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Abstract

We show that theegment endpoint visibility grapf any finite set of disjoint line segments in the plane admits
a simple Hamiltonian polygon, if not all segments are collinear. This proves a conjecture of Mirzaian.
0 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The segment endpoint visibility graptis(S) is defined for a sef of n disjoint closed line segments
in the plane. Its vertices are the 2egment endpoints; two verticesandb are connected by an edge, if
and only if the corresponding line segmaeitis either inS (which we callsegment edggsr if the open
segment:b does not intersect any (closed) segment fid(wisibility edge$. See Fig. 1 for an example.
Note that this graph is different from tlsegment visibility graphwhere vertices correspond to segments
and an edge connects two vertices, if and only if some points of the two segments are mutually “visible”.
Visibility graphs of disjoint objects or vertices/sides of polygons are fundamental structures in
computational geometry [2,11]. They have applications in shortest path computation, motion planning,
art gallery problems, but also in VLSI design, and computer graphics. The characterization and
recognition problem of visibility graphs are also of independent interest. Visibility concerning disjoint
line segments in the plane is basic, and problems for more complex objects can often be reduced to or
approximated by this structure.
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Fig. 1. A segment endpoint visibility graph; visibility edges are drawn as dotted segments.

1.1. Previous works and main theorem.

Segment endpoint visibility graphs have been subject to extensive research. The number of edges [14.
18], the computational complexity [7,9,13,15,20], storage space [1,5], and on-line updates [6] have been
studied for this class of graphs over the past decade.

We are interested in the following problem that was originally formulated by Mirzaian [10] and
later reposed by Bose [4]: How short can the longest circuit be in a segment endpoint visibility graph?
More precisely, what is the maximal numbg¢rz) such that any segment endpoint visibility graphnon
segments has a circuit of siz&n)?

If all segments lie on one line then, clearlf(n) = 0. Otherwise, one can show using triangulations
that f(n) = Q(4/n), but no non-trivial upper bound was known so far. In fact, it was conjectured [10]
that f(n) = 2n, i.e., there is always a Hamiltonian circuit in a segment endpoint visibility graph. We
prove in this paper the following stronger version of the conjecture.

Theorem 1. For any set of pairwise disjoint line segments, not all in a line, there exists a Hamiltonian
polygon.

Here, for a given sef of pairwise disjoint line segments,Hamiltonian polygoris a simple polygon
whose vertices are exactly the endpoints of the line segments and whose sides correspond to edges ¢
Vis(S).

Previously, Theorem 1 was shown to hold for a few special cases: Mirzaian [10] provedotiaxly
independensegments, that is, where every line segment has at least one endpoint on the boundary of the
convex hull; and O’Rourke and Rippel [12] proved it for segments where no segment is crossed by the
supporting line of any other segment. (Two segments or lines cross, iff there is a common point in the
relative interior of both.)

Hamiltonian polygons with special properties, however, do not necessarily exist: There are sets of
line segments for which there is mocumscribingHamiltonian polygon, that is, a Hamiltonian polygon
whose closure contains all the segments [19]. Similarly, there is not alwagiesnating Hamiltonian
polygon for a sef of segments, that is, a Hamiltonian polygon in which every line segmehisoh side.

It is NP-complete to decide whether a Sehdmits an alternating Hamiltonian polygon, if the segments
of S are allowed to intersect at endpoints [16], although it can be decided efficiently in some special
cases [17].
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1.2. Applications

An immediate consequence of Theorem 1 is a recent result of Bose, Houle and Toussaint [3]. They
show that for every sef of disjoint line segments, the segment endpoint visibility graph contains an
encompassing treeavhich is defined as a planar embedding of a tree with maximal degree three that
contains all segment edges. Indeed, a Hamiltonian polygon together with all segment edges forms a
planar spanning subgrag of Vis(S) with maximum degree three. Contracting the segment edghs in
and finding a spanning tree of the resulting graph, gives an encompassing tfee for

Using the existence of a Hamiltonian polygon, we could also show recently [8] that there is always
an alternating path(segment edges and visibility edges in alternating order) of lefigtbgn) in the
segment endpoint visibility graph afdisjoint line segments.

1.3. Proof technique

We build a Hamiltonian polygo® algorithmically, starting from the convex hull co$) (Fig. 2(a)).
The polygon P is then successively extended to pass through more segment endpoints. As a first
phase, the second endpoints of those segments for which one endpoint is already on the convex hull,
are included; this yields a new proof of Mirzaian’s theorem for convexly independent segments [10]
(Fig. 2(b)).

In a second phase is extended to some of the segments in its interior (Fig. 2(c)), and we create a
convex subdivision of. Once certain conditions (Lemma 3) are fulfilled, a simple induction completes
the proof (Fig. 2(d) and 2(e)).

@) (b) (©

(d) (e)
Fig. 2. Steps in the proof of Theorem 1.
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Every step of the algorithm and every operation relies only on elementary geometry, like ray shooting,
convex hull, or sorting angles. Based on our proof, it is straightforward to give@lo@r) algorithm to
find a Hamiltonian polygon for a given set of line segments. This running time is asymptotically optimal,
as was shown by Bose et al. [3] for finding an encompassing tree; such a tree can be obtained from a
Hamiltonian polygon in linear time, as explained above.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1 by induction. The
key lemma of the proof, Lemma 3, is proved algorithmically in three phases. Section 3 gives some basic
operations of our algorithm, Section 4 provides a new proof of the theorem of Mirzaian [10] and explains
the first phase of our algorithm. The second phase and the complete algorithm are discussed in Sections '
and 6.

