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Abstract

We show that thesegment endpoint visibility graphof any finite set of disjoint line segments in the plane adm
a simple Hamiltonian polygon, if not all segments are collinear. This proves a conjecture of Mirzaian.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Thesegment endpoint visibility graphVis(S) is defined for a setS of n disjoint closed line segmen
in the plane. Its vertices are the 2n segment endpoints; two verticesa andb are connected by an edge,
and only if the corresponding line segmentab is either inS (which we callsegment edges) or if the open
segmentab does not intersect any (closed) segment fromS (visibility edges). See Fig. 1 for an example
Note that this graph is different from thesegment visibility graph, where vertices correspond to segme
and an edge connects two vertices, if and only if some points of the two segments are mutually “v

Visibility graphs of disjoint objects or vertices/sides of polygons are fundamental structur
computational geometry [2,11]. They have applications in shortest path computation, motion pla
art gallery problems, but also in VLSI design, and computer graphics. The characterizatio
recognition problem of visibility graphs are also of independent interest. Visibility concerning di
line segments in the plane is basic, and problems for more complex objects can often be reduc
approximated by this structure.
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Fig. 1. A segment endpoint visibility graph; visibility edges are drawn as dotted segments.

1.1. Previous works and main theorem.

Segment endpoint visibility graphs have been subject to extensive research. The number of ed
18], the computational complexity [7,9,13,15,20], storage space [1,5], and on-line updates [6] ha
studied for this class of graphs over the past decade.

We are interested in the following problem that was originally formulated by Mirzaian [10]
later reposed by Bose [4]: How short can the longest circuit be in a segment endpoint visibility
More precisely, what is the maximal numberf (n) such that any segment endpoint visibility graph on
segments has a circuit of sizef (n)?

If all segments lie on one line then, clearly,f (n)= 0. Otherwise, one can show using triangulatio
that f (n)= �(

√
n), but no non-trivial upper bound was known so far. In fact, it was conjectured

that f (n) = 2n, i.e., there is always a Hamiltonian circuit in a segment endpoint visibility graph
prove in this paper the following stronger version of the conjecture.

Theorem 1. For any set of pairwise disjoint line segments, not all in a line, there exists a Hamilto
polygon.

Here, for a given setS of pairwise disjoint line segments, aHamiltonian polygonis a simple polygon
whose vertices are exactly the endpoints of the line segments and whose sides correspond to
Vis(S).

Previously, Theorem 1 was shown to hold for a few special cases: Mirzaian [10] proved it forconvexly
independentsegments, that is, where every line segment has at least one endpoint on the bounda
convex hull; and O’Rourke and Rippel [12] proved it for segments where no segment is crossed
supporting line of any other segment. (Two segments or lines cross, iff there is a common poin
relative interior of both.)

Hamiltonian polygons with special properties, however, do not necessarily exist: There are
line segments for which there is nocircumscribingHamiltonian polygon, that is, a Hamiltonian polygo
whose closure contains all the segments [19]. Similarly, there is not always analternatingHamiltonian
polygon for a setS of segments, that is, a Hamiltonian polygon in which every line segment ofS is a side.
It is NP-complete to decide whether a setS admits an alternating Hamiltonian polygon, if the segme
of S are allowed to intersect at endpoints [16], although it can be decided efficiently in some s
cases [17].
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1.2. Applications

An immediate consequence of Theorem 1 is a recent result of Bose, Houle and Toussaint [3]. They
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show that for every setS of disjoint line segments, the segment endpoint visibility graph contain
encompassing tree, which is defined as a planar embedding of a tree with maximal degree thre
contains all segment edges. Indeed, a Hamiltonian polygon together with all segment edges
planar spanning subgraphH of Vis(S) with maximum degree three. Contracting the segment edgesH
and finding a spanning tree of the resulting graph, gives an encompassing tree forS.

Using the existence of a Hamiltonian polygon, we could also show recently [8] that there is a
an alternating path(segment edges and visibility edges in alternating order) of length�(logn) in the
segment endpoint visibility graph ofn disjoint line segments.

1.3. Proof technique

We build a Hamiltonian polygonP algorithmically, starting from the convex hull conv(S) (Fig. 2(a)).
The polygonP is then successively extended to pass through more segment endpoints. As
phase, the second endpoints of those segments for which one endpoint is already on the con
are included; this yields a new proof of Mirzaian’s theorem for convexly independent segmen
(Fig. 2(b)).

In a second phase,P is extended to some of the segments in its interior (Fig. 2(c)), and we cre
convex subdivision ofP . Once certain conditions (Lemma 3) are fulfilled, a simple induction comp
the proof (Fig. 2(d) and 2(e)).

(a) (b) (c)

(d) (e)

Fig. 2. Steps in the proof of Theorem 1.
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Every step of the algorithm and every operation relies only on elementary geometry, like ray shooting,
convex hull, or sorting angles. Based on our proof, it is straightforward to give an O(n logn) algorithm to
find a Hamiltonian polygon for a given set of line segments. This running time is asymptotically optimal,
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as was shown by Bose et al. [3] for finding an encompassing tree; such a tree can be obtained
Hamiltonian polygon in linear time, as explained above.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1 by inductio
key lemma of the proof, Lemma 3, is proved algorithmically in three phases. Section 3 gives som
operations of our algorithm, Section 4 provides a new proof of the theorem of Mirzaian [10] and ex
the first phase of our algorithm. The second phase and the complete algorithm are discussed in S
and 6.

2. Proof of Theorem 1

Given a setS of disjoint line segments in the plane, denote byV (S) the set of segment endpoin
from S. A simple polygonP is defined as a closed region in the plane enclosed by a simple c
polygonal curve∂P consisting of a finite number of line segments. LetV (P ) denote the set of vertice
of P .

Definition 2. A simple polygonP is aHamiltonian polygonfor S, if V (P )= V (S) and the sides ofP
correspond to edges of Vis(S).

We say that a finite setD of pairwise non-overlapping simple polygons is adissectionof P , if
P =⋃

D∈DD. (Two polygons overlap, if there is a common point in the relative interior of both.)
following lemma is crucial in our argument, as it establishes Theorem 1 by a simple induction.

Lemma 3. For a setS of disjoint line segments, not all in a line, and a sideyz of conv(S), there is a
simple polygonP whose sides correspond to edges ofVis(S) and a dissectionD of P satisfying the
following properties.

