior to ROS production analysis. Although Phox-I1

ROS inhibitory activity was still evident 4 hr or 2 hr after washing

the cells, Phox-I2 and analog 4 did not display effective ROS

inhibition following removal of the compounds at the dosage

tested (Figure 5F). In comparison, the tested dosages of NAC

and NSC23766 both retained the ability to inhibit ROS produc-

tion following a wash of the cells. To assess the relative stability

of these compounds in culture over time, DCFDA ROS assays

were performed in dHL-60 cells following the indicated time of

exposure to the compound. None of the compounds were effec-

tive at inhibiting ROS production after 18 hr exposure in culture.

Phox-I1 seemed to be the most stable in culture over time, dis-

playing no significant change in efficacy in a 6 hr treatment

window, whereas Phox-I2 and analog 4 retained some efficacies

over 6 hr of treatment with more varied capacity to inhibit ROS

(Figure 5G). Taken together, these data suggest that Phox-I1

and its derivatives display high biochemical and cellular activities

in culture with a turnover time of >2–4 hr, indicating that their

inhibitory effect is not short-lived, but a continuous supply is

required for maximum effectiveness in overnight culture

conditions.

Structure-Activity Relationship Analysis of Phox-I2
To further define the structure-activity relationship of Phox-I2,

we performed medicinal chemistry synthesis of analogs of

Phox-I2 to rationalize the key components of the structure for

cellular activity. Compounds with similar structures to Phox-I2

through replacement of each nitro group, or addition of an extra

aromatic ring to make the compound more ‘‘Phox-I1 like,’’ were

synthesized. Specifically, based on the Phox-I2 structure, seven

compounds of four different categories, as shown in Figure 6A,

were produced. When the ROS inhibitory activities of these

compounds were tested by DCFDA FACS analysis in differenti-

ated HL-60 cells, all compounds displayed activity (Figure 6B).

It became evident that it is possible to replace the nitro group

and retain activity (as shown by analog 22). This was further vali-

dated by the NBT assay in primary murine neutrophils where

many of the analogs displayed partial activity, with analog 22

(fluorine groups replacing the outermost nitro groups) exhibiting
te ROS production; cells were then treated with DMSO control, DPI, Phox-I1, or

t panel). Blue stain is superoxide anion; pink stain is neutrophil nucleus. Cells

d ROS levels were subtracted prior to normalization to vehicle-control treated

affinity.

-60 cells.

y luminol chemiluminescence.
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Figure 5. Phox-I1 and Phox-I2 Show Undetectable Toxicity and Site Effects

(A) Apoptosis analysis by FACS of HL-60 cells treated with compound or vehicle control for 2 hr prior to 7-AAD and Annexin V staining.

(B) HL-60 cells from (A) were harvested and lysates were immunoblotted for levels of pPAK, and actin was used as a control for loading.
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profound superoxide inhibition (Figure 6C). These studies further

define SAR of Phox-I2 structure and provide a solid ground for

future optimization.

DISCUSSION

Because of the extensive role of NOX2 NADPH oxidase in innate

immunity and pathophysiology, specific and effective inhibitors

of this enzymatic complex have been long sought after but

have proven to be challenging to develop. Several inhibitors of

different components of the NADPH oxidase complex have

previously been characterized, including apocyanin, dipheny-

lene iodonium (DPI), gp91tat, NSC23766, and, most recently,

VAS2870. Although these inhibitors have been useful in broad-

ening our understanding of the role of the NADPH oxidases in

disease, they may not be promising candidates for further

drug development because of problems related to toxicity,

potency, and specificity (Aldieri et al., 2008; Jaquet et al.,

2009; Lambeth et al., 2008). Collectively, most studies using

these inhibitors underscore the need for the development of

a highly specific and nontoxic inhibitor of NOX2. Recent studies

that utilize peptide inhibitors of the Rac1-GTP–NOX2 interaction,

although potentially limited by drug delivery issues, have yielded

significant inhibition of ROS production, further validated the

targeting approach focusing on Rac interaction with this

enzyme complex (Dahan et al., 2002; Morozov et al., 1998;

Rey et al., 2001).