2. Proof of Theorem 1

Given a setS of disjoint line segments in the plane, denote ByS) the set of segment endpoints
from S. A simple polygonP is defined as a closed region in the plane enclosed by a simple closed
polygonal curved P consisting of a finite number of line segments. L&tP) denote the set of vertices
of P.

Definition 2. A simple polygonP is aHamiltonian polygorfor S, if V(P) = V(S) and the sides oP
correspond to edges of \i$).

We say that a finite seD of pairwise non-overlapping simple polygons isd&sectionof P, if
P =Jpep D. (Two polygons overlap, if there is a common point in the relative interior of both.) The
following lemma is crucial in our argument, as it establishes Theorem 1 by a simple induction.

Lemma 3. For a setS of disjoint line segments, not all in a line, and a sigde of conu(S), there is a
simple polygonP whose sides correspond to edgesvig(S) and a dissectiorD of P satisfying the
following properties.

(L1) yzis aside ofP;

(L2) for everys = pg € S, eithers C int(P) or {p,q} C V(P);

(L3) for everys € S, if s C int(P) then there is @ e D such thats C int(D), otherwises Nint(D) =@
forall D € D;

(L4) every polygorD € D is convex

(L5) every polygonD € D has a common side witA which is different fromyz.

We prove Lemma 3 in the remaining sections assuming that the line segmentgeneial position
i.e., there are no three collinear segment endpoints. The extension for the case where some, but not all
segment endpoints are collinear will be indicated in Remark 10.

The outline of the proof is as follows. We start with:= conuS) and D := {P} which together
satisfy already (L1) and (L5). In the following, the polygéhand the seD are modified such that these
properties are maintained aid P) never decreases. In a first phase, property (L2) is established by
including the second endpoints of those segments for which one endpoint is alredd®)inThen a
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simple dissection by diagonal segments assures (L3). Finally, during a second phase the diBssction
refined until all sets irD are convex, as demanded in (L4).

Proof of Theorem 1. We prove by induction the following statement. For a Sebf disjoint line
segments, not all in one line, and for any fixed sideof the polygon con(s), there is a Hamiltonian
polygon H for S such thatyz is a side ofH .

The statement holds f¢§| = 2. Suppose it holds for ali’ with 1 < |§’| < |S].

Consider the simple polygoR and the sef of polygons described in Lemma 3. If both endpoints
of every segment are il (P), then the statement holds. If there is a segmenhose neither endpoint
is in V(P), then by properties (L2) and (L33,is in the interior of someD € D. By property (L5),D
has a common sideb # yz with P. By (L3) and (L4),C(D) := conuS Nint(D)) C int(D). Moreover,

C (D) has a side:d such that bothic andbd are visibility edges. Ifc1dy, codo, ..., cpd,, m > 1, are
the segments in iAD) and they are all collinear in this order, then replace the sid®f P by the
pathacidicads . . . c,nd,b. Otherwise there is, by induction, a Hamiltonian polyg@nD) for S Nint(D)
such thatcd is a side ofH (D). Replace the sideb of P by the path(a,c) ® (3H (D) \ ¢d) ® (d, b).
Doing so for eaclD € D that contains segments froftresults in a Hamiltonian polygon (see Fig. 2(e)).
(For two polygonal arc#t = (ay, ..., a;) and B = (by, ..., by) with g, = b1, we denote byA & B the
concatenatiorias, ..., ax, ba, ..., by) of AandB.) O

3. Basic definitionsand operations

Our goal is to find a simple polygon satisfying the conditions of Lemma 3. In order to construct such
a polygon, we run an algorithm which, in each step, makes local changes to our polygon, that is, replaces
one edge by a path or two consecutive edges by one edge.

This algorithm, however, leads out from the family of simple polygons. Therefore, we will use a
slightly more general definition for polygons, such that the boundary of a polygon may have self-
intersections but no self-crossings.

Definition 4. Consider a simply-connected closed regirin the plane which is the image of the unit
disc under a continuous mappiig P is apolygon if its boundarya P is the image of the unit circle
underp and consists of finitely many pairwise non-crossing line segments.

The endpoints of the segments &R are calledverticesof P. Let P~ denote the cyclic sequence of
vertices ofP alongd P in counterclockwise order. Thedesof the polygon are the segments connecting
two consecutive vertices dts alonga P.

The image of any ar@ of the unit circle undep is calledpolygonal arcof d P. A polygonal arc is
simple if ¢ is injective onA.

Observe that a vertex froii(P) can appear several times iy. We define themultiplicity m p (U)
for a setU c V (P) of vertices to be the number of occurrences of vertices ftbin P.

Definition 5. We say that an angle is convex, strictly convex, reflex or flat,df < 7, o« < 7, a > 7 or

a =, respectively. For three points b andc, denote by/abc the angle between the rag7§ andFE,
measured counterclockwise.
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Fora € P, denote bya™ (respectivelya™) the next vertex ofP5 in counterclockwise (respectively
clockwise) direction. We call an occurrence of a veriem P convex (reflex), if/pa := Zataa™ is
convex (reflex). Similarly ton p (U), for a setU c V(P) of vertices define» (U) to be the number of
reflex occurrences of vertices froth in P. For a single vertex € V(P) we simply writem p(v) for
mp({v}) andrp(v) for rp({v}).

In order to be sure that we can apply certain operations to a polygon, a few additional properties
are required; we summarize them under the concefraaie polygons defined below. All through our
algorithm, we make sure that the intermediate polygons belong to this class.

