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In this note, we give a bound for the Castelnuovo–Mumford regularity of a homogeneous
ideal I in terms of the degrees of its generators. We assume that I defines a local complete
intersection with log canonical singularities.
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1. Introduction

Let I be a homogeneous ideal in a polynomial ring R = k[x0, . . . , xn] over a field k of characteristic zero. Consider the
minimal free resolution of R/I as a graded R-module,

· · · → ⊕jR(−di,j)→ · · · → ⊕jR(−d1,j)→ R→ R/I → 0.

The Castelnuovo–Mumford regularity, or simply regularity, of R/I is defined by

reg R/I = max
i,j
{di,j − i}.

The regularity of I is defined by reg I = reg R/I + 1. It measures the complexity of the ideal I and its syzygies. For more
discussion of regularity, see the book of Eisenbud [7] or the survey of Bayer–Mumford [1].

Suppose that I is generated by homogeneous polynomials of degrees d1 ≥ d2 ≥ · · · ≥ dt and defines a projective
subscheme X = ProjR/I in Pn of codimension r . It has been shown that there is a doubly exponential bound for the regularity
of ideal I in terms of the degrees of its generators. An interesting question is whether one can find better bounds under some
reasonable conditions on X , for instance on its singularities.

If IX is the saturation of I , then reg IX is equal to the regularity of the ideal sheaf IX and regIX is defined as the minimal
numberm such that H i(Pn, IX (m− i)) = 0 for all i > 0.

The first surprising result was worked out by Bertram et al. [2] when X is a nonsingular variety. They found a bound for
the regularity of IX which depends linearly on the degrees of the generators of I; namely

reg R/IX ≤
r−

i=1

di − r.

This bound is sharp when X is a complete intersection. Chardin and Ulrich [3] use generic linkage to prove the above bound
in the case when X is a local complete intersection with rational singularities. Recently, applying multiplier ideal sheaves
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and Nadel’s vanishing theorem, deFernex and Ein [4] proved that this bound holds in themuchmore general situationwhen
the pair (Pn, rX) is log canonical.

On the other hand, one can try to bound the regularity of I . If X is a local complete intersection with at most isolated
irrational singularities, Chardin and Ulrich [3] gave the following bound:

reg R/I ≤
(dim X + 2)!

2


r−

i=1

di − r


, (1.1)

which also depends linearly on the degrees of generators. Recently, in his paper [10], Fall improved (1.1) to

reg R/I ≤ (dim X + 1)!


r−

i=1

di − r


.

Starting from this formula and using Bertini’s Theorem, Fall also gave an estimate for the regularity of the defining ideal of
any projective subscheme X .

Local complete intersections with rational singularities are canonical. In light of the work of deFernex and Ein [4] and
Chardin and Ulrich [3], it is natural to ask whether the bound (1.1) holds for log canonical singularities. A scheme of finite
type over k is local complete intersection log canonical if it is a local complete intersection with log canonical singularities. In
this note, we give an affirmative answer to this question in the following theorem (as an easy corollary of Theorem 4.2).

Theorem 1.1. Let R = k[x0, . . . , xn], and let I = (f1, . . . , ft) be a homogeneous ideal, generated in degrees d1 ≥ d2 ≥ · · · ≥
dt ≥ 1 of codimension r. Assume that X = ProjR/I is local complete intersection log canonical and dim X ≥ 1. Then

reg R/I ≤
(dim X + 2)!

2


r−

i=1

di − r


.

Our main idea relies on the generic linkage method used in [3]. By constructing a generic link Y of X , we are able to
reduce the problem to the intersection divisor Z = Y ∩ X and then proceed by induction on the dimension. However, for
this approach there are two main problems we need to understand. First we need to know how to pass singularities from
X to Z . This is the hard part of our approach and leads to the study of a flat family of log canonical singularities. Second we
need to control the number and degrees of the defining equations of Z , for which there is a standard method already.

This note is organized as follows. We explore flat families of log canonical singularities in Section 2. By using Inversion
of Adjunction due to Ein and Mustaţǎ [5], we prove the following theorem.

Theorem 1.2. Let f : Y → X be a flat morphism of schemes of finite type over k. Assume that X and all fibers of f are local
complete intersection log canonical. Then Y is local complete intersection log canonical.

In Section 3, we use the generic residual intersection theory developed by Huneke and Ulrich [8] to pass the log canonical
singularities from X to the intersection divisor Z . This is encoded in the following result.

Proposition 1.3. Let S = Spec R be a regular affine scheme over k and X ⊂ S be a subscheme defined by I = (z1, . . . , zt)
of codimension r. Construct a generic linkage J of I as follows: let M = (Uij)t×r be a matrix of variables, R′ = R[Uij],
α = (α1, . . . , αr) = (z1, . . . , zt) · M and J = [α : IR′]. Let Z be a subscheme of SpecR′ defined by the ideal J + IR′. If X is
local complete intersection log canonical, then Z is also local complete intersection log canonical.

