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m and on the difference N'2—|.7| (these quantities should not be too large), the
elements of .o/ are uniformly distributed in the residue classes mod m. Quantitative
estimates on how uniform the distribution is are also provided. This generalizes recent
results of Lindstrom whose approach was combinatorial. Our main tool is an upper
bound on the minimum of a cosine sum of k terms, Z’l‘ cos 4;x, all of whose positive
integer frequencies /; are at most (2 —¢) k in size. © 1999 Academic Press

INTRODUCTION AND RESULTS

A set o/ = {1, .., N} is of the type B, if all sums
a+b, with a>=b, a,be.</,

are distinct. (Such sets are also called Sidon, but the term has a very dif-
ferent meaning in harmonic analysis.) This is easily seen to be equivalent
to all differences a —b, with a#b, a, be .o/, being distinct. It is an old
theorem of Erdds and Turan [ET41, HR83, K96] that the size of the
largest B, subset of {1,..,N} is at most N>+ O(N'*). It is also known
[BC63, HR83] that there exist B, subsets of {1, ..., N} of size ~ N2

In this note we consider such dense B, subsets <7 of {1, .., N}, ie., sets
of size N2+ o(N'?), and prove, under mild conditions on |.</| and the
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modulus m, which is also allowed to vary with N, that they are uniformly
distributed mod m. More precisely, let

a(x)=a,(x)=|{ae.o/:a=x mod m}|, for xez,,

be the number of elements of .7 with residue x mod m. We shall show, for
example, that if |.«Z| ~ N2 and m is a constant then, as N — oo,

a(x)=|j|+o<|j|>. (1)

We shall also obtain bounds on the error term. These bounds will depend
on |</|, m and N.

Previously Lindstréom [ L98] showed precisely (1) using a combinatorial
method, thus answering a question posed in [ESS94]. Under the addi-
tional assumptions

m=2  and |/ | = N2 (2)

he obtained the bound O(N*?) for the error term in (1).

Here we use an analytic method which has previously been used [ K96 ]
to prove and generalize the Erdés—Turan theorem mentioned above. The
core of our technique is the following theorem [ K96] which was proved in
connection with the so called cosine problem of classical harmonic analysis.

THEOREM 1. Suppose 0< f(x)=M + 3V cos 2;X, with the integers A;
satisfying

for some ¢>3/N. Then
M > A&>N, (3)

for some absolute positive constant A.

Our main theorem, of which Lindstrom’s result is a special case, is the
following.

THEOREM 2. Suppose </ = {1, ..., N} is a B, set and that

k=|o|=N"?—1, with [1=I(N)=o(NY?).
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Assume also that m = o(N'?). Then we have

N3/8
N o
m
a(x)—E 2<C NVA[2 (4)
—_ else
m\? .

(In our notation / need not be a positive quantity. If it is negative (i.e.,
k > N') the first of the two alternatives in (4) holds in the upper bound.)

We use the notation | f|,=(X,cz, |f(x)|")"?, for f:Z,—C and
I<p<ow, and also |fll,=max,.z, |f(x)]. We obviously have
[/l <l fl,, forall fand 1<p <oo.

Remarks. 1t follows easily from Theorem 2 that in the following two
cases we have uniform distribution in residue classes mod m.

1. When /< NY*m'2 and m = o(N'®) we have

Nk

2 m

k
m

k
a(x) 0

a(x) —

(o 0]

2. When /> NYm'2 and m = o(NY?/I) we have

N2 k
<C iz =0 <> . (6)
m m

k
a(x) 0

< a(x)—%

[e) 2

In these two cases we have uniform distribution “in the /? sense” as well as
in the /* sense.

As a comparison to the result that Lindstrém obtained under assump-

tions (2), we obtain that whenever m is a constant and /< CN'* we have
k N1/4ll/2
a(x)—% 2< W< CmN3/8.

As is customary, C denotes an absolute positive constant, not necessarily
the same in all its occurences, while C with a subscript denotes a constant
depending at most on the parameter indicated in the subscript.