Definition 6. A polygon P is calledframefor a setS of disjoint line segments, if

(F1) V(S) c PandV(P) C V(S);

(F2) o P does not cross any segment fréin

(F3) mp(v) < 2 for every vertexw € V(P);

(F4) if mp(v) =2 for v € V(P), then the angular domain aroumdintersects intP) in two convex
angles (that is, itP = (...avb...cvd...), then both/dva and /bvc are convex, with possibly
a=dorb=c)

(F5) if ve V(P), andu € int(P) for someuv € S, thenmp(v) = 1 butrp(v) = 0.

For example, Fig. 3(a) shows a frame, while the polygons in Fig. 3{b} ¢r), 3(c) (crosses a
segment), and 3(d) (violates (F5)) are not frames. The convex hull §pis/always a frame fos.

The idea behind allowing’ to visit a vertexv twice is that we hope to eliminate one occurrence
at the end of our algorithm. This can actually be done easily,appears inP once as a&ap defined
below.

Definition 7. Letk € Nand(a, b1, by, . .., by, ¢) be a sequence of consecutive verticeginsuch thab;,
i=1,..., k,arereflex vertices and if@ona, b, ..., by, c))NS = @. Then the sequencé., by, ..., b;)
is calledcap If kK = 1, we usually omit the parentheses.

A reflex vertex of P, that is not a cap is calleanti-cap

A sequencéa, by, by, . .., by, c) Of consecutive vertices iR is calledwedge if m p(b;) = 2, for all
i=212...,k,and(by, by, ..., b) is acap.

Assuming that every sequence of double occurrenc®s icorresponds to a wedge, it is easy to create
a simple polygon from a framg by the following operation.

@ ) | © (d)

Fig. 3. Examples for (non-)frames.
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Fig. 4. One occurrence of vertexe Py forms a cap andb, ¢, a) is a wedgey is an anti-cap, since segment intersects

‘‘‘‘‘‘‘‘‘‘‘‘‘

triangle A(cda).

Fig. 5. Chopping the wedge, b, ¢).

Operation 1 (Chop wedgesP)) (Fig. 5).
Input a frameP.
Operation As long as there is a wedde, by, by, ..., by, ¢),

., b, ¢) in Py by the single edgec.

Replace the pattu, by, b,

Output P.

Proposition 8. The output of Chop_wedges is a frame.
In order to create a simple polygon from a frarBeit is crucial to have a hold on the vertices with
multiplicity two in P. It is easy to see that a polygon cannot have two strictly convex angles at a vertex

of multiplicity two. The following proposition states a stronger property for frames assuming that the

segment endpoints are in general position.
Proposition 9. Let S be a set of line segments in general position. Any frahfer S has the following

property.

(F6) If v e V(P) is avertex withm p (v) = 2, thenrp(v) > 1.
Proof. Let Py =(...,a,b,c...,d, b,e,...)such that/ cha is convex. The general position assumption
assures thatcba is strictly convex. AsP is a polygon, i.e., it is simply connected, the edgésandbe
must lie in the angular domaircba, therefore/ebd is reflex, as drawn in Fig. 6. O
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y 2!

pP3

Fig. 6. lllustration for Proposition 9. Fig. 7. Example: caig1, p2, p3) = (p1, b, ¢, p3).

Remark 10. In the rest of this paper we assume that the segment endpoints are in general position.
A complete proof of Lemma 3, of course, cannot use Proposition 9. We may state instead another

property:

(F6) If v e V(P) is a vertex withmp(v) = 2, then there is a sequenge= (b1, by, ..., b,), m > 1
containingv such that botly ands® = (b,,, b,._1, ..., b1) are sequences of consecutive vertices in
P.; moreover,/pby and/pb,, are reflex in the same sequeneseo( s®), andb,, bs, ..., b,_1 are
flat in boths ands~®.

It can be shown that property (F6s maintained during our algorithm, even if there are collinearities.
Using this property and checking all possible degenerate cases throughout the argument, the proof car
be extended to establish Lemma 3 in its general form.

3.1. Including second segment endpoints

Ouir first objective is to ensure property (L2). The method is really simple: We start with the convex
hull of S; whenever there is a line segmentvhose one endpoint is i (P) but the other is not, we
extend the polygon locally to visit the other endpoint as well. This extension can be done in two different
ways, which will be determined by an orientation defined as follows.

Definition 11. Consider a simple polygonal arc= (p1, p», p3) that does not cross any segment frm
Define theconvex araard p1, p2, p3) of A to be the shortest polygonal arc frgm to p3 such that there
is no segment endpoint in the interior of the closed polygonal curve garg,, p3) ® (ps, p2, p1). (See
Fig. 7.)

If p1, p2 and p3 are not collinear, then cagg:, p2, p3) D (p3, p2, p1) is apseudo-trianglevhere all
internal vertices of cag,, p2, p3) are reflex.

Definition 12. For a polygonP, anorientationu (P) is a functionu : Ps — {—, +}.

Operation 2 (Build_cap(P, u, a)) (Fig. 8).

Input a frameP, an orientatioru(P), and a convex vertex € P such that ¢ V(P), for the vertex
beV(S)withabeS.

Operation Let ¢ := g*@,

Obtain P’ from P by replacing the edgec by the pathub & carab, a, c).
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Fig. 8. Build_cagP, u, a) with u(a) = +.

Setu(p) :=u(a) for all p on cargb, a, c).
Output (P, u).