(L1) yz is a side ofP ;
(L2) for everys = pq ∈ S, eithers ⊂ int(P ) or {p,q} ⊂ V (P );
(L3) for everys ∈ S, if s ⊂ int(P ) then there is aD ∈D such thats ⊂ int(D), otherwises ∩ int(D)= ∅

for all D ∈D;
(L4) every polygonD ∈D is convex;
(L5) every polygonD ∈D has a common side withP which is different fromyz.

We prove Lemma 3 in the remaining sections assuming that the line segments are ingeneral position,
i.e., there are no three collinear segment endpoints. The extension for the case where some, bu
segment endpoints are collinear will be indicated in Remark 10.

The outline of the proof is as follows. We start withP := conv(S) andD := {P } which together
satisfy already (L1) and (L5). In the following, the polygonP and the setD are modified such that thes
properties are maintained andV (P ) never decreases. In a first phase, property (L2) is establishe
including the second endpoints of those segments for which one endpoint is already inV (P ). Then a
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simple dissection by diagonal segments assures (L3). Finally, during a second phase the dissectionD is
refined until all sets inD are convex, as demanded in (L4).
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Proof of Theorem 1. We prove by induction the following statement. For a setS of disjoint line
segments, not all in one line, and for any fixed sideyz of the polygon conv(S), there is a Hamiltonian
polygonH for S such thatyz is a side ofH .

The statement holds for|S| = 2. Suppose it holds for allS ′ with 1< |S ′|< |S|.
Consider the simple polygonP and the setD of polygons described in Lemma 3. If both endpoi

of every segment are inV (P ), then the statement holds. If there is a segments whose neither endpoin
is in V (P ), then by properties (L2) and (L3),s is in the interior of someD ∈ D. By property (L5),D
has a common sideab �= yz with P . By (L3) and (L4),C(D) := conv(S ∩ int(D))⊂ int(D). Moreover,
C(D) has a sidecd such that bothac andbd are visibility edges. Ifc1d1, c2d2, . . . , cmdm, m � 1, are
the segments in int(D) and they are all collinear in this order, then replace the sideab of P by the
pathac1d1c2d2 . . . cmdmb. Otherwise there is, by induction, a Hamiltonian polygonH(D) for S ∩ int(D)
such thatcd is a side ofH(D). Replace the sideab of P by the path(a, c)⊕ (∂H(D) \ cd)⊕ (d, b).
Doing so for eachD ∈D that contains segments fromS results in a Hamiltonian polygon (see Fig. 2(e
(For two polygonal arcsA = (a1, . . . , ak) andB = (b1, . . . , b�) with ak = b1, we denote byA⊕ B the
concatenation(a1, . . . , ak, b2, . . . , b�) of A andB.) ✷

3. Basic definitions and operations

Our goal is to find a simple polygon satisfying the conditions of Lemma 3. In order to construc
a polygon, we run an algorithm which, in each step, makes local changes to our polygon, that is, r
one edge by a path or two consecutive edges by one edge.

This algorithm, however, leads out from the family of simple polygons. Therefore, we will u
slightly more general definition for polygons, such that the boundary of a polygon may have
intersections but no self-crossings.

Definition 4. Consider a simply-connected closed regionP in the plane which is the image of the un
disc under a continuous mapping�. P is a polygon, if its boundary∂P is the image of the unit circle
under� and consists of finitely many pairwise non-crossing line segments.

The endpoints of the segments on∂P are calledverticesof P . Let P� denote the cyclic sequence
vertices ofP along∂P in counterclockwise order. Thesidesof the polygon are the segments connect
two consecutive vertices ofP� along∂P .

The image of any arcA of the unit circle under� is calledpolygonal arcof ∂P . A polygonal arc is
simple, if � is injective onA.

Observe that a vertex fromV (P ) can appear several times inP�. We define themultiplicity mP (U)

for a setU ⊂ V (P ) of vertices to be the number of occurrences of vertices fromU in P�.

Definition 5. We say that an angleα is convex, strictly convex, reflex or flat, ifα � π , α < π , α > π or

α = π , respectively. For three pointsa, b andc, denote by� abc the angle between the raysba
⇀

andbc
⇀

,
measured counterclockwise.
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For a ∈ P�, denote bya+ (respectivelya−) the next vertex ofP� in counterclockwise (respectively
clockwise) direction. We call an occurrence of a vertexa in P� convex (reflex), if� P a := � a+aa− is
convex (reflex). Similarly tomP(U), for a setU ⊂ V (P ) of vertices definerP (U) to be the number of

perties
r

ce

ate
reflex occurrences of vertices fromU in P�. For a single vertexv ∈ V (P ) we simply writemP(v) for
mP ({v}) andrP (v) for rP ({v}).

In order to be sure that we can apply certain operations to a polygon, a few additional pro
are required; we summarize them under the concept offramepolygons defined below. All through ou
algorithm, we make sure that the intermediate polygons belong to this class.

Definition 6. A polygonP is calledframefor a setS of disjoint line segments, if

(F1) V (S)⊂ P andV (P )⊂ V (S);
(F2) ∂P does not cross any segment fromS;
(F3) mP (v)� 2 for every vertexv ∈ V (P );
(F4) if mP (v) = 2 for v ∈ V (P ), then the angular domain aroundv intersects int(P ) in two convex

angles (that is, ifP� = (. . . avb . . . cvd . . .), then both� dva and � bvc are convex, with possibly
a = d or b= c);

(F5) if v ∈ V (P ), andu ∈ int(P ) for someuv ∈ S, thenmP(v)= 1 butrP (v)= 0.

For example, Fig. 3(a) shows a frame, while the polygons in Fig. 3(b) (α > π ), 3(c) (crosses a
segment), and 3(d) (violates (F5)) are not frames. The convex hull conv(S) is always a frame forS.

The idea behind allowingP� to visit a vertexv twice is that we hope to eliminate one occurren
at the end of our algorithm. This can actually be done easily, ifv appears inP� once as acap defined
below.