In the last section, we use induction to obtain the bound of regularity. The main idea comes from Chardin and Ulrich [3].
Some natural questions are pointed out by referees. The first question is whether it is possible to pass singularities from

X to the link Y = SpecR′/J in Proposition 1.3. The main difficulty here is that there is no natural morphism from Y to X and
therefore we do not know how to pass singularities from X to Y . Wemay use themorphism from Y to S, but we do not know
what kind of fiber it will have. However, it is a really interesting question and we may propose a conjecture on it.

Conjecture 1.4. Assume the hypothesis of Proposition 1.3. Set Y = SpecR′/J . If X is local complete intersection log canonical,
then Y is also local complete intersection log canonical.

The second question is, comparing with the work of Chardin, Ulrich and Fall, can we allow X to have some non-log
canonical points and get a similar bound to Fall’s results? Unfortunately, the method we use in this note seems unable to
solve this problem. Admitting some non-log canonical points on X , we cannot show the intersection divisor Z has the same
property as X; this would be an obstruction to Fall’s method. But if we could show Z also admits non-log canonical points,
we may reduce the number of defining equations of Z by one, and this will lead to Fall’s sharper bound. Nevertheless, we
believe the answer of this question could be positive, and there will be a better bound under weaker assumptions. Here we
make a conjecture in this direction.
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Conjecture 1.5. Let R = k[x0, . . . , xn], and I = (f1, . . . , ft) be an homogeneous ideal, generated in degrees d1 ≥ d2 ≥ · · · ≥
dt ≥ 1 of codimension r. Assume that, except for some isolated points, X = ProjR/I is local complete intersection log canonical
and dim X ≥ 1. Then

reg R/I ≤ (dim X + 1)!


r−

i=1

di − r


.

The author is grateful to Lawrence Ein and BerndUlrich, who offeredmany important suggestions and helpful discussions
which made this note possible. The author also thanks referees for their kind suggestions and patient reading.

2. Flat family of log canonical singularities

In the present section, we study a flat family of local complete intersection log canonical singularities. We begin by
recalling the definitions of minimal log discrepancy and log canonical singularities. We mainly follow the approach in
[6, Section 7].

Consider a pair (X, Y ), where X is a normal, Q-Gorenstein variety and Y is a formal finite sum Y =
∑

i qi · Yi of proper
closed subschemes Yi of X with nonnegative rational coefficients qi.

Let X ′ be a nonsingular variety which is proper and birational over X . If E is a prime divisor on X ′, then E defines a divisor
over X . The image of E on X is called the center of E, denoted by cX (E).

Given a divisor E over X , we choose a proper birational morphismµ : X ′ → X with X ′ nonsingular such that E is a divisor
on X ′, and such that all the scheme-theoretic inverse images µ−1(Yi) are divisors. The log discrepancy a(E; X, Y ) is defined
such that the coefficient of E in KX ′/X −

∑
i qi · µ

−1(Yi) is a(E; X, Y )− 1. This number is independent of the choice of X ′.
LetW be a nonempty closed subset of X . Theminimal log discrepancy of the pair (X, Y ) onW is defined by

mld(W ; X, Y ) = inf
cX (E)⊆W

{a(E; X, Y )}.

If mld(p; X, Y ) ≥ 0 for a closed point p ∈ X , we say that the pair (X, Y ) is log canonical at p. If (X, Y ) is log canonical at each
closed point of X , we then say that the pair (X, Y ) is log canonical. If Y = 0, we just write the pair (X, Y ) as X .

One important theoremonminimal log discrepancy is Inversion of Adjunction. It is proved for local complete intersection
varieties by Ein and Mustaţǎ. Since it is used very often in our proofs, we state it here for the convenience of the reader.

Inversion of Adjunction ([5, Theorem1.1]). Let X be a normal, local complete intersection variety, and Y =
∑

i qi · Yi, where
qi ∈ R+ and Yi ⊂ X are proper closed subschemes. If D ⊂ X is a normal effective Cartier divisor such that D * ∪iYi, then for
every proper closed subset W ⊂ D, we have

mld(W ; X,D+ Y ) = mld(W ;D, Y |D).

The local complete intersection log canonical singularities behave well in flat families. More specifically, consider a flat
family over a local complete intersection log canonical scheme, where all fibers are also local complete intersection log
canonical. Then we show that the total space itself is local complete intersection log canonical.

We start with the case where the flat family has a nonsingular base.

Proposition 2.1. Let f : Y → X be a flat morphism of schemes of finite type over k. Assume that X is nonsingular and each fiber
of f is local complete intersection log canonical. Then Y is local complete intersection log canonical.