Observe thatp/(V(P’)) = 1+ rp(V(P)), sinceBuild_capproduces exactly one new reflex vertex:
at b. Note also thatP’ is not necessarily simple, since some of the vertices from(&atcc) might
already have been iVi(P).

Proposition 13. The outputP’ of Build_cap is a frame.

Proof. We have to check properties (F1)—(F5). (F1) and (F2) follow directly from the definition of carc
and from the fact that the input polygadhis a frame.

Let cardb,a,c) = (b= po, ..., px = c) for somek € N. Build_cap inserts verticegy, ..., pr_1 into
P. Obviously,mp/(b) =1 andmp (a) = mp(a) = 1 by property (F5); also, the vertices, ..., pr_1
are inserted as convex vertices, thatris(p;) =rp(p;) for any p;, i = 1, 2, ..., k. This immediately
implies thatP’ has properties (F4) and (F5).

For (F3), we argue by contradiction. Suppose thai p;) = 2 for somei € {1, ...,k — 1}. By (F4),
the angular domain aroung intersects intP) in two convex angles. So by definition of cagg,cannot
beoncart,a,c). O

Operation 3 (Both_endpointgP, u)).

Input a frameP and an orientatiomn (P).

Operation As long as there exists ane P such thaub € S andb ¢ V(P),
let (P, u) < Build_cap(P, u, a).

P« P.

Output (P, u).

Proposition 14. Both_endpoints does not create any anti-¢épat is, every anti-cap irP’ 5 is already
an anti-cap inP). Sequences of consecutive cap®in form one cap, if the same was true 8.

Proof. Let cardb, a,c) = (b = po, ..., pr = c) for somek € N. Build_cap produces exactly one new
reflex vertex:s. Vertexb is a cap, because it (abpy)) N S = @ by construction.

By property (F5),rp(a) = rp(a) = 0. In fact, all the other new vertices are convex as well, i.e.,
re({a, pa, ..., pre1}) =rp(a, p1, ..., pr_1}). Hence, there is nothing more to showkif- 1. So let us
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consider the case= 1, that is, car@®, a, c) = bc. Suppose that is a reflex vertex ofP~, which is part
of a cap(c = ¢1, ¢z, ..., ¢.); in particular, this implies inconv({a, c1, ca, ..., ¢, d})) NS = @, where
d is the other # c¢,_1) neighbor ofc, in Ps. If /bed > 7, thenc appears as a convex vertex .
Otherwise, we have intonv({a, b, c1, c2, ..., c,,d))NS =@ and(b, c1,cz,...,c,)isacapinP’'s. O

4. Convexly independent segments and more

In this section, we describe a simple algorithmic proof for the case whidsea set of convexly
independent segments. The procedure then serves as a base step to our main algorithm (Algorithm 2) fo
arbitrary S.

Algorithm 1.
Input a setS of disjoint line segments and an orientatiofior the vertices of conis).

(1) P < conwus).
(2) (P’,u) < Both_endpoint&P, u).
(3) P” <« Chop_wedged’).

Output P”.
Proposition 15. The outputP” of Algorithm1 is a simple frame with propertft_2).

Proof. Property (L2) follows from the loop condition Both_endpointsProposition 13, and the fact that
Chop_wedgedoes not alter the set of visited verticds'. is simple because, by Proposition 9, for every
vertexv with mp/(v) > 1, we havep/(v) > 1. Proposition 14 tells us that every sequence of consecutive
reflex vertices inP’ forms a cap, and thus all repetitions M are deleted b hop_wedges O

Corollary 16 [10]. If the line segments of are convexly independent and in general position, then
Algorithm 1 outputs a Hamiltonian polygon for any orientatianof the vertices o€onu(S).

Note that we did not make any use of the orientatidor the proof of Corollary 16. We could simply
run Algorithm 1 with a uniform orientation = +. But in this case we cannot guarantee that a prescribed
sideyz of convS) is a side of the output polygon, as required in (L1).

Suppose thap precedesg in conu(S) . Define the orientatiom,, of conv(S) by u,.(y) = —, and
uy.(v) =+ for any other vertex e conv(S) .

Proposition 17. If Algorithm 1 is applied toS with the orientationu,, then the outputP” is a simple
frame satisfying propertied.1) and(L2).

Proof. Segmentyz is a side of P = conv\(S), and none of théBuild_cap operations replacegz by
something else. Moreover, both and z remain convex vertices througho&oth endpoints Since
Chop wedgesdoes only cut off edges adjacent to reflex vertices, the adgemains part ofP” as
well. O
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Proposition 18. If Algorithm 1 is applied taS with orientationu, ., then the outpu” has at most one
cap with exactly two reflex verticédouble-cap; all other caps consist of exactly one reflex vertex.

Proof. An operationBuild_cap(P, u,a) creates exactly one new reflex vertex, namelyb awvhere
ab € S. Let ¢ := a"“@. As in Proposition 14, we can have two consecutive reflex vertices only if
cardb,a,c) = bc, and if ¢ is a reflex vertex ofP. Assuming this scenario, the reflex vertexis
created in a previous operatiduild_cap(P, i, d) such that inP we hada®@ = d, d*® = 4 and
cardc, d, a) = ca. This already implies that there is no cap of three consecutive vertidg's,in

A pair a"@ = d, d") = a corresponds to a subsequer(ee —) in an orientatioru along P. The
orientationu,, has exactly one subsequenee, —) throughout Algorithm 1, sinc&uild_cap does not
induce alternations in the orientation. Thus, there is at mostlonble cagn P's. O

5. Dissecting P

Consider the framé® produced byBoth endpoints Recall thatP is not necessarily simple, since it
may have multiple vertices atedgesWe call a diagonalb of P segment diagonalf ab € S. By cutting
P at wedges and along segment diagonals, we obtain a dissectiaiPDist simple polygons (Fig. 9).
Observe that Dis?) satisfies property (L3).

