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A set A�[1, ..., N] is of the type B2 if all sums a+b, with a�b, a, b # A, are dis-
tinct. It is well known that the largest such set is of size asymptotic to N1�2. For a B2

set A of this size we show that, under mild assumptions on the size of the modulus
m and on the difference N1�2&| A | (these quantities should not be too large), the
elements of A are uniformly distributed in the residue classes mod m. Quantitative
estimates on how uniform the distribution is are also provided. This generalizes recent
results of Lindstro� m whose approach was combinatorial. Our main tool is an upper
bound on the minimum of a cosine sum of k terms, �k

1 cos *jx, all of whose positive
integer frequencies *j are at most (2&=) k in size. � 1999 Academic Press

INTRODUCTION AND RESULTS

A set A�[1, ..., N] is of the type B2 if all sums

a+b, with a�b, a, b # A ,

are distinct. (Such sets are also called Sidon, but the term has a very dif-
ferent meaning in harmonic analysis.) This is easily seen to be equivalent
to all differences a&b, with a{b, a, b # A, being distinct. It is an old
theorem of Erdo� s and Tura� n [ET41, HR83, K96] that the size of the
largest B2 subset of [1, ...,N] is at most N1�2+O(N1�4). It is also known
[BC63, HR83] that there exist B2 subsets of [1, ..., N] of size tN1�2.

In this note we consider such dense B2 subsets A of [1, ..., N], i.e., sets
of size N1�2+o(N1�2), and prove, under mild conditions on |A| and the
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modulus m, which is also allowed to vary with N, that they are uniformly
distributed mod m. More precisely, let

a(x)=am(x)=|[a # A :a=x mod m]|, for x # Zm ,

be the number of elements of A with residue x mod m. We shall show, for
example, that if |A|tN1�2 and m is a constant then, as N � �,

a(x)=
|A|
m

+o \ |A|
m + . (1)

We shall also obtain bounds on the error term. These bounds will depend
on |A|, m and N.

Previously Lindstro� m [L98] showed precisely (1) using a combinatorial
method, thus answering a question posed in [ESS94]. Under the addi-
tional assumptions

m=2 and |A|�N1�2 (2)

he obtained the bound O(N3�8) for the error term in (1).

Here we use an analytic method which has previously been used [K96]
to prove and generalize the Erdo� s�Tura� n theorem mentioned above. The
core of our technique is the following theorem [K96] which was proved in
connection with the so called cosine problem of classical harmonic analysis.

Theorem 1. Suppose 0� f (x)=M+�N
1 cos *jx, with the integers * j

satisfying

1�*1< } } } <*N�(2&=) N,

for some =>3�N. Then

M>A=2N, (3)

for some absolute positive constant A.

Our main theorem, of which Lindstro� m's result is a special case, is the
following.

Theorem 2. Suppose A�[1, ..., N] is a B2 set and that

k=|A|�N1�2&l, with l=l(N)=o(N1�2).
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Assume also that m=o(N1�2). Then we have

"a(x)&
k
m"2

�C {
N3�8

m1�4

N1�4l1�2

m1�2

if l�N1�4m1�2

else.
(4)

(In our notation l need not be a positive quantity. If it is negative (i.e.,
k>N1�2) the first of the two alternatives in (4) holds in the upper bound.)

We use the notation & f &p=(�x # Zm | f (x) | p)1�p, for f :Zm � C and
1�p<�, and also & f &�=maxx # Zm | f (x) |. We obviously have
& f &��& f &p , for all f and 1�p<�.

Remarks. It follows easily from Theorem 2 that in the following two
cases we have uniform distribution in residue classes mod m.

1. When l�N1�4m1�2 and m=o(N1�6) we have

"a(x)&
k
m"�

�"a(x)&
k
m"2

�C
N3�8

m1�4=o\ k
m+ . (5)

2. When l�N1�4m1�2 and m=o(N1�2�l) we have

"a(x)&
k
m"�

�"a(x)&
k
m"2

�C
N1�4l1�2

m1�2 =o\k
m+ . (6)

In these two cases we have uniform distribution ``in the l2 sense'' as well as
in the l� sense.

As a comparison to the result that Lindstro� m obtained under assump-
tions (2), we obtain that whenever m is a constant and l�CN1�4 we have

"a(x)&
k
m"2

�C
N1�4l1�2

m1�2 �Cm N3�8.