Proof. Since X and all fibers are normal and local complete intersections, by flatness of f , we see that Y is normal and a local
complete intersection ([11, Section23]). By choosing an irreducible component of Y and its image, we may assume that Y
is a variety and f is surjective. The question is local. We may assume that X = Spec A is affine. Choosing x ∈ X , a closed
point defined by a maximal ideal m, OX,x is a regular local ring with a maximal ideal mx = (t1, t2, . . . , tn) generated by a
regular system of parameters, where n = dim X . Shrinking X if necessary, we can extend ti to X and therefore may assume
that m = (t1, . . . , tn) ⊂ A generated by a regular sequence. Set Ii = (t1, . . . , ti). Note that OX,x/(t1, . . . , ti) is regular. By
shrinking X if necessary, we may assume further that A/Ii is regular for each i = 1, . . . , n. Let Xi = Spec A/Ii be subschemes
of X and consider the following fiber product

Yi −−−−→ Y

fi

 f

Xi −−−−→ X

By the flatness of fi and the assumption that each fiber of fi is a local complete intersection and normal, we obtain that Yi is
a local complete intersection and normal for each i = 1, . . . , n.

Choose a closed point y on the fiber Yx = Yn. By the flatness of f , (t1, . . . , tn) is a regular sequence in OY ,y and therefore
the ti’s define divisors D1, . . . ,Dn around y in Y such that

Yi = D1 ∩ D2 ∩ · · · ∩ Di, for i = 1, . . . , n.
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Now by Inversion of Adjunction, we have

mld(y; Yn) = mld(y; Yn−1,Dn|Yn−1)

= mld(y; Yn−2,Dn|Yn−2 + Dn−1|Yn−2)

= . . .

= mld(y; Y ,D1 + · · · + Dn).

From the assumption that mld(y; Yn) ≥ 0, we get that mld(y; Y ) ≥ 0, i.e. Y is log canonical at y, which proves the
proposition. �

In the general case in which the flat family has a singular base, we first resolve the singularities of the base, and then
base change to the situation of nonsingular base. However, after base change, some extra divisors could be introduced on
the new flat family. This means that we need to consider singularities of pairs on the new flat family.

Theorem 2.2. Let f : Y → X be a flat morphism of schemes of finite type over k. Assume that X and all fibers of f are local
complete intersection log canonical. Then Y is local complete intersection log canonical.

Proof. As in the proof of Proposition 2.1, we may assume that X and Y are varieties and Y is normal and a local complete
intersection. We need to show Y is log canonical. Take a log resolution of X , µ : X → X , and construct the fiber productY = Y ×X X:Y −−−−→ Y

g
 fX µ
−−−−→ X

By Proposition 2.1,Y is local complete intersection log canonical. Since X is log canonical, we canwrite the relative canonical
divisor KX/X = P −N , where P and N are effective divisors supported in the exceptional locus of µ, so that N =

∑
Ei where

Ei are prime divisors with simple normal crossings. By base change for relative canonical divisors, we have KY/Y = g∗KX/X
and therefore KY/Y = g∗(P)− g∗(N).

Denoting the Fj’s as distinct irreducible components of the g∗(Ei) (note that g∗(Ei) = g−1(Ei) as scheme-theoretical
inverse image of Ei), we have g∗(N) =

∑
Fj. This will be shown in detail at the beginning of the proof of Lemma 2.3 below.

Now we let π : Y ′ →Y be a log resolution ofY such that

KY ′/Y = KY ′/Y + π∗KY/Y

= A− B+ π∗g∗P −
−

π∗Fi

where A is the positive part of KY ′/Y and B is the negative part of KY ′/Y and all prime divisors in the above formula are simple
normal crossings. In order to show Y is log canonical, it is enough to show that the coefficient of each prime divisor in
B +

∑
π∗Fi is 1. This is equivalent to showing that the pair (Y , g−1N) is log canonical, which is shown in the following

Lemma 2.3. �

Lemma 2.3. Let f : Y → X be a flat morphism of varieties such that X is nonsingular and each fiber of f is local
complete intersection log canonical. Assume that E1, . . . , Er are prime divisors on X with simple normal crossings. Then the pair
(Y ,

∑r
i=1 f

−1(Ei)) is log canonical, where f −1 means scheme-theoretical inverse image.

Proof. From Proposition 2.1, Y is local complete intersection log canonical. Also for each divisor Ei, the scheme-theoretical
inverse f −1(Ei) is local complete intersection log canonical. This implies that

r−
i=1

f −1(Ei) =
s−

j=1

Fj

where Fj are distinct irreducible components of the subschemes f −1(Ei). Note that since f is flat, each Fj only appears in one
f −1(Ei), and if some Fj’s are in the same f −1(Ei) then they are disjoint. Furthermore each Fj is a Cartier normal divisor on Y
with local complete intersection log canonical singularities. We need to show the pair (Y ,

∑
Fj) is log canonical.