Here we have carried out a structure-based virtual screen to

identify small molecules capable of specific interaction with the

Rac1 binding pocket of p67phox. This interaction by small mole-

cule compounds abrogates the ability of active Rac1 binding to

p67phox and subsequent activation of the NOX2 oxidase

complex in murine and human neutrophils. The efficacy of these

compounds is impressive given the potential contribution to

ROS production by non-Rac dependent sources, such as

NOX4, NOX5, and DUOX1/2, or mitochondrial ROS generation

and reflects the strong dependency of NOX2 in neutrophils for

ROS production. In fact, many NADPH oxidase related patholo-

gies are mediated through the NOX2 enzyme, which requires

Rac1/2 and p67phox binding for its activity (Bedard and Krause,

2007; Lambeth et al., 2008). As such, the p67phox inhibitor design

described herein could serve as a principle for future develop-

ment into clinically relevant leads. Additionally, this approach

of targeting the p67phox constituent of the NADPH oxidase

complex rather than Rac GTPase itself may circumvent a debate

in the field regarding the Rac regulatory mechanism in NADPH
(C) F-actin reorganization in freshly isolated fMLP-stimulated primary murine ne

(right panel) are displayed. Treatment with analog 13 is included as a ‘‘dead an

included as a positive control for actin disruption. Cells were exposed to a 10 mM

(D) The effect of Phox-I on NOX4-mediated ROS production was tested in prima

10 uMPhox-I1 was applied to the cells for 30min prior to ROS assay by luminol ch

the presence or absence of 10 uM Phox-I1 was measured in parallel. See also F

(E) The antioxidant abilities of these lead compounds were tested by prestimulatin

Levels of superoxide were analyzed by DCFDA assay and FACS. NAC-, apocya

(F) For affinity assay, DMSO-differentiated HL-60 cells were treated with standard

in normal media for 4 hr or 2 hr prior to fMLP stimulation and DCFDA ROS produ

(G) For stability assay, DMSO-differentiated HL-60 cells were treated with 20 mM

DCFDA ROS production assay by FACS analysis. Thirty minutes and 18 hr time

Error bars represent standard derivations.
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oxidase complex activation (Bokoch and Diebold, 2002; Kao

et al., 2008).

Prior work from our lab utilizing a similar rational design

approach has yielded a specific inhibitor of Rac GTPases,

NSC23766, which has been prolific, providing us with not only

molecular mechanisms but also a preclinical therapeutic tool to

build upon for translational applications (Gao et al., 2004; Nassar

et al., 2006). However, in the case of NSC23766, all downstream

effectors of Rac GTPases are inhibited due to a suppression of

Rac activity, thereby causing potentially undesired effects result-

ing from inhibition of multiple effector pathways. The approach

described here is, to our knowledge, the first time the small

GTPase interactive site of an effector has been rationally tar-

geted, setting up a proof of principle that it can be a viable tactic

for enhancing the specificity of inhibitors in the context of small

GTPase-mediated cellular functions. Further, in terms of lead

discovery and development, the advantages of our small mole-

cule approach to NADPH oxidase inhibition are several-fold.

First, lead small molecules yielded from a rational design

approach, rather than a high-throughput functional screen, are

likely to display specificity andpotency,which have beenprimary

drawbacks of several NADPHoxidase inhibitors described previ-

ously. For example, DPI lacks specificity because it inhibits all

NOX isoforms, nitric oxide synthase, xanthine oxidase, mito-

chondrial complex 1, and cytochrome P-450 reductase (Aldieri

et al., 2008; Bedard and Krause, 2007); whereas apocyanin is

thought to nonspecifically inhibit NOX through an indirect mech-

anism only at high dose (Lambeth et al., 2008; Lapperre et al.,

1999;O’Donnell et al., 2003). Second, Phox-I1 andPhox-I2 inhib-

itors can suppress NADPH oxidase activity dose-dependently in

a relative short timewindow, thereby reducing the risk of abolish-

ing the phagocyte immune response. Third, peptide inhibitors,

although specific and effective at inhibition of ROS production

(Lambeth et al., 2008),mayhave limitationswithoral drugdelivery

that can be overcome by modifications of small molecule inhibi-

tors, such as those described here.Moreover, the rational design

approach of virtual screening allows for the validation and optimi-

zation of ‘‘drug-like,’’ soluble, and potent compounds that are

more suitable for applications.