Definition 7. Let k ∈N and(a, b1, b2, . . . , bk, c) be a sequence of consecutive vertices inP� such thatbi ,
i = 1, . . . , k, are reflex vertices and int(conv(a, b1, . . . , bk, c))∩S = ∅. Then the sequence(b1, b2, . . . , bk)

is calledcap. If k = 1, we usually omit the parentheses.
A reflex vertex ofP� that is not a cap is calledanti-cap.
A sequence(a, b1, b2, . . . , bk, c) of consecutive vertices inP� is calledwedge, if mP (bi)= 2, for all

i = 1,2, . . . , k, and(b1, b2, . . . , bk) is a cap.

Assuming that every sequence of double occurrences inP� corresponds to a wedge, it is easy to cre
a simple polygon from a frameP by the following operation.

(a) (b) (c) (d)

Fig. 3. Examples for (non-)frames.
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Fig. 4. One occurrence of vertexc ∈ P� forms a cap and(b, c, a) is a wedge;a is an anti-cap, since segmentbc intersects
triangle�(cda).

Fig. 5. Chopping the wedge(a, b, c).

Operation 1 (Chop_wedges(P )) (Fig. 5).
Input: a frameP .
Operation: As long as there is a wedge(a, b1, b2, . . . , bk, c),

Replace the path(a, b1, b2, . . . , bk, c) in P� by the single edgeac.

Output: P .

Proposition 8. The output of Chop_wedges is a frame.

In order to create a simple polygon from a frameP , it is crucial to have a hold on the vertices w
multiplicity two in P�. It is easy to see that a polygon cannot have two strictly convex angles at a
of multiplicity two. The following proposition states a stronger property for frames assuming th
segment endpoints are in general position.

Proposition 9. Let S be a set of line segments in general position. Any frameP for S has the following
property:

(F6) If v ∈ V (P ) is a vertex withmP (v)= 2, thenrP (v)� 1.

Proof. Let P� = (. . . , a, b, c . . . , d, b, e, . . .) such that� cba is convex. The general position assumpt
assures that� cba is strictly convex. AsP is a polygon, i.e., it is simply connected, the edgesbd andbe
must lie in the angular domain� cba, therefore� ebd is reflex, as drawn in Fig. 6.✷
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Fig. 6. Illustration for Proposition 9. Fig. 7. Example: carc(p1,p2,p3)= (p1, b, c,p3).

Remark 10. In the rest of this paper we assume that the segment endpoints are in general p
A complete proof of Lemma 3, of course, cannot use Proposition 9. We may state instead
property:

(F6′) If v ∈ V (P ) is a vertex withmP(v) = 2, then there is a sequences = (b1, b2, . . . , bm), m � 1
containingv such that boths andsR = (bm, bm−1, . . . , b1) are sequences of consecutive vertice
P�; moreover,� P b1 and � P bm are reflex in the same sequence (s or sR), andb2, b3, . . . , bm−1 are
flat in boths andsR .

It can be shown that property (F6′) is maintained during our algorithm, even if there are collinearit
Using this property and checking all possible degenerate cases throughout the argument, the p
be extended to establish Lemma 3 in its general form.

3.1. Including second segment endpoints

Our first objective is to ensure property (L2). The method is really simple: We start with the c
hull of S; whenever there is a line segments whose one endpoint is inV (P ) but the other is not, we
extend the polygon locally to visit the other endpoint as well. This extension can be done in two di
ways, which will be determined by an orientation defined as follows.

Definition 11. Consider a simple polygonal arcA= (p1,p2,p3) that does not cross any segment fromS.
Define theconvex arccarc(p1,p2,p3) of A to be the shortest polygonal arc fromp1 top3 such that there
is no segment endpoint in the interior of the closed polygonal curve carc(p1,p2,p3)⊕ (p3,p2,p1). (See
Fig. 7.)

If p1,p2 andp3 are not collinear, then carc(p1,p2,p3)⊕ (p3,p2,p1) is apseudo-trianglewhere all
internal vertices of carc(p1,p2,p3) are reflex.

Definition 12. For a polygonP , anorientationu(P ) is a functionu : P�→{−,+}.
Operation 2 (Build_cap(P,u, a)) (Fig. 8).
Input: a frameP , an orientationu(P ), and a convex vertexa ∈ P� such thatb /∈ V (P ), for the vertex
b ∈ V (S) with ab ∈ S.
Operation: Let c := au(a).
ObtainP ′ from P by replacing the edgeac by the pathab⊕ carc(b, a, c).
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i.e.,
Fig. 8. Build_cap(P,u, a) with u(a)=+.

Setu(p) := u(a) for all p on carc(b, a, c).
Output: (P ′, u).

Observe thatrP ′(V (P ′)) = 1+ rP (V (P )), sinceBuild_capproduces exactly one new reflex verte
at b. Note also thatP ′ is not necessarily simple, since some of the vertices from carc(b, a, c) might
already have been inV (P ).

Proposition 13. The outputP ′ of Build_cap is a frame.

Proof. We have to check properties (F1)–(F5). (F1) and (F2) follow directly from the definition of
and from the fact that the input polygonP is a frame.

Let carc(b, a, c)= (b = p0, . . . , pk = c) for somek ∈ N. Build_cap inserts verticesp0, . . . , pk−1 into
P�. Obviously,mP ′(b) = 1 andmP ′(a) = mP(a) = 1 by property (F5); also, the verticesp1, . . . , pk−1

are inserted as convex vertices, that is,rP ′(pi) = rP (pi) for anypi , i = 1,2, . . . , k. This immediately
implies thatP ′ has properties (F4) and (F5).

For (F3), we argue by contradiction. Suppose thatmP (pi)= 2 for somei ∈ {1, . . . , k − 1}. By (F4),
the angular domain aroundpi intersects int(P ) in two convex angles. So by definition of carc,pi cannot
be on carc(b, a, c). ✷
Operation 3 (Both_endpoints(P,u)).
Input: a frameP and an orientationu(P ).
Operation: As long as there exists ana ∈ P� such thatab ∈ S andb /∈ V (P ),
let (P,u)← Build_cap(P,u, a).
P ′ ← P .
Output: (P ′, u).

Proposition 14. Both_endpoints does not create any anti-cap(that is, every anti-cap inP ′� is already
an anti-cap inP�). Sequences of consecutive caps inP ′� form one cap, if the same was true forP�.

Proof. Let carc(b, a, c) = (b = p0, . . . , pk = c) for somek ∈ N. Build_cap produces exactly one ne
reflex vertex:b. Vertexb is a cap, because int(�(abp1))∩ S = ∅ by construction.