We prove this by induction on the dimension of X . First assume that dim X = 1. Then E1, . . . , Er are distinct points and
F1, . . . , Fs are pairwise disjoint. It is enough to show that for each j, mld(Fj; Y , Fj) ≥ 0. Choosing a closed point p ∈ Fj of Y ,
by Inversion of Adjunction and the fact that Fj has log canonical singularities, we have mld(p; Y , Fj) = mld(p; Fj) ≥ 0.

Assume X has any dimension. Since Y is log canonical, it is enough to show that for each j, mld(Fj; Y ,
∑s

t=1 Ft) ≥ 0.
Without loss of generality, we prove this for F1 and assume that F1 ⊆ f −1(E1). Choosing any closed point p ∈ F1 of Y , by
Inversion of Adjunction, we have

mld


p; Y , F1 +

s−
t=2

Ft


= mld


p; F1,

s−
t=2

Ft |F1


.
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For i = 2, . . . , r , we set Di = E1∩Ei and note that
∑s

t=2 Ft |F1 =
∑r

i=2 f
−1(Di), where f −1 means scheme-theoretical inverse

image. Now we are in the situation

f : F1 → E1,

where E1 is nonsingular and D2, . . . ,Dr are divisors on E1 with simple normal crossings. Then applying induction on F1, we
get that the pair (F1,

∑s
t=2 Ft |F1) is log canonical and therefore mld(p; F1,

∑s
t=2 Ft |F1) ≥ 0 which proves the lemma. �

If f : Y → X is a surjective smooth morphism, then we can move singularities freely from Y to X . Using the notion of jet
schemes, we have a quick proof for this.

Given any scheme X , we can associate the mth jet scheme Xm for any positive integer m. The properties of jet schemes
are closely related to the singularities of X . We may use jet schemes to describe local complete intersection log canonical
singularities. The work of Ein and Mustaţǎ shows that if X is a normal local complete intersection variety, then X has log
canonical singularities if and only if Xm is equidimensional for every m. For more information on jet schemes and their
application to singularities, we refer the reader to [6].

Proposition 2.4. Let f : Y → X be a smooth surjective morphism of schemes of finite type over k. Then X is local complete
intersection log canonical if and only if Y is local complete intersection log canonical.

Proof. First note that since f is smooth, we have X is normal and a local complete intersection if and only if Y is normal and
a local complete intersection. Since f is smooth and surjective, for every m we have an induced morphism between m-jet
schemes fm : Ym → Xm, which is smooth and surjective [6, Remark 2.10]. Then Ym is equidimensional if and only if Xm is
equidimensional. Now by [5, Theorem 1.3], we get the proposition. �

Remark 2.5. In the proof, if f is smooth but not surjective,we can only get fm : Ym → Xm is smooth. Then equidimensionality
of Xm will imply that Ym is equidimensional. This means that for a smooth morphism f : Y → X , if X is local complete
intersection log canonical then Y is also local complete intersection log canonical singularities. This is a quick proof for a
special case of Theorem 2.2.

3. Log canonical singularities in a generic linkage

In this section, we study the log canonical singularities in a generic linkage. This could be compared to the work in [3]
studying rational singularities in a generic linkage. The s-generic residual intersection theory can be found in [8]. Throughout
this section, all rings are assumed to be Noetherian k-algebras and a point on a scheme means a point locally defined by a
prime ideal, not necessarily maximal. All fiber products are over the field k unless otherwise stated.

Let S = Spec R be an affine scheme and X ⊂ S be a codimension r subscheme defined by an ideal I = (z1, . . . , zt). For
an integer s ≥ 0, let M = (Uij)t×s be a t × s matrix of variables and R′ = R[Uij] be the polynomial ring over R obtained by
adjoining the variables ofM . Define S ′ = S×At×s

= Spec R′, which has a natural flat projectionπ : S ′ → S. Let X ′ = π−1(X)
be defined by the ideal IR′. Construct an ideal α in R′ generated by α1, . . . , αs as follows:

α = (α1, . . . , αs) = (z1, . . . , zt) ·M;

and set J = [α : IR′]. The subscheme Y ′ of S ′ defined by J is called an s-generic residual intersection of X .
We define Z to be the scheme-theoretical intersection of X ′ and Y ′. Its defining ideal is IZ = J + IR′. We equip Z with a

restricted projection morphism π : Z → X and call Z an intersection divisor of an s-generic residual intersection of X .
Note that if s < r , then α is generated by a regular sequence and therefore J = α, Z = X ′. The interesting case is when

s ≥ r . In particular, when s = r , Y ′ is called a generic linkage of X . Correspondingly, we call Z an intersection divisor of a
generic linkage of X .

Under the assumption that X is a local complete intersection, the morphism π : Z → X , and in particular its fibers, can
be understood very well. This offers us an opportunity to pass singularities from X to Z .