Unfortunately, the polygons of DiéB) are not necessarily convex. A first idea to obtain a dissection
into convex polygons from Dig®) is the following: for everyD € Diss(P) draw consecutively rays
from every reflex vertexy of D dissecting/pb into two convex angles, until the ray hits the boundary
of D or a previously drawn ray. If no ray crosses a segmeustoint(D), then they dissed into non-
overlapping convex regions satisfying properties (L2), (L3) and (L4). The resulting partition depends on
the order in which the rays are drawn, but any order would do at this point. But if any of the rays crosses
a segment € S, such a partitioning would not grant (L3). In this case, we extBrid incorporates by
means of two new basic operations that are introduced below.

5.1. Extension to interior segments

Definition 19. Consider a simple polygonal ake, b, ¢, d) that does not cross any segment frém
Denote by mar@:, b, c,d) = (a = po, ..., px = d), for somek € N, the shortest polygonal arc from
a to d such that there is no segment endpoint in the interior of the closed polygonal lese
marda, b,c,d)® (d,c, b, a).

Fig. 9. This frame is dissected into three polygons by Oi$s
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(b)

Fig. 11.Extend_refle&P, u, D, b, c,r_b\) to a segmengf.

M has reflex vertices gty, ..., py_1, but—in contrast to carc—it is not necessarily simpleor d
may occur twice on the arc, see Fig. 10(b).

Operation 4 (Extend reflex P, u, D, b, ¢, 7, ) (Fig. 11).

Input a frameP along with an orientatiom (P), a dissectiorD of P, a reflex vertex» of someD € D,

a vertexc, and a rayr, emanating frond.

Preconditions bc is a common side ob and P, 7, cuts /pb into two convex angles;p(c) =0, and
7, hits? the segmentf C int(D) at a pointg. We may suppose thatand f are on the same side of the
supporting line of, .

Operation Obtain P’ from P and D’ from D by replacing the edgkc by the path car@, g, ¢) @ (e, f) @
mard f, g, b, ¢). Split D’ into simple polygons irD if necessary. Sei(-) := — for all interior vertices of
cardb, g, ), andu(-) := + for all interior vertices of marcf, g, b, ¢).

Output (P, u, D).

There are two variants @&xtend_reflexdepending on whetherfollows or precedes in P. We have
described only the first above, and refer to this variant in the notation of Fig. 11 and Propositions 21-24.
The other variant is completely symmetric.

2 More precisely, the intersection of the open segnsgnvith (S U 8 D) is empty.
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Proposition 20. Given a frameP for S, a dissectiorD of P, and a polygonD € D, we havenp(b) =1
for everyb € V(P) withrp(b) = 1.

Proof. If mp(b) =2, thenb cannot be a reflex vertex of ay € D by property (F4). O
Proposition 21. The outputP’ of Extend reflexis a frame.

Proof. Properties (F1) and (F2) follow directly from the definition of carc and marc and from the fact that
P isaframe. For internal vertices of cébcg, ¢) and marcf, g, b, ¢), one can argue as in Proposition 13.
Hence, we have to consider the vertiées, e and f, only.

Sincec is a convex vertex ofD by assumption, it cannot appear twice on nidrg, b, ¢), even
if it is a reflex vertex of the quadrilatergfgbc. Thus, f is the only vertex possibly visited twice by
mard f, g, b, c). Sincemp(e) =mp(f) =0, (F3) follows.

For (F4) note thatn p (b) = mp/(b) = 1 (Proposition 20); ifn p/(c) = 2, then the convex angles at
described in (F4) cannot increase. Algdulfills (F4), even if it appears twice on marg, g, b, ¢), since
mard f, g, b, ¢) is locally convex and the second (reflex) occurrencef a8 inside this convex angle
(look at vertexa in Fig. 10(b)). Finally, (F5) follows from the fact that the line segment adjacent to the
two new reflex verticexz and f, isef C dP’. O

Next, we would like to prove an analog to Proposition 14 foxtend_reflex Unfortunately,
Extend_reflexcan create anti-caps, but—fortunately—at most one. Recall that the problem with anti-
caps is that they cannot be chopped off; hence, we have to make sufe tbaes not visit this anti-cap
in a later step, for instance, along a convex arc constructediojyld._capoperation. Therefore, whenever
an anti-cap is created, we draw the next ray from this anti-cap, immediately reverting it into a convex
vertex of two non-overlapping polygons 1. For this purpose, we have to control carefully the number
of anti-caps appearing in the course of our algorithm.

Proposition 22. Extend reflexcreates at most one new anti-cépat is, there is at most one more anti-
cap in P’ than in Ps).

Proof. Both b andc are convex vertices dp’. Compared taP, there are at most two new reflex vertices
in P’: e and f. We will show that at least one efor f is a cap inP’ .