By property (F5),rP (a) = rP ′(a) = 0. In fact, all the other new vertices are convex as well,
rP ′({a,p1, . . . , pk−1})= rP ({a,p1, . . . , pk−1}). Hence, there is nothing more to show, ifk > 1. So let us
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consider the casek = 1, that is, carc(b, a, c)= bc. Suppose thatc is a reflex vertex ofP�, which is part
of a cap(c = c1, c2, . . . , cr); in particular, this implies int(conv({a, c1, c2, . . . , cr , d})) ∩ S = ∅, where
d is the other (�= cr−1) neighbor ofcr in P�. If � bcd > π , thenc appears as a convex vertex inP ′�.
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Otherwise, we have int(conv({a, b, c1, c2, . . . , cr , d}))∩S =∅ and(b, c1, c2, . . . , cr) is a cap inP ′�. ✷

4. Convexly independent segments and more

In this section, we describe a simple algorithmic proof for the case whereS is a set of convexly
independent segments. The procedure then serves as a base step to our main algorithm (Algorit
arbitraryS.

Algorithm 1.
Input: a setS of disjoint line segments and an orientationu for the vertices of conv(S).

(1) P ← conv(S).
(2) (P ′, u)←Both_endpoints(P,u).
(3) P ′′ ←Chop_wedges(P ′).

Output: P ′′.

Proposition 15. The outputP ′′ of Algorithm1 is a simple frame with property(L2).

Proof. Property (L2) follows from the loop condition inBoth_endpoints, Proposition 13, and the fact th
Chop_wedgesdoes not alter the set of visited vertices.P ′′ is simple because, by Proposition 9, for eve
vertexv with mP ′(v) > 1, we haverP ′(v)� 1. Proposition 14 tells us that every sequence of consec
reflex vertices inP ′� forms a cap, and thus all repetitions inP ′� are deleted byChop_wedges. ✷
Corollary 16 [10]. If the line segments ofS are convexly independent and in general position, t
Algorithm1 outputs a Hamiltonian polygon for any orientationu of the vertices ofconv(S).

Note that we did not make any use of the orientationu for the proof of Corollary 16. We could simpl
run Algorithm 1 with a uniform orientationu≡+. But in this case we cannot guarantee that a prescr
sideyz of conv(S) is a side of the output polygon, as required in (L1).

Suppose thaty precedesz in conv(S)�. Define the orientationuyz of conv(S) by uyz(y) = −, and
uyz(v)=+ for any other vertexv ∈ conv(S)�.

Proposition 17. If Algorithm 1 is applied toS with the orientationuyz, then the outputP ′′ is a simple
frame satisfying properties(L1) and (L2).

Proof. Segmentyz is a side ofP = conv(S), and none of theBuild_cap operations replacesyz by
something else. Moreover, bothy and z remain convex vertices throughoutBoth_endpoints. Since
Chop_wedgesdoes only cut off edges adjacent to reflex vertices, the edgeyz remains part ofP ′′ as
well. ✷
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Proposition 18. If Algorithm 1 is applied toS with orientationuyz, then the outputP ′′ has at most one
cap with exactly two reflex vertices(double-cap); all other caps consist of exactly one reflex vertex.

ly if

it

.

tion
s
ary

nds on
rosses

m

Proof. An operationBuild_cap(P,u, a) creates exactly one new reflex vertex, namely atb where
ab ∈ S. Let c := au(a). As in Proposition 14, we can have two consecutive reflex vertices on
carc(b, a, c) = bc, and if c is a reflex vertex ofP . Assuming this scenario, the reflex vertexc is
created in a previous operationBuild_cap(P̃ , ũ, d) such that inP̃ we hadaũ(a) = d, dũ(d) = a and
carc(c, d, a)= ca. This already implies that there is no cap of three consecutive vertices inP ′�.

A pair au(a) = d, du(d) = a corresponds to a subsequence(+,−) in an orientationu alongP�. The
orientationuyz has exactly one subsequence(+,−) throughout Algorithm 1, sinceBuild_cap does not
induce alternations in the orientation. Thus, there is at most onedouble capin P ′�. ✷

5. Dissecting P

Consider the frameP produced byBoth_endpoints. Recall thatP is not necessarily simple, since
may have multiple vertices atwedges. We call a diagonalab of P segment diagonal, if ab ∈ S. By cutting
P at wedges and along segment diagonals, we obtain a dissection Diss(P ) into simple polygons (Fig. 9)
Observe that Diss(P ) satisfies property (L3).

Unfortunately, the polygons of Diss(P ) are not necessarily convex. A first idea to obtain a dissec
into convex polygons from Diss(P ) is the following: for everyD ∈ Diss(P ) draw consecutively ray
from every reflex vertexb of D dissecting� Db into two convex angles, until the ray hits the bound
of D or a previously drawn ray. If no ray crosses a segment ofS ∩ int(D), then they dissectD into non-
overlapping convex regions satisfying properties (L2), (L3) and (L4). The resulting partition depe
the order in which the rays are drawn, but any order would do at this point. But if any of the rays c
a segments ∈ S, such a partitioning would not grant (L3). In this case, we extendP to incorporates by
means of two new basic operations that are introduced below.

5.1. Extension to interior segments

Definition 19. Consider a simple polygonal arc(a, b, c, d) that does not cross any segment fromS.
Denote by marc(a, b, c, d) = (a = p0, . . . , pk = d), for somek ∈ N, the shortest polygonal arc fro
a to d such that there is no segment endpoint in the interior of the closed polygonal curveM =
marc(a, b, c, d)⊕ (d, c, b, a).

Fig. 9. This frame is dissected into three polygons by Diss(P ).
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e

21–24.
(a) (b)

Fig. 10. marc(a, b, c, d) for convex and concave quadrilateralsabcd.

Fig. 11.Extend_reflex(P,u,D, b, c, rb
⇀
) to a segmentef .

M has reflex vertices atp1, . . . , pk−1, but—in contrast to carc—it is not necessarily simple:a or d
may occur twice on the arc, see Fig. 10(b).