An advantage of small-molecule screening is the ability to

optimize the potency of the compound through analysis of

related analogs. The initial SAR profiles derived from these

studies allow for future development of compounds with an

improved potential for applications. With respect to Phox-I1

and Phox-I2, one of the initial blockades to application would

be the presence of the nitro groups in both compounds, which
utrophils was analyzed. Representative images (left panel) and quantification

alog’’ that possesses no intrinsic ROS inhibitory activity, and nocodazole is

dose of Phox-I1, Phox-I2, and analog 13, as well as 200 nM nocodazole.

ry murine neutrophils transfected with a NOX4 expressing plasmid. Phox-I1 at

emiluminescence in the presence of HRP. The fMLP-stimulated ROS activity in

igure S2.

g dHL-60 cells with fMLP for 30 min prior to treatment with Phox-I1 or Phox-I2.

nin-, DPI-, and NSC23766-treated cells served as controls.

effective dose of indicated compound for 2 hr, washed, and allowed to recover

ction assay by FACS analysis.

dose of compound for the indicated time period prior to fMLP stimulation and

periods are not displayed because they revealed no ROS inhibition.
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Figure 6. Medicinal Chemistry Optimization of Phox-I2 Allows for the Replacement of Potentially Toxic Nitro Groups

(A) Compounds with similar structures to Phox-I2 were synthesized and broken down into four different categories: (1) NO2 position scan; (2) NO2 substitution; (3)

Addition of an aromatic ring (rendering it similar to Phox1); and (4) Aromatic Phox2.

(B) DCFDA FACS analysis was performed using differentiated HL-60 cells treated for 2 hr with compounds from A prior to stimulation with fMLP.
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can be associated with toxicological concerns based on their

ability to damage DNA following reductive activation. Thus, a

major objective for the initial analog screening and secondary

analog synthesis SAR studies was to understand the require-

ment of these groups in the compound structure. First, the

analog screening experiments performed herein (Figure 4)

allowed for the compounds to be grouped into two classes of

structure, analogs 1, 6, 7, 8, 10, 11, 12, 14, and 15 were charac-

terized as more Phox-I1-like, whereas analogs 2, 3, 4, 5, and 9

were defined as more Phox-I2-like. The SAR within the class of

compounds derived from Phox1 was not well defined. Analog

1 revealed that the bare scaffold had little to no intrinsic activity.

Analog 10 suggested that the addition of a substituent on the

north phenyl ring was inconsequential, which is supported by

the analog pairs of 11/12 and 8/14. This indicates that the north

phenyl ring may be a region where substituents may be added to

improve physical properties if a Phox-I1-like structure is to be

pursued. In line with the key objective of reducing toxicity,

analogs 6, 8, 14 and 15 demonstrated that some level of activity

was retained in absence of nitro groups, albeit potency was

significantly reduced. However, the set of analogs that are

related to Phox-I2 show a clear SAR pattern in which specific

changes resulted in specific effects on activity. Analog 4 indi-

cated that a substituent at the 6 position could be added without

severe activity consequences, although analog 5 suggested that

this substituent should be less polar. Analogs 2 and 3 illustrated

that the NO2 group could be replaced with more hydrophilic

functions without catastrophic loss of activity, which would be

hopeful for improving the toxicological profile and solubility.

Importantly, analog 9 demonstrated that the bare scaffold (no

NO2 groups) retains some intrinsic activity, thereby supporting

the nonessentiality of the nitro functions. Nitro groups are partic-

ularly vexing since they have quite unique binding properties with

no particularly effective bioisosteres. Analog 9 displayed similar

potency to Analogs 2 and 5, suggesting the 30 NO2may have less

impact on activity. Thus, exploration of alternatives at this

portion of the Phox-I2-like molecule subsequently became a

major goal of the secondary synthetic screening effort described

in Figure 6. One useful SAR conclusion from the compound

synthesis experiments is that although deletion of the nitro

groups altogether or shifting their position may negatively affect

activity, nitro group substitution with fluorine maintains ROS

inhibitory activity of the compound. Thus, removal of the poten-

tially toxic nitro groups is possible and warrants further explora-

tion and characterization.

Although structurally diverse, it is striking that the compounds

identified by our rational design approach and subsequently

the analogs derived from medicinal chemistry contain extended

double-bond conjugated systems. These structures are

described to be capable of mediating electron exchange as it

would occur during ROS generation, and in this respect the

p67phox inhibitors described here share similarities to some

leading NOX inhibitors developed by the pharmaceutical

industry (Jaquet et al., 2009).
(C) Freshly isolated primary murine neutrophils were stimulated with fMLP to initi

and analogs 20, 21, 22, and 23. A nitroblue tetrazolium assay was performed an

levels were subtracted prior to normalization to vehicle control treated sample.