We start with a lemma which describes the fibers of π when X is a complete intersection.

Lemma 3.1. Let S = Spec R be a Gorenstein integral affine scheme and X be a complete intersection subscheme defined by a
regular sequence I = (z1, . . . , zr) in R. For s ≥ 0, let M = (Uij)r×s, R′ = R[Uij], α = (α1, . . . , αs) = (z1, . . . , zr) · M and
J = [α : IR′]. Assume that Z is defined by J + IR′ and consider the natural morphism π : Z → X. We have

(1) If s < r, then Z ∼= X × Ar×s and π is the projection to X.
(2) If s ≥ r, then π : Z → X is a flat morphism and for any point p ∈ X,

π−1(p) ∼= k(p)[Uij]/Ir(M)

where Ir(M) is the r × r minors ideal of M.
(3) In particular, if s = r, then π : Z → X is a flat morphism such that each fiber is a local complete intersection with rational

singularities.
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Proof. (1) is trivial because in this case J = α and Z is defined by IR′ so that Z = π−1(X) ∼= X × Ar×s.
For (2) and (3), picking q ∈ X ⊂ S andpassing toRq, wemay assumeR is local. By [8, Example 3.4], J = (α1, . . . , αs, Ir(M)).

Z is then defined by IZ = J + IR′ = (I, Ir(M)).
Note that

R[Uij]/(I, Ir(M)) = R/I ⊗R R[Uij]/Ir(M).

This means π : Z → X can be constructed from the fiber product

Z −−−−→ Spec R[Uij]/Ir(M)

π

 θ

X −−−−→ S = Spec R

Since θ is flat, we obtain π is flat. The fiber of π at p ∈ X is

F = k(p)⊗R/I R[Uij]/(I, Ir(M))

= k(p)[Uij]/Ir(M).

In particular, if s = r , we see that F is a local complete intersection with rational singularities. �

Now we turn to the case where X is a local complete intersection.

Proposition 3.2. Let S = Spec R be aGorenstein integral affine scheme andX be a subscheme defined by an ideal I = (z1, . . . , zt)
in R. For s ≥ 0, let M = (Uij)t×s, R′ = R[Uij], α = (α1, . . . , αs) = (z1, . . . , zt) ·M, and J = [α : IR′]. Let Z be defined by J + IR′
and consider the natural morphism π : Z → X. Let p ∈ X be a point of S and assume that Ip is generated by a regular sequence
of length r. Then there is an affine neighborhood of p over which π can be factored as follows

Z

π

��

π ′

��>
>>

>>
>>

X Pg
oo

such that P = X × A(t−r)×s with g the projection to X, and Z can be viewed as an intersection divisor of an s-generic residual
intersection of P.

Note that the above diagram is local. More precisely, there is an affine neighborhoodU of p and themorphismπ : Z → X
in the above diagram really means the restriction of π over U , i.e. π : π−1(U) ∩ Z → U ∩ X .

Proof. By assumption, we may replace S by an affine neighborhood of p such that I is generated by a regular sequence, say
z1, . . . , zr . Then

zr+1 = a1,r+1z1 + a2,r+1z2 + · · · + ar,r+1zr
zr+2 = a1,r+2z1 + a2,r+2z2 + · · · + ar,r+2zr

. . .
zt = a1,tz1 + a2,tz2 + · · · + ar,tzr

(3.1)

where aij ∈ R. Set A = (aij)r×(t−r). We can write (zr+1, . . . , zt) = (z1, . . . , zr) · A. DenoteM =

C
B


, where

C =

 U11 U12 · · · U1s
U21 U22 · · · U2s
. . . . . . . . . . . . . . . . . . . . .
Ur1 Ur2 · · · Urs

 , B =

 Ur+1,1 Ur+1,2 · · · Ur+1,s
Ur+2,1 Ur+2,2 · · · Ur+2,s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ut1 Ut2 · · · Uts

 .

Using the equations in (3.1), we can rewrite (α1, . . . , αs) = (z1, . . . , zt) ·M as

(α1, . . . , αs) = (z1, . . . , zr) · (A · B+ C).

Set N = (Vlm)r×s = A · B+ C . Then the ring extension of R to R′ can be obtained by extending twice as follows

R→ R1 = R[Uij|i > r] → R′ = R1[Vpq].

The first extension R → R1 gives the morphism g : SpecR1 = S × A(t−r)×s
→ S. Let P = g−1(X) = X × A(t−r)×s defined

by IR1 which is the complete intersection generated by the regular sequence (z1, . . . , zr) in R1. Restricting g to P , we get
a projection g : P → X . In the second extension, R1 → R′, we see that Z can be viewed as an intersection divisor of an
s-generic residual intersection of P with morphism π ′ : Z → P . �
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Since Z is a generic intersection divisor of X , the fibers of the morphism π : Z → X are local complete intersections
with rational singularities and they are log canonical. So the morphism π : Z → X provides us a flat family of log canonical
singularities, to which results of the previous section can be applied.