Operation 4 (Extend_reflex(P,u,D, b, c, rb⇀) (Fig. 11).
Input: a frameP along with an orientationu(P ), a dissectionD of P , a reflex vertexb of someD ∈D,
a vertexc, and a rayrb

⇀ emanating fromb.
Preconditions: bc is a common side ofD andP , rb

⇀ cuts � Db into two convex angles,rD(c) = 0, and
rb
⇀ hits2 the segmentef ⊂ int(D) at a pointg. We may suppose thatc andf are on the same side of th
supporting line ofrb

⇀.
Operation: ObtainP ′ fromP andD′ fromD by replacing the edgebc by the path carc(b, g, e)⊕ (e, f )⊕
marc(f, g, b, c). SplitD′ into simple polygons inD if necessary. Setu(·) := − for all interior vertices of
carc(b, g, e), andu(·) := + for all interior vertices of marc(f, g, b, c).
Output: (P ′, u,D).

There are two variants ofExtend_reflex, depending on whetherc follows or precedesb in P�. We have
described only the first above, and refer to this variant in the notation of Fig. 11 and Propositions
The other variant is completely symmetric.

2 More precisely, the intersection of the open segmentbg with (S ∪ ∂D) is empty.
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Proposition 20. Given a frameP for S, a dissectionD of P , and a polygonD ∈D, we havemP (b)= 1
for everyb ∈ V (P ) with rD(b)= 1.
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Proof. If mP(b)= 2, thenb cannot be a reflex vertex of anyD ∈D by property (F4). ✷
Proposition 21. The outputP ′ of Extend_reflex is a frame.

Proof. Properties (F1) and (F2) follow directly from the definition of carc and marc and from the fac
P is a frame. For internal vertices of carc(b, g, e) and marc(f, g, b, c), one can argue as in Proposition 1
Hence, we have to consider the verticesb, c, e andf , only.

Since c is a convex vertex ofD by assumption, it cannot appear twice on marc(f, g, b, c), even
if it is a reflex vertex of the quadrilateralfgbc. Thus,f is the only vertex possibly visited twice b
marc(f, g, b, c). SincemP(e)=mP(f )= 0, (F3) follows.

For (F4) note thatmP(b) = mP ′(b)= 1 (Proposition 20); ifmP ′(c) = 2, then the convex angles atc
described in (F4) cannot increase. Alsof fulfills (F4), even if it appears twice on marc(f, g, b, c), since
marc(f, g, b, c) is locally convex and the second (reflex) occurrence off is inside this convex angl
(look at vertexa in Fig. 10(b)). Finally, (F5) follows from the fact that the line segment adjacent to
two new reflex vertices,e andf , is ef ⊂ ∂P ′. ✷

Next, we would like to prove an analog to Proposition 14 forExtend_reflex. Unfortunately,
Extend_reflexcan create anti-caps, but—fortunately—at most one. Recall that the problem with
caps is that they cannot be chopped off; hence, we have to make sure thatP� does not visit this anti-ca
in a later step, for instance, along a convex arc constructed by aBuild_capoperation. Therefore, whenev
an anti-cap is created, we draw the next ray from this anti-cap, immediately reverting it into a c
vertex of two non-overlapping polygons inD. For this purpose, we have to control carefully the num
of anti-caps appearing in the course of our algorithm.

Proposition 22. Extend_reflexcreates at most one new anti-cap(that is, there is at most one more an
cap inP ′� than inP�).

Proof. Bothb andc are convex vertices ofD′. Compared toP , there are at most two new reflex vertic
in P ′: e andf . We will show that at least one ofe or f is a cap inP ′�.

Let d be the second vertex of carc(e, g, b), and leth be the second vertex of marc(f, g, b, c) (possibly
d = b or h = c). If int(�(fgb)) ∩ S = ∅, then by definition of carc also int(�(f ed)) ∩ S = ∅, ande is

a cap. Otherwise, the raysed
⇀

andf h
⇀

intersect in a pointv ∈ �(f eb) (Fig. 12). Since the edgesed and
f h do not cross by definition, we haved ∈ ve or h ∈ vf . In the first casedf is a visibility edge ande is
a cap, and in the second casehe is a visibility edge andf is a cap. ✷
Corollary 23. If g = e in Extend_reflex, thenf is a cap inP ′�.

If f appears twice on marc(f, g, b, c), we have to make sure that the reflex occurrence off is a cap of
P ′� that can be chopped off later. Fortunately, this is not hard to achieve: before applyingExtend_reflex,
we apply the following rotation torb

⇀.
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d

,

(a) (b)

Fig. 12. Illustration for Proposition 22. (a)fgbc is convex. (b)fgbc is concave.

(a) (b) (c)

Fig. 13. The three possible outcomes of Rotate(rb
⇀
,b, ef,D).

Operation 5 (Rotate(rb
⇀
,b, ef,D)).

Input: a rayrb
⇀ emanating fromb, a segmentef ⊂ intD, and a polygonD ∈D.

Preconditions: b is a reflex vertex ofD, rb
⇀ dissects� Db into two convex angles,rb

⇀ hits ef and rayef
⇀

hits a side ofD incident tob.
Operation: Obtainrb

⇀′ by rotatingrb
⇀ aroundb towardse, until it hits

• eithere (Fig. 13(a))—Corollary 23 assures thatf is a cap in this case;
• or the right endpointf ′ of another segmente′f ′ ⊂ int(P ) (Fig. 13(b))—Then we have marc(f ′, g′ =
f ′, b, c)= carc(f ′, b, c), ande′ is a cap inP ′�;
• or a reflex vertex ofD (Fig. 13(c))—We do not applyExtend_reflexhere.

Output: rb
⇀′.

Proposition 24. The rayrb
⇀′ =Rotate(rb

⇀
,b, ef,D) cuts � Db into two convex angles.

Proof. Let a andc denote the vertices ofD� adjacent tob. The raybe
⇀

lies in the convex angle forme

by the raysab
⇀

andcb
⇀

. Since reachinge is one of the stop conditions for the rotation ofrb
⇀, thereforerb

⇀

stays in the convex angle formed byab
⇀

andcb
⇀

. ✷
5.2. Common side for eachD ∈D andP

If we just proceed to shoot rays from a reflex vertex of someD ∈ D and callExtend_reflexwhen
applicable, we obtain a frameP and a dissectionD of P fulfilling properties (L1)–(L4). Unfortunately
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Fig. 14. The shaded polygon does not have a common side with the frame.

P andD do not necessarily have property (L5), as can be seen in Fig. 14. The problem is that a
that a dissection polygon originally had in common withP might have been hit by rays. We have to ta
into account that, whenever a ray hits the boundary of the current region, and thus the region is sp
this ray, the side hit might have been the last common side ofP and one of the newly created regions.