Error bars represent standard derivations.
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In order to complement the in silico and cellular results, we

also tested the Phox-I leads in cell-free superoxide production

assays. Phox-I2 was able to dose-dependently inhibit Rac1-

GMPPNP induced superoxide burst under the reconstitution

conditions (Figure S3), consistent with the mode of action

proposed for the inhibitor. However, the dose curve displayed

a higher concentration shift of Phox-I2 than that required in the

p67phox binding and cell assays. The requirements of higher

concentration of inhibitors in the cell free assay have been previ-

ously observed for peptide-based NOX2 inhibitors (Joseph and

Pick, 1995; Dahan et al., 2002). Further investigation is necessary

to provide insight into this difference. Moreover, there is a

difference in target p67 binding affinity (Kd) and ROS inhibitory

efficacy in cells (IC50) by the inhibitors, at close to 2 order of

magnitude; this could be related to multiple factors such as the

route/efficacy of entry, stability, metabolism, etc., in cells.

NAC, a global ROS scavenger, has been described to have

a positive effect in a broad array of pathologies such as neuro-

logical disorders (Berk et al., 2008), cystic fibrosis (Tirouvanziam

et al., 2006), and cancer progression (Estensen et al., 1999; Radi-

sky et al., 2005; van Zandwijk et al., 2000), but its effect is broad

and nonspecific. Although therapies directed at components of

the NOX enzyme have shown promise in disorders including

metabolic dysfunction of the pancreatic b-cell, neuronal degen-

eration following cerebral ischemia, therapeutic resistance in

hematological malignancy, and cardiovascular disease (Bedard

and Krause, 2007; Kleinschnitz et al., 2010; Kowluru, 2011; Raz

et al., 2010; Sawada et al., 2010; Velaithan et al., 2011; Williams

and Griendling, 2007), none of the existing NOX inhibitors are

ready for application in the clinics due to issues of toxicity and

efficacy. Therefore, drugs which potently and specifically inhibit

ROSproduction byNOX enzymes are an unmet clinical need that

will have far-reaching implications, and strategies for their devel-

opment, such as the one described here, are critical. To this end,

targeting of small GTPases has emerged as an attractive area

of lead development (Nassar et al., 2006). However, effective

inhibition of a signaling node of a small GTPase that controls

a multitude of effector pathways, as seen with a Rac targeting

agent such as NSC23766, could also yield increased toxicity

and nonspecific effects. The current approach of targeting one

specific effector of Rac could circumvent this concern. Impor-

tantly, not only may our rationally design approach has potential

implications in diseases mediated by inflammatory responses,

but it also presents an avenue for generating lead inhibitors of

other effectors for pathologically relevant small GTPase

signaling axes, including that of Ras, Rab, and Rho.

SIGNIFICANCE

Because of the wide array of cellular functions regulated by

Rho GTPase activities and the numerous pathologies to

which their deregulation may contribute, their signaling

axes serve as attractive drug targets. Recently, a number

of studies have utilized NSC23766, a Rac activation inhibitor,
ate ROS production; cells were then treated with DMSO control, DPI, Phox-I2,

d imaged in order to quantitate superoxide inhibition. Non-fMLP treated ROS
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to inhibit the activity and signaling events of Rac GTPases.

However, this targeting approach blocks multiple down-

stream signaling pathways from Rac, and thus, may lack

specificity for distinct cellular functions controlled by Rac.

The current study aims to utilize structure-function informa-

tion to rationally design inhibitors of a unique downstream

effector of Rac GTPases. Upon Rac binding, the down-

stream effector, p67phox, directly regulates the production

of ROS by assembling the NOX2 NADPH oxidase complex.

Since ROS generation via NADPH oxidase is implicated in

a wide array of human diseases, it can be envisioned that

specifically targeting the Rac1-p67phox interaction will

prevent activation of the oxidase and may serve as a trac-

table therapeutic option. As existing NADPH oxidase inhibi-

tors lack specificity or potency, the development of novel

inhibitors is important for evaluating the efficacy of NADPH

oxidase targeting strategies. Here, we describe the rational

design and characterization of small molecule inhibitors of

the Rac-p67phox interaction. The Phox-I1/Phox-I2 lead inhib-

itors bind p67phox with submicromolar affinity and compete

with the binding of activated Rac. Consequently, they are

capable of abrogating superoxide production in neutrophils

without affecting Rac-mediated actin cytoskeleton struc-

ture. Structure-activity relationship studies of the lead inhib-

itors have yielded promising analogs that are amenable to

future optimization. Our studies present the first evidence,

to our knowledge, that structure-function-based rational

design can be a useful means of identifying inhibitors target-

ing the small GTPase-effector interface downstream of

small GTPase signaling.