Proposition 3.3. Let S = Spec R be a regular affine scheme and X be a subscheme defined by an ideal I = (z1, . . . , zt) with
codimension r in S. Construct a generic linkage J of I as follows: letM = (Uij)t×r , R′ = R[Uij],α = (α1, . . . , αr) = (z1, . . . , zt)·M,
and J = [α : IR′]. Let Z be a subscheme of SpecR′ defined by the ideal J + IR′ and consider the natural morphism π : Z → X. If X
is local complete intersection log canonical, then Z is also local complete intersection log canonical.

Proof. Choose any point p ∈ X . By the assumption, Ip is generated by a regular sequencewith length l ≥ r . By Proposition 3.2,
there is an affine neighborhood of p, over which we can factor π : Z → X as follows

Z

π

��

π ′

��>
>>

>>
>>

X Pg
oo

such that P ∼= X ×A(t−l)×r , which is defined by a regular sequence of length l in S×A(t−l)×r , and Z is an intersection divisor
of a r-generic residual intersection of P .

There are two possibilities.
If l = r , then by Lemma 3.1(3),π ′ : Z → P is a flatmorphismwhose fibers are locally complete intersection log canonical.

Now by Proposition 2.4 and Theorem 2.2 we obtain that Z is local complete intersection log canonical.
If l > r , then by Lemma 3.1(1), Z ∼= P × Al×r . Using Proposition 2.4, we have that Z is local complete intersection log

canonical. �

We have passed the singularities from X to Z in above proposition. As we mentioned in the Introduction, we need to
understand the generators of Z . Since Z is defined by J+ IR′, basically, we need to know the generators of the generic linkage
J . The method we will use here is quite standard in [3] and we shall be brief.

Lemma 3.4. Let X ⊂ Pn be a equidimensional Gorenstein subscheme with log canonical singularities. Then

regωX = dim X + 1,

where ωX is the canonical sheaf of X.

Proof. By assumption,ωX is a direct sum of the canonical sheaves of each irreducible component of X . Wemay assume that
X is irreducible. Since X is log canonical, Kodaira vanishing holds for X [9, Corollary 1.3], i.e.

H i(X, ωX (k)) = 0, for all k > 0 and i > 0.

Note that Hdim X (X, ωX ) ≠ 0. Then we see regωX = dim X + 1. �

Proposition 3.5. Let X ⊂ Pn be a equidimensional Gorenstein subscheme with log canonical singularities and codimension
r. Assume that Y ⊂ Pn is direct linked with X by forms of degrees d1, . . . , dr . Denote by J the defining ideal of Y and write
σ =

∑r
i=1(di − 1). Then J = (J)≤σ .

Proof. Let I ⊂ R = k[x0, . . . , xn] be the defining ideal of X and d = dim R/I . Let b = I ∩ J be generated by forms in
degrees d1, . . . , dr and ω be the canonical module of R/I . If d = 2, i.e., X is a nonsingular curve, then (ω)≤d = ω by
[3, Proposition 1.1]. If d > 2, i.e., dim X > 1, then regω = regωX = d by Lemma 3.4 and therefore we have (ω)≤d = ω.

Observe that

J/b = HomR(R/I, R/b) = ExtrR(R/I, R)[−d1 − · · · − dr ] = ω[d− σ ].

Hence (J/b)≤σ = (ω[d− σ ])≤σ = (ω)≤d[d− σ ] = ω[d− σ ]. From the diagram

0 −−−−→ (b)≤σ −−−−→ (J)≤σ −−−−→ (J/b)≤σ −−−−→ 0  
0 −−−−→ b −−−−→ J −−−−→ J/b −−−−→ 0,

we see (J)≤σ = J . �
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4. Bounds for Castelnuovo–Mumford regularity

Applying the results we have established, we are able to give a bound for the Castelnuovo–Mumford regularity of a
homogeneous ideal which defines a local complete intersection log canonical scheme. This partially generalizes the work
of Chardin and Ulrich [3] and gives a new geometric condition under which a reasonable bound can be obtained. For the
convenience of the reader, we follow the construction from [3] and keep the same notations.

Proposition 4.1. Let R = k[x0, . . . , xn] and I ⊂ R be a homogeneous ideal of codimension r generated by forms f1, . . . , ft of
degrees d1 ≥ d2 ≥ · · · ≥ dt ≥ 1. Let

aij =
−

|µ|=dj−di

Uijµxµ, for r + 1 ≤ i ≤ t, 1 ≤ j ≤ r,

where Uijµ are variables. Denote A = (aij), K = k(Uijµ), R′ = R⊗k K and define

(α1, . . . , αr) = (f1, . . . , ft)

Ir×r
A


,

J = [(α1, . . . , αr)R′ : IR′]. Assume that X = ProjR/I is local complete intersection log canonical. Then Z = ProjR′/IR′+ J is local
complete intersection log canonical.