Letd be the second vertex of cdec g, b), and leth be the second vertex of maif; g, b, ¢) (possibly
d=borh=c). Ifint(A(fgb)) NS =0, then by definition of carc also ik ( fed)) N S =@, ande is
a cap. Otherwise, the ray?l andﬁz intersect in a poinb € A(feb) (Fig. 12). Since the edges/ and
fh do not cross by definition, we haviee ve or h € vf. In the first casel/f is a visibility edge ana is
a cap, and in the second cdseis a visibility edge andf isa cap. O

Corollary 23. If g = ¢ in Extend_reflexthen f is a cap inP’.
If f appears twice on maf¢, g, b, ¢), we have to make sure that the reflex occurrencg igfa cap of

P’ that can be chopped off Iatei Fortunately, this is not hard to achieve: before appiterd_reflex
we apply the following rotation t@, .
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(b)

Fig. 12. lllustration for Proposition 22. (g)gbc is convex. (b)fgbc is concave.
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Fig. 13. The three possible outcomes of Rqﬁteb, ef, D).

Operation SA(Rotate{E\, b, ef, D)).
Input a rayr, emanating fronb, a segmen¢f C intD, and a polygorD € D.

Preconditions b is a reflex vertex oD, 7, dissects/pb into two convex angleﬁ hits ef and ray?
hits a side ofD incident tob.
Operation Obtainr, " by rotatingr, aroundb towardse, until it hits

e eithere (Fig. 13(a))—Corollary 23 assures thats a cap in this case;

e or the right endpoinff” of another segmert f’ C int(P) (Fig. 13(b))—Then we have mart’, g’ =
f',b,c)=card f’, b, c), ande’ is a cap inP’;

e or areflex vertex oD (Fig. 13(c))—We do not applizxtend_reflexere.
Output 75, .

Proposition 24. The rayr, ' = Rotatér, , b, ef, D) cuts/pb into two convex angles.

Proof. Leta andc denote the vertices d? 5 adjacent tab. The rayFE lies in the convex angle formed
by the rayszb andcbh. Since reaching is one of the stop conditions for the rotationigf, thereforer,
stays in the convex angle formed by andch. O

5.2. Common side for eadh € D and P

If we just proceed to shoot rays from a reflex vertex of satne D and callExtend_reflexvhen
applicable, we obtain a frame and a dissectio® of P fulfilling properties (L1)—(L4). Unfortunately,
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Fig. 14. The shaded polygon does not have a common side with the frame.

P andD do not necessarily have property (L5), as can be seen in Fig. 14. The problem is that all sides
that a dissection polygon originally had in common withmight have been hit by rays. We have to take

into account that, whenever a ray hits the boundary of the current region, and thus the region is split along
this ray, the side hit might have been the last common sid@ afid one of the newly created regions.

Operation 6 (Mend cap(P, u, D, b, , cd)) (Fig. 15).

Input a frameP with an orientation:(P), a dissectiorD of P, a reflex vertex» of someD € D which
is a cap inPs, arayr, emanating fronb, and a side:d of 3D hit by 7, .

Preconditionscd is acommon side aP andD, 75, cuts the reflex »b into two convex anglesy(c) =0.
Operation Let ¢ denote the point wherg, hits cd. Obtain P’ from P and D’ from D by replacing the
edgecd by the path cane, ¢, b) @ cardb, g, d). Split D’ into simple polygons irD. Setu(-) := — for
all interior vertices of cane, ¢, b) andu(-) := + for all interior vertices of car@, g, d).

Output (P, u, D).

Proposition 25. The outputP’ of Mend capis a frame.

Proof. We have to check properties (F1)—(F5). (F1) and (F2) are obvious from the definition of carc. For
internal vertices of convex arcs, one can argue as in Proposition 13. Hence, we have to consider vertices
b, ¢ andd only.

By Proposition 20m p(b) = 1, and, thusm p/(b) = 2. Sincemp(c) = mp/(c) andmp(d) = mp/(d),
(F3) follows. (F4) is clearly true fab, since for both visiting paths, the adjacent vertices are on different
sides of the line through andg. For bothc andd, the angles mentioned in (F4) cannot increase. Hence,
(F4) holds for all vertices itV (P’). Finally, for (F5) note thaMend_capdoes not create any new reflex
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Fig. 15. Mending a cap.
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vertex, except for the fact thap (b) = rp(b) + 1= 2. Let p,,, pys € V(S) such thabp, € S anddp, € S.
SinceP is a frame anap(b) =rp(d) = 1, we can conclude by (F5) that, p, € V(P) Cc V(P). O

Proposition 26. Mend capcreates at most one new anti-céat is, there is at most one more anti-cap
in P’s than in P).

Proof. The operation does not create any new reflex vertices, so only the existing reflex Vierdices
(possibly)d might become anti-caps. But by the definition of carc, the new occurrengénof’ - is a
cap. O

Remark 27. If vertex b appears twice as a cap # ., there is some choice which one to chop off as

a wedge byChop_wedgesFor reasons that will become apparent later (cf. Lemma 37), we decide to
consider the original cap as a wedge.

6. Algorithm and itsanalysis

Algorithm 2.