PROOFS

For the proof of Theorem 2 we shall need the following two lemmas, the
first of which is elementary and the second a consequence of Theorem 1.
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Lemma 1. Ifa:Z,—»Cand S=3Y . 5, a(x) then

)

xe€Zm

S| S?
atx) =~ = ¥ a(x)P="

xe€Zm

Proof. Let a(x)=S/m+d(x) for xe Z,,. It follows that > ., J(x)=0.
Then

Yo Ja(x))P= Y <:;2+|6(x)|2+251Re5(x)>

xX€Zm xX€Zm

R T

X€Zm
Lemma 2. Suppose A,eN,j=1,.., N, are distinct positive integers and
define
N,,=|{4;:4;=0 mod m}|.

If

N
0<p(x)=M+ ) cosix, (xeR),
j=1
and
4, <(2—¢&) N, m, Sor all ;=0 mod m,
for some ¢>3/N,,, then we have

M > AN,

for some absolute positive constant A.

Proof. The measure u on [0,27) with f(n)=1 if m divides n and
f(n) =0 otherwise is nonnegative. Let

g(x)=p(x) % u=M+ ) cosix=>0.

m|A;

Define also the polynomial

A
r(x)=q<:1>=M+ > cos%’xzo.

ml|l;
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By Theorem 1 and the assumption

o

~<(2-¢)N,,
m

we get M > Ae?N,, as desired. |

Proof of Theorem 2. Write
d(j)={(a,b)e A*:a—b=j mod m}|,
and notice that, by the Cauchy-Schwarz inequality,

d(j)= ). ali)a(i+j)< Y (a(i))*=d(0),

i€Zn i€Zn

We also clearly have Y;_, d(i)=k* which implies
d0)=—.

Define the nonnegative polynomial

2

f(x) =

z eiax

ae s

=k+ Z ei(afb)x

a#b,a,be oA

=k+2) cosix,

J

where the set {4

(JeZ,),

(JeZ,).

151

j} consists of all differences a—b, with a, be o/, a>b,

which are all distinct since .7 is of type B,. (Notice that 1 <4;<N.) With

the notation of Lemma 2 we have

d(0) =k +2N,,.

Since k~ NY? and m =o(NY?)=o0(k) we may suppose that, for N large

enough,

INY2 <k <2N'2
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and
m < 3k.
Hence
3 6 6 12m 48m
= < < P _ggN,
N, dO)—k Sk m—k Sk SN
Let

e=c(mN~V3H12

with the positive constant ¢ to be chosen later. Since m = o(N'?), ¢ can be
made as small as we please and

.
A
N,

if N is large enough. We also have (since N,,> N/16m)

m 2 m N 2
N, =c*—= N, >— - . —=-— N2
ENm= N6 N2 T 16

so that
C2
Ae*N,, > A EN1/2>k

if ¢ is suitably chosen, i.e., by Ac?/32 = 1. (Here A is the constant in Lemma 2.)
Hence the hypothetis of Lemma 2 must fail, and we obtain (since N is
larger than all 4))

N=(2—¢&)mN,,,

1e.,

N 12
m><1—c”]:M> (d(0) k).
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Since m2N Y4 =0(1) we have

m'\ N
d(O)—k<<1+CN1/4>
m2\/k* 2k 12
< | —
\<1 +cN1/4><m +2 +m>
k> k2 lk
S T CnENE T

We also have k = o(k?/m'2N'*) since m = o(N'?) and k ~ N2 Tt follows

that

k2
m

Y (a(x))?

xX€Zm

k> lk
<C m1/2N1/4+% d

and by Lemma | we obtain (with k ~ N'/?)

k2 N1/4 . / 1/2
. R /4
a(x)—m 2<Cm1/4 <N +m1/2>
3/8
N if IS NY4m!'?
/A =
<C NVAp2
W else
as we had to prove. ||
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