Proof. Reduce the question to standard affine covers of Pn
k . Without loss of generality, we focus on one affine cover

U = Spec R(x0), where R(x0) means the degree zero part of the homogeneous localization of R with respect to x0, which
is canonically isomorphic to k[x1/x0, . . . , xn/x0]. Set V = π−1(U), where π is the natural morphism π : Pn

K → Pn
k . Note

that V = Spec R′(x0). For simplicity, we reset our notations as follows. Replace R by R(x0), R
′ by R′(x0), fi by fi/x

di
0 , and I by

I(x0). Then on the affine open set U , X is generated by I = (f1, . . . , ft) in R. We redefine elements of the matrix A by setting
aij =

∑
Uijµxµ/x|µ|0 . We can see that on V , Z is defined by the ideal J + IR′, where J = [α : IR′] and α = (α1, . . . , αr)

is defined by the equations in the assumption. Note that aij’s now become variables over R and therefore A is a matrix of
variables over R. We restrict to this affine case in the following proof.

Consider ring extensions R[aij] → R[Uijµ] → R′ = R⊗k K . The first one is given by adjoining variables. The second one
is the localization of R[Uijµ] by the multiplicative setW = k[Uijµ] \ {0}. They give morphisms φ1 and φ2 respectively:

Spec R′
φ2

−−−−→ Spec R[Uijµ]
φ1

−−−−→ Spec R[aij].

In R[aij], set J1 = [α : IR[aij]] and define a subscheme Z1 = SpecR[aij]/(J1 + IR[aij]), so that Z = (φ0 ◦ φ1)
−1(Z1). To show Z

has the desired singularities, we just need to show Z1 has the desired singularities. This is because φ1 is smooth and it passes
singularities from Z1 to φ−11 (Z1) by Proposition 2.4. Our singularities are preserved by localization and so φ2 will continue
passing singularities from φ−11 (Z1) to Z . Hence all we need is to prove the proposition for Z1 in SpecR[aij].

To this end, we introduce a new matrix of variables B = (blm)r×r and set

C =


B
A · B


= (cuv)t×s,

which is also a matrix of variables over R. In the ring R[cuv], we construct an intersection divisor Z ′ of X as follows: let
α′ = (α′1, . . . , α

′
r) = (f1, . . . , ft) ·C , J ′ = (α′ : IR[cuv]) and define Z ′ = Spec R[cuv]/(J ′+ IR[cuv]). Then consider the diagram

Spec R[aij]
q

←−−−− Spec R[aij] ⊗k k(blm) p

Spec R ←−−−− Spec R[cuv]

where q is induced by the base field extension R[aij] → R[aij]⊗k k(blm), and p is induced by R[cuv] → R[aij]⊗k k(blm), which
is the localization of R[cuv]with respect to themultiplicative set k[blm]\{0}. We note that p−1(Z ′) = q−1(Z1) = Z1⊗k k(blm).
By Proposition 3.3, Z ′ is local complete intersection log canonical. Since p is induced by localization, we obtain that p−1(Z ′)
is also local complete intersection log canonical. Finally because q is the base field change of Z1 from k to k(blm), it is easy to
see that Z1 is local complete intersection log canonical if and only if q−1(Z1) = Z1 ⊗k k(blm) is local complete intersection
log canonical. This proves the proposition. �

Theorem 4.2. Let R = k[x0, . . . , xn] and I = (f1, . . . , ft) be a homogeneous ideal, not a complete intersection, generated in
degrees d1 ≥ d2 ≥ · · · ≥ dt ≥ 1 of codimension r. Assume that X = ProjR/I is local complete intersection log canonical and
dim X ≥ 1. Then

reg R/I ≤
(dim X + 2)!

2


r−

i=1

di − r − 1


,
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unless R = k[x0, x1, x2] and I = lH with l a linear form and H a complete intersection of 3 forms of degree d1 − 1, in which case
reg R/I = 3d1 − 5.

Proof. We construct R′, α = (α1, . . . , αr), J and Z as in Proposition 4.1 and write σ =
∑r

i=1(di − 1) and d = dim R/I .
By the assumption that I is not a complete intersection, we may assume that d2 ≥ 2. Also we note that if σ = 1, then

ht I = 1 and there is a linear form l and a homogeneous ideal H such that fi = lhi and H = (h1, . . . , ht), where hi are all
linear forms, so we get reg R/I = reg R/(l)+ reg R/H = 0. Then we may assume in the following proof that σ ≥ 2.

We consider the codimension r in two cases.
Case of r ≥ 2. We proceed by induction on d. For d = 2, we have n ≥ 3. Applying [3, Proposition 2.2], we have

reg R/I ≤ (dim X+2)!
2 (σ − 1).