Input a setS of disjoint line segments and a sigle of conv(S).
P <~ conv?s). (framg
D «~ (P} (dissection
(a,b,c) <« 0. (vertex+ adjacent reflex vertex adjacent vertex
u — Uy, (orientation

Repeat until even € D is convex in step below.
(@) (P,u) < Both endpointgP, u).
(b) UpdateD by replacing eaclD € D by Disg D).
(c) If every D € D is convex, thenP «<— Chop wedgesgP) and exit.
(d) If (a,b,c) =0, then
(1) If there is a double-cagk, ) in someD, € D, then(a, b, c¢) < (k,1,m), wherem is the
other & k) neighbor ofl in dD,,.
(2) Else leth be areflex vertex of somB, € D, and lete andc be the adjacent (i6D,) convex
vertices, such thatis also adjacent tb in P (see Proposition 30).

e) Ifr, = ab hits a segmendf C int(D;) whose supporting line crosses the sidethen
7, < Rotatdr, , b, ef, Dy).
(f) If 7, hits a segmentf C int(D,), then
(1) (P,u,D) < ExtendreflexP,u, D, b, c, ﬁ).
(2) If Extend reflexcreated an anti-cap in P, thenb < h; ¢ < one convex neighbor, and
a < the other neighbor df in P;
(3) else(a, b, c) < 0.
(9) If 7, hitsaD, at a pointg on sidede (W.1.0.9.,7p, (d) < rp,(¢)), then
(1) DissectD, by bg and updatéD accordingly.
(2) If de # yz, andde is a common side oD, and P which is not part of a wedge, then
() If not both ab andbc are common sides dd, and P, then
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(P,u,D) < Mend cap(P,u, D, b, 7, ,de).
(i) If rp,(e) =1 for some regiorD, € D, then
a, ¢ < neighbors ok in dD,, such that andc are in different open halfplanes w.r.t.
the linede; andb « e.
(ii) Else (a,b,c) < @.
(3) Else(a, b, c) < 4.

Output (P, D).
An example illustrating the different steps of Algorithm 2 is provided in Fig. 16.
Proposition 28. Algorithm 2 terminates.

Proof. If P is changed in step (a), at least one segment endpoint is added tieat was not visited
before. As no vertex ever leavés,, these changes can only occur in a finite number of steps. Apart from
this, either step (f) or step (g) is executed in every iteration. Eiftheis augmented by a segment that
was in the interior ofP before (step (f)); or a reflex angle of a regi@n € D is destroyed (step (Q)),
while no new reflex angle is added. Hence, after a finite number of iterations, Bve® is convex and

the algorithm terminates. O

To ensure that Algorithm 2 works correctly aRds a frame all the time, it is enough to check that the
preconditions of our operations are satisfied.

Proposition 29. WheneveMend cap(P, u, D, b, ﬁ de) is called in Algorithm?2, thenb is a cap inP.

Proof. Whenever an anti-cap is created during Algorithm 2, the next ray is shot fragmAt that
point, the edges incident to are common edges of both and the corresponding dissection polygon
D,eD. O

Proposition 30. If a, b, ¢ are three consecutive vertices R, during Algorithm2, whereb is a reflex
vertex of somé, € D, then eithewmb or bc is a side ofD,,.

Proof. The sideab (or bc) is not a side ofD, if and only if the ray drawn from a previous reflex vertex
hit it. Algorithm 2 is organized so that right after a ray hits, say, sitléstep g(2)), it shoots a ray from
b in the next step, such that from there éns no longer a reflex vertex of any setih O

The following lemmata show three invariants of Algorithm 2, finally establishing the conditions of
Lemma 3.

Lemma 31. In each step of Algorithn2, the total number of pairs of adjacent reflex vertices over all
D €D is at most one.

Proof. The statement holds after the first execution of step (a) by Proposition 18. It suffices to check that
each operation maintains this property.
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Fig. 16. Running Algorithm 2 on an example; wedges are shaded dark, and the points from which a ray is shot are marked:
a circle denotes a cap, while a square stands for an anti-cap. In the last step, the wedges are chopped off, and we obtain :
dissection ofP into convex polygons.
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Mend_capdoes not create any reflex vertex of abye D. Extend_reflexreates at most two adjacent
reflex vertices; if it does so, one of these reflex vertices is chosen (step d(1) or step f(2)) as thé vertex
to shoot the next ray from, thereby revertihgo a convex vertex of the resulting regionsZin

It rests to consider the call Both_endpointsn step (a). Recall that every interior verte>of every
single carc and marc is always oriented such tH&® is a convex vertex of the correspondiiye D.

As in Proposition 18, the fact that all interior vertices of any single carc or marc get the same orientation
assures that no two consecutive reflex vertices are created dothgendpoints O

Corollary 32. Wheneveiextend reflex P, u, D, b, c, ﬁ\) is called in Algorithm2, we haverp(c) =0,
whereD is the region froniD of whichb is a reflex vertex.

Corollary 33. WheneveiMend cap( P, u, D, b, 7, , de) is called in Algorithm2, we haverp(d) = 0,
whereD is the region froniD of whichb is a reflex vertex.

Now we have shown that all the preconditions of betttend_refle&P, u, D, b, c, ) andMend_cap
(P,u,D,b,r, ,de) are satisfied whenever these operations are called. It remains to show that the
preconditions ofZhop_wedgem step (c) of Algorithm 2 are satisfied, too.

Proposition 34. During Algorithm 2, there is always at most one anti-cap which is a common reflex
vertex ofP5 and someD € D.

Proof. An anti-cap can be created in two places only:Extend_reflexstep (1)), or inMend_cap

(step g(2)(i)). In both cases, at most one anti-cap is created (Propositions 22 and 26). Assume that a
vertexe is inserted intoPy as an anti-cap bfxtend_reflexor Mend_cap At this point,mp(e) = 1 by
Proposition 20. In the next iteration, Algorithm 2 dissects the redioa D containinge along a ray
emanating frone. From there on¢ is not a common reflex vertex d¢f and anyD € D anymore. O

Lemma 35. For every anti-cape in P, we haven p(e) = 1 during Algorithm2.