EXPERIMENTAL PROCEDURES

Virtual Screening

Virtual screening was performed to identify candidate molecules that could

disrupt the formation of p67phox complex with Rac1, by binding to p67phox

within the interaction interface with Rac1. Docking simulations for the virtual

screening were performed using rigid body docking, as implemented in Auto-

Dock (versions 3.5 and 4.0; Huey et al., 2007; Morris et al., 2009). A crystal

structure of the complex (Lapouge et al., 2000; pdb 1E96) was used to build

the model of the p67phox receptor for the docking simulations, using ADT

graphical interface to define the simulation grid boxes. Two libraries of

compounds were used, including the drug-like subset of the ZINC library (Irwin

and Shoichet, 2005) and in-house diversified library of about 340,000 drug-like

compounds (assembled by the former Procter & Gamble Pharmaceuticals)

now owned by the University of Cincinnati Drug Discovery Center (UCDDC).

Gesteiger partial charges were used for both the receptor and ligands.

Screening was performed in three stages using increasingly stringent param-

eters (e.g., changing grid density from 0.6 Ang in the initial screening to 0.375 in

the refinement stage) and using gradually more extensive sampling by

increasing the number of energy evaluations (from 100,000 to 10 mln), Genetic

Algorithm runs (from 10 to 33), and population size (from 75 to 150). After initial

fast screening, promising candidates with high estimated binding affinities

were retained for the refinement stage. Candidate compounds were ranked

based on their estimated binding affinities, and top candidates were further

assessed from the point of view of their properties.

Protein Purification, Mutagenesis, and Microscale Thermophoresis

The p67phox protein was expressed in BL21(DE3) bacteria (Stratagene, Santa

Clara, CA, USA) using the pET30-HIS p67(1-212) plasmid. Protein was purified

using the QIAexpress Ni-NTA kit (Qiagen, Valencia, CA, USA) or the GST Bind

Resin Chromatography Kit (Novagen, Darmstadt, Germany) for RacV12 and

RacWT proteins. Mutagenesis was carried out using the QuikChange Light-
240 Chemistry & Biology 19, 228–242, February 24, 2012 ª2012 Else
ening Site-Directed Mutagenesis Kit (Stratagene). Proteins were labeled for

microscale thermophoresis using the Monolith NT Protein Labeling Kit Red

(NanoTemper Technologies, München, Germany), as recommended by the

manufacturer. Binding reactions were carried out using the Monolith NT.115

(Nano Temper Technologies). Binding data was analyzed using Graphpad

Prizm to estimate Kd values. The arbitrary fluorescence value from the thermo-

phoresis plots for the smallest compound titration was subtracted from

every other data point (Delta depletion) prior to normalization to a Vmax of

100. In thermophoresis plots where there was no binding, a curve could not

be fit, and therefore no Vmax could be assigned. In these instances the highest

delta depletion value was set to 100, and all data were normalized accordingly.

Cell Culture

HL-60 cells (a kind gift of Dr. Christopher Karp, Cincinnati Children’s Hospital,

Cincinnati, OH, USA) were propagated in RPMI 1640 medium containing 10%

heat inactivated fetal bovine serum, 2 mM L-glutamine, and 100 U/ml peni-

cillin/streptomycin at 37�C in air containing 5% CO2. For differentiation,

HL-60 cells were cultured in 1.3% dimethyl sulfoxide (DMSO) as previously

described (Servant et al., 1999) to produce dHL-60 cells. Primary murine

neutrophils were isolated from C57Bl/6 mouse bone marrow in accordance

with a published protocol (Filippi et al., 2007) using a discontinuous Percoll

(Pharmacia, New York, USA) gradient and were utilized immediately in exper-

iments. Human neutrophils were obtained from fresh blood (IRB #2010-1855,

Cincinnati Children’s Hospital Medical Center) following a well-established

protocol using density gradient separation from whole blood (Oh et al., 2008).

Chemicals and Synthesis

PMA, apocynin, H2O2, DPI chloride, DTT, HRP, glucose oxidase, xanthine,

and xanthine oxidase were purchased from Sigma-Aldrich (St. Louis, MO,

USA). All Phox-I compounds and derivatives, except for those used in initial

screening, were custom synthesized by Radikal Therapeutics Inc. (Beverly,

MA, USA). The chemicals were subjected to LC/MS analysis prior to use, as

shown in an example in Figure S1.