Operation 6 (Mend_cap(P,u,D, b, rb⇀,cd)) (Fig. 15).
Input: a frameP with an orientationu(P ), a dissectionD of P , a reflex vertexb of someD ∈D which
is a cap inP�, a rayrb

⇀ emanating fromb, and a sidecd of ∂D hit by rb
⇀.

Preconditions: cd is a common side ofP andD, rb
⇀ cuts the reflex� P b into two convex angles,rD(c)= 0.

Operation: Let q denote the point whererb
⇀ hits cd. ObtainP ′ from P andD′ from D by replacing the

edgecd by the path carc(c, q, b)⊕ carc(b, q, d). SplitD′ into simple polygons inD. Setu(·) := − for
all interior vertices of carc(c, q, b) andu(·) := + for all interior vertices of carc(b, q, d).
Output: (P ′, u,D).

Proposition 25. The outputP ′ of Mend_capis a frame.

Proof. We have to check properties (F1)–(F5). (F1) and (F2) are obvious from the definition of ca
internal vertices of convex arcs, one can argue as in Proposition 13. Hence, we have to consider
b, c andd only.

By Proposition 20,mP (b)= 1, and, thus,mP ′(b) = 2. SincemP(c) =mP ′(c) andmP(d) = mP ′(d),
(F3) follows. (F4) is clearly true forb, since for both visiting paths, the adjacent vertices are on diffe
sides of the line throughb andq. For bothc andd, the angles mentioned in (F4) cannot increase. He
(F4) holds for all vertices inV (P ′). Finally, for (F5) note thatMend_capdoes not create any new refl

Fig. 15. Mending a cap.
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vertex, except for the fact thatrP ′(b)= rP (b)+ 1= 2. Letpb,pd ∈ V (S) such thatbpb ∈ S anddpd ∈ S.
SinceP is a frame andrP (b)= rP (d)= 1, we can conclude by (F5) thatpb,pd ∈ V (P )⊂ V (P ′). ✷
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Proposition 26. Mend_capcreates at most one new anti-cap(that is, there is at most one more anti-c
in P ′� than inP�).

Proof. The operation does not create any new reflex vertices, so only the existing reflex verticeb and
(possibly)d might become anti-caps. But by the definition of carc, the new occurrence ofb in P ′� is a
cap. ✷
Remark 27. If vertex b appears twice as a cap inP ′�, there is some choice which one to chop off
a wedge byChop_wedges. For reasons that will become apparent later (cf. Lemma 37), we deci
consider the original cap as a wedge.

6. Algorithm and its analysis

Algorithm 2.
Input: a setS of disjoint line segments and a sideyz of conv(S).

P ← conv(S). (frame)
D ← {P }. (dissection)
(a, b, c) ← ∅. (vertex+ adjacent reflex vertex+ adjacent vertex)
u ← uyz. (orientation)

Repeat until everyD ∈D is convex in stepc below.
(a) (P,u)← Both_endpoints(P,u).
(b) UpdateD by replacing eachD ∈D by Diss(D).
(c) If everyD ∈D is convex, thenP ←Chop_wedges(P ) and exit.
(d) If (a, b, c)= ∅, then

(1) If there is a double-cap(k, l) in someDb ∈ D, then (a, b, c)← (k, l,m), wherem is the
other (�= k) neighbor ofl in ∂Db.

(2) Else letb be a reflex vertex of someDb ∈D, and leta andc be the adjacent (in∂Db) convex
vertices, such thatc is also adjacent tob in P� (see Proposition 30).

(e) If rb
⇀ := ab

⇀
hits a segmentef ⊂ int(Db) whose supporting line crosses the sidebc, then

rb
⇀←Rotate(rb

⇀
,b, ef,Db).

(f) If rb
⇀ hits a segmentef ⊂ int(Db), then

(1) (P,u,D)← Extend_reflex(P,u,D, b, c, rb⇀).
(2) If Extend_reflexcreated an anti-caph in P�, thenb← h; c← one convex neighbor, an

a← the other neighbor ofb in P�;
(3) else(a, b, c)←∅.

(g) If rb
⇀ hits ∂Db at a pointg on sidede (w.l.o.g.,rDb

(d)� rDb
(e)), then

(1) DissectDb by bg and updateD accordingly.
(2) If de �= yz, andde is a common side ofDb andP which is not part of a wedge, then

(i) If not both ab andbc are common sides ofDb andP , then
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(P,u,D)←Mend_cap(P,u,D, b, rb⇀,de).
(ii) If rDe

(e)= 1 for some regionDe ∈D, then
a, c← neighbors ofe in ∂De, such thatb andc are in different open halfplanes w.r.t.

from
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),

the
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ck that
the linede; andb← e.
(iii) Else (a, b, c)←∅.

(3) Else(a, b, c)←∅.

Output: (P,D).

An example illustrating the different steps of Algorithm 2 is provided in Fig. 16.

Proposition 28. Algorithm2 terminates.

Proof. If P is changed in step (a), at least one segment endpoint is added toP� that was not visited
before. As no vertex ever leavesP�, these changes can only occur in a finite number of steps. Apart
this, either step (f) or step (g) is executed in every iteration. EitherP� is augmented by a segment th
was in the interior ofP before (step (f)); or a reflex angle of a regionDb ∈ D is destroyed (step (g)
while no new reflex angle is added. Hence, after a finite number of iterations, everyD ∈D is convex and
the algorithm terminates.✷

To ensure that Algorithm 2 works correctly andP is a frame all the time, it is enough to check that
preconditions of our operations are satisfied.

Proposition 29. WheneverMend_cap(P,u,D, b, rb⇀,de) is called in Algorithm2, thenb is a cap inP�.

Proof. Whenever an anti-caph is created during Algorithm 2, the next ray is shot fromh. At that
point, the edges incident toh are common edges of bothP and the corresponding dissection polyg
Dh ∈D. ✷
Proposition 30. If a, b, c are three consecutive vertices inP�, during Algorithm2, whereb is a reflex
vertex of someDb ∈D, then eitherab or bc is a side ofDb.