Proof. The only point where an anti-cap could possibly be revisited by is in the call to
Both_endpointgstep (a)) immediately following the step wherbecame an anti-cap. We argue that the
orientationu along carc and marc is set such ti#af cannot revisite in any of the resultindduild_cap
operations:

We consider only the variant &xtend_reflexiescribed in Operation 4 and we use the same notation
as there; the argument is similar for the symmetric variaixdénd_reflexand forMend_cap

First we show thaBoth_endpointapplied to vertices of ca(s, g, ¢) does not revisie. Recall that
u(k) = —, for all k e carab, g, ¢), and thatBuild_cappreserves this orientation for all new vertices. In
particular, for every interior vertek of a carc k*® is convex inPs.

Denote by P’ the frame resulting fromBoth_endpointsP, u). For every vertexk inserted by
Both_endpointsnto P, we define recursively a polygonal ar¢k) connectingk to b. If k is inserted
as part of a cai@, g, ¢~) in a stepBuild_caf P, u, ¢), then lete(k) follow card(p, ¢,q~) from p
to ¢—, and then continue along(g~) to b (an example is given in Fig. 17). For any suththe arc
e(ky=(p=po....,pj=k,..., pn =) is a simple locally convex polygonal arc within. Moreover,
¢ (k) forms aright-turn, that is, forevery =1, ..., (im — 1), p;;1 as well as all the neighbors of € P’

lie to the right of the oriented lin@; _1 p; .
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7 A
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Fig. 17. Illlustration for Lemma 35.

Suppose that p/(e) = 2. Notice thate is inserted intoP’ - as a convex vertex bBoth_endpoints
since the other endpoint of the segment edgef is already inP-. Therefore, there is a verte,
ko # e, such that € (ko). Sincee(kg) is a simpleright-turn path frome to » within P, it has to stay
within P N A(bge), with g lying on its reflex side at vertex On the other hand, by property (F4) of the
frame P’, g must lie on the convex side efkq) ate,_g\iving a contradiction.

For the case of ma(d¢, g, b, ¢), obsE[ve that ifzf hits bc, then g = e by the rotation ofr, ; and

by Corollary 23, f is a cap inP’. If ef does not hitbc, then the argument from above shows that
Both_endpointapplied to vertices of maf¢, g, b, ¢) does not revisitf. 0O

Corollary 36. During Algorithm2, everyv € V (P) withm p (v) = 2 appears at least once as a capin.

Proof. A vertex b € V(P) can be revisited in two different ways (we may assume that ¢ are
consecutive vertices iR):

(i) If bis acap andend_capP,u, D, b, 7, ,cd) is applied.
(ii) If acapb is areflex vertex of som® € D and carc or marc contain

In both cases, the first occurrencebafemains a cap, and bottb andbc remain sides oP. O

At the last step of Algorithm 2Chop_wedgess applied. Lemma 35 assures that any veriekor
whichm p(v) = 2, is adjacent to a wedge that can be chopped off. Thus, the aBtpliAlgorithm 2 is a
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simple frame. To show that and the partitiorD satisfy the properties of Lemma 3, it rests to prove the
following.

Lemma 37. All through Algorithm2, everyD € D has a common side witR which is different from
wedge edges and the special sideof P.

Proof. The statement holds for co¢®). It is enough to check that it remains true after each iteration.
Build_cap Mend_cayor Extend_reflexnay dissect a regioP € D into several regions: either directly
(Mend_capdissects the current region at the mended cap), or because carc or marc

e pass through both endpoints of a segment (thus forming a segment diagonal),

e pass through an endpoint of a segment whose other endpoint is alredy (again creating a
segment diagonal),

e Or revisit a cap (thereby reverting sidesi@fto wedge-edges).

Still, in each new regio®’ C D, carc and marc have a side which is common with latland P. For
Mend_capwe have to note that both occurrences of the mended cap are cBgq@h Proposition 26).
We need to be a bit careful which of them is supposed to be choppedGiffdp_wedgesn order for the
above argument to go through: one side adjacent to the original cap might have been hit by a ray; hence,
we have to mark this original cap as wedge.

In step g(1) of Algorithm 2, the regio®,, € D is dissected into region®, and D, by the rayr, ,
whereb is a reflex vertex of bottD, and P5. We have to check that our statement still holds for bgth
and D,. According to Proposition 30, we may assume fhais a common side oD, and P. Denote the
other neighbor ob in P~ and D, by a and«, respectively.

If b is an anti-cap, thea = «, since Algorithm 2 draws the ray, right after the pattxby is created.
Henceab is a common side oD, and P that is clearly neither a wedge edge nor equaldo

So suppose thatis a cap andyb is not a side ofD,. This means that a previously drawn gy from
a reflex vertex’ hitsab ata. Let y be the neighbor ab’ in D,,. Thend’y must be a common side @,
and P, since otherwis&lend_capwvould have been applied to, 7y andab, andab would not be a side
of P anymore. Note that the dissection By immediately follows the dissection by (no operation is
applied, hence the call ®oth_endpointsloes not change anything).

We claimb’ € D,. Sincer,, and sidexb are adjacent alongD,, the only way to excludé’ from D,
is thatr, hits back to7, . But this is impossible by the choice &, which always shoots along the edge
that was hit by the previous ray (step g(2)(ii)), in this cage Thus,?’ lies on the boundary ob,, as
claimed.

If side b’y does not belong té D,, it must be hit byr_b\. But in this caseMend_capis applied tob
(b'y is not a wedge edge and sideg is not part ofd D,,), and there is a common side Bf; and P along
the constructed carc. Otherwidgy is a common side oD, and P which is neither wedge edge nor
equal toyz. O
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