Immunoblot Analysis

Whole-cell lysates were prepared by cell extraction using lysis buffer contain-

ing 20 mM Tris-HCl (pH 7.6), 100 mM NaCl, 10 mM MgCl2, 1% Triton X-100,

0.2% sodium deoxycholate, 1 mM phenylmethylsulfonyl fluoride, 10 mg/ml

of leupeptin, 1 mg/ml of aprotinin, and 1 mM dithiothreitol for 30 min. Equal

amounts of protein, as determined by Bradford assay, were resolved by

sodium dodecyl sulfate polyacrylamide gel electrophoresis. Specific proteins

were detected by standard immunoblotting procedures using the following

primary antibodies: (Cell Signaling, Danvers, MA, USA; 1:500 dilution) phos-

pho-PAK1 (Ser144)/PAK2 (Ser141), (Sigma-Aldrich; 1:500) b-actin.

Flow Cytometry

Cells (53 105) were harvested and processed for Annexin V/ 7AAD staining in

accordance with manufacturer’s protocol (Becton Dickinson, Franklin Lakes,

NJ, USA). Flow cytometry data were acquired on a FACS Canto bench-top

flow cytometer (Becton Dickinson), and the cell cycle distributions were deter-

mined by a BrdU incorporation assay using Flo-Jo software (Bosco et al.,

2010). For ROS production assay, primary murine neutrophils or dHL60 cells

were incubated with compound for 2 hr prior to addition of H2-DCFDA in

accordance with the manufacturer’s instructions (Molecular Probes, Grand

Island, NY, USA). Cells were then stimulated with 10 mM fMLP (Sigma-Aldrich),

1mMCaCl2, and 1.5 mMMgCl2 for 15 min prior to wash and FACS analysis for

mean fluorescence intensity. Non-fMLP stimulated control values were sub-

tracted from all samples before normalization to fMLP-stimulated, vehicle

control-treated sample in order to display percent ROS inhibition.

F-actin Immunofluorescence

Cells were pretreated with compound for 40 min prior to wash and resus-

pended in HBSS with compound. Cells were allowed to adhere to fibronectin

(Sigma-Aldrich) coated glass coverslips (15 min) and then stimulated with

100 nM fMLP (3 min). Coverslips were then fixed with 3.7% paraformaldehyde

(Sigma-Aldrich), and then staining for F-actin was performed with rhodamine

phalloidin per the manufacturer’s instructions (Molecular Probes).
vier Ltd All rights reserved
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Nitroblue Tetrazolium Assay

Primary neutrophils from mouse bone marrow were subjected to fMLP stimu-

lation in the presence or absence of various chemicals for 5 min. Cells were

stained for NBT activity as previously described (Filippi et al., 2004) to reveal

relative ROS production.

Luminol Chemiluminescence Assay

Human neutrophils (2 3 105) were stimulated in HBSS supplemented

with 0.1% BSA, 1mM Ca2+, 1mM Mg2+, and with fMLP (10 mM), PMA

(300 nM) or glucose oxidase (200 mU/ml) for 30 min in the presence of

10 mM [8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4(2H,3H)dione]

L012. Chemiluminescence was measured using GloMax-96 Microplate

Luminometer (Promega; Tarpey et al., 2004). The generation of hydrogen

peroxide by the xanthine/xanthine oxidase was performed in phosphate

buffered saline supplemented with xanthine oxidase (0.004 U), HRP

(0.005 U$mL�1), and L012 (Wind et al., 2010). The reaction was started by

the addition of xanthine (0.5 mM).

Amaxa Transfection of Primary Neutrophils

Primary mouse neutrophils were suspended in 100 ml Nucleofector solution

with 10 mg plasmid pCDNA3-NOX4 encoding NOX4 (a kind gift of

Dr. T. Leto, National Institutes of Health, Bethesda, MD, USA) or mock vector.

Cells were transfected using a Cell Line V Nucleofactor kit (Amaxa Biosystem,

Amaxa Inc., Cologne, Germany) and the Nucleofector program Y-001. Cells

were recovered at 37�C for 2 hr and subjected to the luminol chemilumines-

cence assay using 10 mM L012 and HRP (0.005 U$ml�1) to record ROS

produced by NOX4 expression.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and can be found with this
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