Proof. The sideab (or bc) is not a side ofDb if and only if the ray drawn from a previous reflex vert
hit it. Algorithm 2 is organized so that right after a ray hits, say, sideab (step g(2)), it shoots a ray from
b in the next step, such that from there on,b is no longer a reflex vertex of any set inD. ✷

The following lemmata show three invariants of Algorithm 2, finally establishing the condition
Lemma 3.

Lemma 31. In each step of Algorithm2, the total number of pairs of adjacent reflex vertices over
D ∈D is at most one.

Proof. The statement holds after the first execution of step (a) by Proposition 18. It suffices to che
each operation maintains this property.
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marked:
e obtain a
Fig. 16. Running Algorithm 2 on an example; wedges are shaded dark, and the points from which a ray is shot are
a circle denotes a cap, while a square stands for an anti-cap. In the last step, the wedges are chopped off, and w
dissection ofP into convex polygons.
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Mend_capdoes not create any reflex vertex of anyD ∈D. Extend_reflexcreates at most two adjacent
reflex vertices; if it does so, one of these reflex vertices is chosen (step d(1) or step f(2)) as the vertexb

to shoot the next ray from, thereby revertingb to a convex vertex of the resulting regions inD.
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It rests to consider the call toBoth_endpointsin step (a). Recall that every interior vertexv of every
single carc and marc is always oriented such thatvu(v) is a convex vertex of the correspondingD ∈D.
As in Proposition 18, the fact that all interior vertices of any single carc or marc get the same orie
assures that no two consecutive reflex vertices are created duringBoth_endpoints. ✷
Corollary 32. WheneverExtend_reflex(P,u,D, b, c, rb⇀) is called in Algorithm2, we haverD(c) = 0,
whereD is the region fromD of whichb is a reflex vertex.

Corollary 33. WheneverMend_cap(P,u,D, b, rb⇀,de) is called in Algorithm2, we haverD(d) = 0,
whereD is the region fromD of whichb is a reflex vertex.

Now we have shown that all the preconditions of bothExtend_reflex(P,u,D, b, c, rb⇀) andMend_cap
(P,u,D, b, rb⇀,de) are satisfied whenever these operations are called. It remains to show th
preconditions ofChop_wedgesin step (c) of Algorithm 2 are satisfied, too.

Proposition 34. During Algorithm 2, there is always at most one anti-cap which is a common re
vertex ofP� and someD ∈D.

Proof. An anti-cap can be created in two places only: inExtend_reflex(step f(1)), or inMend_cap
(step g(2)(i)). In both cases, at most one anti-cap is created (Propositions 22 and 26). Assum
vertexe is inserted intoP� as an anti-cap byExtend_reflexor Mend_cap. At this point,mP(e) = 1 by
Proposition 20. In the next iteration, Algorithm 2 dissects the regionD ∈ D containinge along a ray
emanating frome. From there on,e is not a common reflex vertex ofP and anyD ∈D anymore. ✷
Lemma 35. For every anti-cape in P�, we havemP(e)= 1 during Algorithm2.

Proof. The only point where an anti-cape could possibly be revisited byP� is in the call to
Both_endpoints(step (a)) immediately following the step wheree became an anti-cap. We argue that
orientationu along carc and marc is set such thatP� cannot revisite in any of the resultingBuild_cap
operations:

We consider only the variant ofExtend_reflexdescribed in Operation 4 and we use the same nota
as there; the argument is similar for the symmetric variant ofExtend_reflexand forMend_cap.

First we show thatBoth_endpointsapplied to vertices of carc(b, g, e) does not revisite. Recall that
u(k)=−, for all k ∈ carc(b, g, e), and thatBuild_cappreserves this orientation for all new vertices.
particular, for every interior vertexk of a carc,ku(k) is convex inP�.

Denote byP ′ the frame resulting fromBoth_endpoints(P,u). For every vertexk inserted by
Both_endpointsinto P�, we define recursively a polygonal arcε(k) connectingk to b. If k is inserted
as part of a carc(p, q, q−) in a stepBuild_cap(P̃ , u, q), then letε(k) follow carc(p, q, q−) from p

to q−, and then continue alongε(q−) to b (an example is given in Fig. 17). For any suchk, the arc
ε(k)= (p = p0, . . . , pj = k, . . . , pm = b) is a simple locally convex polygonal arc withinP . Moreover,
ε(k) forms aright-turn, that is, for everyi = 1, . . . , (m−1), pi+1 as well as all the neighbors ofpi ∈ P ′�
lie to the right of the oriented linepi−1pi

−−−⇀.
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Fig. 17. Illustration for Lemma 35.

Suppose thatmP ′(e) = 2. Notice thate is inserted intoP ′� as a convex vertex byBoth_endpoints,
since the other endpointf of the segment edgeef is already inP�. Therefore, there is a vertexk0,
k0 �= e, such thate ∈ ε(k0). Sinceε(k0) is a simpleright-turn path frome to b within P , it has to stay
within P ∩�(bge), with g lying on its reflex side at vertexe. On the other hand, by property (F4) of t
frameP ′, g must lie on the convex side ofε(k0) at e, giving a contradiction.

For the case of marc(f, g, b, c), observe that ifef
⇀

hits bc, then g = e by the rotation ofrb
⇀; and

by Corollary 23,f is a cap inP ′�. If ef
⇀

does not hitbc, then the argument from above shows t
Both_endpointsapplied to vertices of marc(f, g, b, c) does not revisitf . ✷
Corollary 36. During Algorithm2, everyv ∈ V (P )withmP (v)= 2 appears at least once as a cap inP�.

Proof. A vertex b ∈ V (P ) can be revisited in two different ways (we may assume thata, b, c are
consecutive vertices inP�):

(i) If b is a cap andMend_cap(P,u,D, b, rb⇀,cd) is applied.
(ii) If a cap b is a reflex vertex of someD ∈D and carc or marc containb.

In both cases, the first occurrence ofb remains a cap, and bothab andbc remain sides ofP . ✷
At the last step of Algorithm 2,Chop_wedgesis applied. Lemma 35 assures that any vertexv, for

whichmP(v)= 2, is adjacent to a wedge that can be chopped off. Thus, the outputP of Algorithm 2 is a
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simple frame. To show thatP and the partitionD satisfy the properties of Lemma 3, it rests to prove the
following.

n.
ly

; hence,

ge

or

om. 12
Lemma 37. All through Algorithm2, everyD ∈ D has a common side withP which is different from
wedge edges and the special sideyz of P .