Assume that d ≥ 3. Let X ′ = ProjR′/IR′ which is local complete intersection log canonical. Let (IR′)top be the unmixed
part of IR′; it defines an equidimensional subscheme X ′top which is local complete intersection log canonical and J is directly
linked with (IR′)top by α. By Proposition 3.5, J = (J)σ . Set Z ′ = ProjR′/(IR′)top + (J)σ which is a Cartier divisor on X ′top,
then in the ring R′/(IR′)top, J is generated by d forms β1, . . . , βd of degrees at most σ , which give forms β1, . . . , βd in J of
degrees at most σ such that Z ′ = ProjR′/(IR′)top + (β1, . . . , βd), and therefore we obtain Z = ProjR′/IR′ + (β1, . . . , βd). Let
J ′ = (α1, . . . , αr , β1, . . . , βd). We have an exact sequence

0→ R′/IR′ ∩ J ′ → R′/IR′ ⊕ R′/J ′ → R′/IR′ + J ′ → 0.

From this, we get

reg R/I = reg R′/IR′ ≤ max{reg (R′/IR′ ∩ J ′), reg (R′/IR′ + J ′)}.

Since IR′ ∩ J ′ = (α1, . . . , αr) is a complete intersection, reg (R′/IR′ ∩ J ′) = σ . We just need to bound reg (R′/IR′ + J ′). Note
that IR′ + J ′ = (f1, . . . , ft , β1, . . . , βd) and ht (IR′ + J ′) = r + 1. By assumption of d1 ≥ 2, we have σ ≥ dr+1.

If IR′ + J ′ is a complete intersection, then some r + 1 generators will be a regular sequence. Assume that
fi1 , . . . , fip , βj1 , . . . , βjq are such generators where p+ q = r + 1. Then

reg R′/IR′ + J ′ =
p−

η=1

(deg fiη − 1)+
q−

µ=1

(degβiµ − 1).

If p ≤ r , then we can get reg R′/IR′ + J ′ ≤ σ + d(σ − 1) ≤ (d+1)!
2 (σ − 1). Otherwise p = r + 1, then we still have

reg R′/IR′ + J ′ ≤ σ + σ − 1 ≤ (d+1)!
2 (σ − 1).

If IR′ + J ′ is not a complete intersection, then let fi1 , . . . , fip , βj1 , . . . , βjq be r + 1 highest degree generators. By
Proposition 4.1, Z = ProjR′/IR′ + J ′ is local complete intersection log canonical, then we use induction for IR′ + J ′ to get

reg R′/IR′ + J ′ ≤
d!
2


p−

η=1

(deg fiη − 1)+
q−

µ=1

(degβiµ − 1)− 1


.

If p ≤ r , then the left part of the equality is ≤ d!
2 (σ + d(σ − 1) − 1) ≤ (d+1)!

2 (σ − 1). If p = r + 1, then the left part is
≤

d!
2 (σ + dr+1 − 1− 1) ≤ d!

2 (σ + σ − 1− 1) ≤ (d+1)!
2 (σ − 1). Hence we still obtain

reg R′/IR′ + J ′ ≤
(d+ 1)!

2
(σ − 1).

This proves the result for the case r ≥ 2.
Case of r = 1. There is an homogeneous form l and an homogeneous ideal H such that fi = lhi, I = lH and

H = (h1, . . . , ht) = [I : l]. Since X is a local complete intersection and normal, htH ≥ n. Also by assumption of d ≥ 2 we
have n ≥ 2. We consider the following two cases for n.

n = 2, then R = k[x0, x1, x2], ht I = 1. Applying [3, Proposition 2.2], we get reg R/I ≤ 3(σ − 1), unless R = k[x0, x1, x2],
l is a linear form and H a complete intersection of 3 forms of degree d1 − 1, in which case reg R/I = 3d1 − 5.

n ≥ 3, then d = n. We first note that we have the inequality

deg l+
n+1−
i=1

(deg hi − 1) ≤
(n+ 1)!

2
(σ − 1).

If htH = n + 1, then dim R/H = 0, and thus we have reg R/H ≤
∑n+1

i=1 (deg hi − 1), from which we get reg R/I =
reg R/(l)+ reg R/H ≤ (n+1)!

2 (σ − 1). If htH = n and H is a complete intersection, it is easy to see reg R/I ≤ (n+1)!
2 (σ − 1). If

htH = n and H is not a complete intersection, then by [3, Proposition 2.1], reg R/H ≤
∑n+1

i=1 (deg hi − 1). So we still obtain
reg R/I ≤ (n+1)!

2 (σ − 1). �

Remark 4.3. It is well known that if I is a complete intersection, then reg R/I ≤ σ . Including the situation of a complete
intersection in the theorem above, we get Theorem 1.1 in the Introduction.
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