As is customary, C denotes an absolute positive constant, not necessarily
the same in all its occurences, while C with a subscript denotes a constant
depending at most on the parameter indicated in the subscript.

PROOFS

For the proof of Theorem 2 we shall need the following two lemmas, the
first of which is elementary and the second a consequence of Theorem 1.
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Lemma 1. If a :Zm � C and S=�x # Zm a(x) then

:
x # Zm

}a(x)&
S
m}

2

= :
x # Zm

|a(x)|2&
S2

m
.

Proof. Let a(x)=S�m+$(x) for x # Zm . It follows that �x # Zm $(x)=0.
Then

:
x # Zm

|a(x)| 2= :
x # Zm

\S2

m2+|$(x)|2+2
S
m

Re $(x)+
=

S2

m
+ :

x # Zm

|$(x)|2 . K

Lemma 2. Suppose *j # N, j=1, ..., N, are distinct positive integers and
define

Nm=|[*j :*j=0 mod m]|.

If

0�p(x)=M+ :
N

j=1

cos *j x, (x # R) ,

and

*j�(2&=) Nm m, for all *j=0 mod m,

for some =>3�Nm , then we have

M>A=2Nm ,

for some absolute positive constant A.

Proof. The measure + on [0,2?) with +̂(n)=1 if m divides n and
+̂(n)=0 otherwise is nonnegative. Let

q(x)=p(x) C +=M+ :
m | *j

cos * jx�0.

Define also the polynomial

r(x)=q \x
m+=M+ :

m | *j

cos
*j

m
x�0.
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By Theorem 1 and the assumption

*j

m
�(2&=)Nm

we get M�A=2Nm as desired. K

Proof of Theorem 2. Write

d( j)=|[(a, b) # A2 :a&b=j mod m]| , ( j # Zm),

and notice that, by the Cauchy�Schwarz inequality,

d( j)= :
i # Zm

a(i) a(i+j)� :
i # Zm

(a(i))2=d(0), ( j # Zm).

We also clearly have �i # Zm d(i)=k2 which implies

d(0)�
k2

m
.

Define the nonnegative polynomial

f (x)= } :
a # A

eiax}
2

=k+ :
a{b, a, b # A

e i(a&b) x

=k+2 :
j

cos * j x ,

where the set [*j] consists of all differences a&b, with a, b # A, a>b,
which are all distinct since A is of type B2 . (Notice that 1�*j�N.) With
the notation of Lemma 2 we have

d(0)=k+2Nm .

Since ktN1�2 and m=o(N1�2)=o(k) we may suppose that, for N large
enough,

1
2N1�2<k<2N1�2
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and

m< 1
2k.

Hence

3
Nm

=
6

d(0)&k
�

6
k2�m&k

�
12m
k2 <

48m
N

<48N&1�2.

Let

==c(mN&1�2)1�2,

with the positive constant c to be chosen later. Since m=o(N1�2), = can be
made as small as we please and

3
Nm

<= ,

if N is large enough. We also have (since Nm>N�16m)

=2Nm=c2 m
N1�2 Nm>

c2

16
}

m
N1�2 }

N
m

=
c2

16
N1�2,

so that

A=2Nm>A
c2

16
N1�2>k

if c is suitably chosen, i.e., by Ac2�32=1. (Here A is the constant in Lemma 2.)
Hence the hypothetis of Lemma 2 must fail, and we obtain (since N is

larger than all *j)

N�(2&=) mNm ,

i.e.,

N
m

�\1&c
m1�2

N1�4+ (d(0)&k).
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Since m1�2N&1�4=o(1) we have

d(0)&k�\1+C
m1�2

N1�4+ N
m

�\1+C
m1�2

N1�4+\k2

m
+

2lk
m

+
l 2

m+
�

k2

m
+C

k2

m1�2N1�4+C
lk
m

.

We also have k=o(k2�m1�2N1�4) since m=o(N1�2) and ktN1�2. It follows
that

} :
x # Zm

(a(x))2&
k2

m }�C \ k2

m1�2N1�4+
lk
m+ ,

and by Lemma 1 we obtain (with ktN1�2)

"a(x)&
k2

m "2

�C
N1�4

m1�4 \N1�4+
l

m1�2+
1�2

�C {
N3�8

m1�4

N1�4l1�2

m1�2

if l�N1�4m1�2

else

as we had to prove. K
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