Proof. The statement holds for conv(S). It is enough to check that it remains true after each iteratio
Build_cap, Mend_capor Extend_reflexmay dissect a regionD ∈D into several regions: either direct

(Mend_capdissects the current region at the mended cap), or because carc or marc

• pass through both endpoints of a segment (thus forming a segment diagonal),
• pass through an endpoint of a segment whose other endpoint is already inP� (again creating a

segment diagonal),
• or revisit a cap (thereby reverting sides ofD to wedge-edges).

Still, in each new regionD′ ⊂D, carc and marc have a side which is common with bothD′ andP . For
Mend_capwe have to note that both occurrences of the mended cap are caps inP� (cf. Proposition 26).
We need to be a bit careful which of them is supposed to be chopped off inChop_wedges, in order for the
above argument to go through: one side adjacent to the original cap might have been hit by a ray
we have to mark this original cap as wedge.

In step g(1) of Algorithm 2, the regionDb ∈ D is dissected into regionsDe andDd by the rayrb
⇀,

whereb is a reflex vertex of bothDb andP�. We have to check that our statement still holds for bothDe

andDd . According to Proposition 30, we may assume thatbc is a common side ofDe andP . Denote the
other neighbor ofb in P� andDd by a andα, respectively.

If b is an anti-cap, thena = α, since Algorithm 2 draws the rayrb
⇀ right after the pathαbγ is created.

Hence,αb is a common side ofDd andP that is clearly neither a wedge edge nor equal toyz.
So suppose thatb is a cap and,αb is not a side ofDd . This means that a previously drawn rayrb′

⇀ from
a reflex vertexb′ hitsab atα. Let γ be the neighbor ofb′ in Db. Thenb′γ must be a common side ofDb

andP , since otherwiseMend_capwould have been applied tob′, rb′⇀ andab, andab would not be a side
of P anymore. Note that the dissection byrb

⇀ immediately follows the dissection byrb′
⇀ (no operation is

applied, hence the call toBoth_endpointsdoes not change anything).
We claimb′ ∈Dd . Sincerb′

⇀ and sideαb are adjacent along∂Dd , the only way to excludeb′ fromDd

is thatrb
⇀ hits back torb′

⇀. But this is impossible by the choice ofrb
⇀, which always shoots along the ed

that was hit by the previous ray (step g(2)(ii)), in this caseab. Thus,b′ lies on the boundary ofDd , as
claimed.

If side b′γ does not belong to∂Dd , it must be hit byrb
⇀. But in this case,Mend_capis applied tob

(b′γ is not a wedge edge and sideab is not part of∂Db), and there is a common side ofDd andP along
the constructed carc. Otherwise,b′γ is a common side ofDd andP which is neither wedge edge n
equal toyz. ✷

References

[1] P.K. Agarwal, N. Alon, B. Aronov, S. Suri, Can visibility graphs be represented compactly?, Discrete Comput. Ge
(1994) 347–365.



68 M. Hoffmann, Cs.D. Tóth / Computational Geometry 26 (2003) 47–68

[2] T. Asano, S.K. Ghosh, T.C. Shermer, Visibility in the plane, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational
Geometry, Elsevier Science/North-Holland, Amsterdam, 2000, pp. 829–876.

[3] P. Bose, M.E. Houle, G.T. Toussaint, Every set of disjoint line segments admits a binary tree, Discrete Comput. Geom. 26

ericton,

) 235–

: Proc.

991)

rkshop

time,

eome-

y, CRC

4) 209–

mput.

omput.

(1989)

omput.

–64.
51–53.
.

(2001) 387–410.
[4] E.D. Demaine, J. O’Rourke, Open problems from CCCG’99, in: Proc. 12th Canadian Conf. Comput. Geom., Fred

NB, 2000, pp. 269–272.
[5] H. Everett, C.T. Hoang, K. Kilakos, M. Noy, Planar segment visibility graphs, Computational Geometry 16 (2000

243.
[6] S. Ghali, A.J. Stewart, Maintenance of the set of segments visible from a moving viewpoint in two dimensions, in

12th Annu. ACM Sympos. Comput. Geom., Philadelphia, PA, 1996, pp. V3–V4.
[7] S.K. Ghosh, D.M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput. 20 (1

888–910.
[8] M. Hoffmann, Cs.D. Tóth, Alternating paths through disjoint line segments, in: Abstracts 18th European Wo

Comput. Geom., Warsaw, 2002, pp. 23–26.
[9] M. Keil, D.M. Mount, S.K. Wismath, Visibility stabs and depth-first spiralling on line segments in output sensitive

Internat. J. Comput. Geom. Appl. 10 (2000) 535–552.
[10] A. Mirzaian, Hamiltonian triangulations and circumscribing polygons of disjoint line segments, Computational G

try 2(1) (1992) 15–30.
[11] J. O’Rourke, Visibility, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometr

Press LLC, Boca Raton, FL, 1997, pp. 467–480, Chapter 25.
[12] J. O’Rourke, J. Rippel, Two segment classes with Hamiltonian visibility graphs, Computational Geometry 4 (199

218.
[13] M.H. Overmars, E. Welzl, New methods for computing visibility graphs, in: Proc. 4th Annu. ACM Sympos. Co

Geom., Urbana-Champaign, IL, 1988, pp. 164–171.
[14] M. Pocchiola, G. Vegter, Minimal tangent visibility graphs, Computational Geometry 6 (1996) 303–314.
[15] M. Pocchiola, G. Vegter, Topologically sweeping visibility complexes via pseudo-triangulations, Discrete C

Geom. 16 (1996) 419–453.
[16] D. Rappaport, Computing simple circuits from a set of line segments is NP-complete, SIAM J. Comput. 18 (6)

1128–1139.
[17] D. Rappaport, H. Imai, G.T. Toussaint, Computing simple circuits from a set of line segments, Discrete C

Geom. 5 (3) (1990) 289–304.
[18] X. Shen, H. Edelsbrunner, A tight lower bound on the size of visibility graphs, Inform. Process. Lett. 26 (1987) 61
[19] M. Urabe, M. Watanabe, On a counterexample to a conjecture of Mirzaian, Computational Geometry 2 (1) (1992)
[20] E. Welzl, Constructing the visibility graph forn line segments in O(n2) time, Inform. Process. Lett. 20 (1985) 167–171


