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a b s t r a c t

In this paper, we present a mathematical study of the method of fundamental solutions
(MFS) applied to reducedwave problemswithDirichlet boundary conditions in the exterior
domain of a disk. A theorem in this paper shows that the MFS with N source points in
equi-distantly equally phased arrangement with assignment parameter q (0 < q < 1),
which characterizes the position of the source points and the collocation points, gives
an approximate solution with error of O(qN ) if the Fourier coefficients of the boundary
data decay exponentially. This error estimate is an extension of the results of the previous
studies. Numerical examples make good agreements with the results of the theoretical
study.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we examine the accuracy of themethod of fundamental solutions (MFS, in abbreviation) applied to Dirichlet
boundary value problems of two-dimensional reduced wave equation, that is, the two-dimensional Helmholtz equation in
the exterior region of a disk.

The MFS is a numerical solver for boundary value problems of homogeneous partial differential equations, where the
solution is approximated by a linear combination of the fundamental solutions of the partial differential equation with
singularities outside the problemdomain. Thismethod has the advantages that (i) it is easy to program, (ii) its computational
cost is low and (iii) it achieves high accuracy such as exponential convergence under some conditions, and, due to these
advantages, it is widely used especially for potential problems, where the method is usually called the charge simulation
method.

Previous studies related to the MFS are as follows. The MFS was first proposed by Steinbigler for electric field analysis
with cyclic symmetry [1], where the electric field is simulated by posing fictitious point, line, and ring charges. Singer et al.
also applied theMFS to electric field studies [2]. Studies on theMFS for elliptic boundary value problems are reviewed in [3].
As regards theoretical studies on the MFS, Katsurada and Okamoto presented theoretical error estimates of the MFS applied
to two-dimensional potential problems in a disk [4,5], where it is shown that the approximate solution by theMFS converges
to the exact solution at an exponential rate if the boundary data is an analytic function. The theoretical study presented in
this paper is essentially based on these studies of Katsurada and Okamoto. The MFS is applied to studies in various fields,
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for example, Amano et al. proposed a method of numerical conformal mappings of various types of complex domains using
the MFS [6,7], where the mapping problems are reduced to the Dirichlet problems of the Laplace equation and approximate
mapping functions are obtained by solving these problems by the MFS. As another application of the MFS, Ogata et al. used
the MFS for the studies of various periodic problems, namely, two-dimensional potential problems with one-dimensional
periodicity [8], two- or three-dimensional Stokes flow problems with two- or three-dimensional periodicity [9–11], and
two-dimensional elasticity problemswith one-dimensional periodicity [12], where the solutions are approximated by linear
combinations of the periodic fundamental solutions, that is, the fundamental solutions with singularities in a periodic array.
Regarding theMFS for wave problems, the works of Sánchez-Sesma [13] and Sánchez-Sesma and Rosenblueth [14] were the
earliest ones in which theMFSwere applied as far as the authors know. In [13], two-dimensional elastic scattering problems
are examined and the solution is approximated by the MFS which uses a linear combination of the fundamental solution of
the Helmholtz equation. In [14], problem of ground motion, more exactly, SH-wave diffraction in canyons is examined and,
by expressing the solution as a single layer potential, the problem is formulated as a Fredholm integral equation of the first
kind, whose discretization leads to a solution by the MFS. See also [15] as a review of the MFS for scattering and radiation
problems. We examine a two-dimensional Dirichlet problem of the Helmholtz equation for u = u(x)

1u + k2u = 0 in D

u = f on ∂D

lim
r→∞

√
r


∂u
∂r

− iku


= 0
(1)

where k is a given positive constant,D is an exterior simply connected domainwith boundary ∂D of a closed Jordan curve, f is
a function given on the boundary ∂D , and the third condition is the Sommerfeld outgoing radiation condition. This problem
models two-dimensional waves scattered by an object, where k corresponds to the wave number. In the MFS applied to the
problem (1), we approximate the solution by

u(x) ≃ uN(x) =

N−
j=1

QjH
(1)
0 (k‖x − ξj‖), (2)

where H(1)
0 is the Hankel function of order 0 of the first kind, ‖ · ‖ is the two-dimensional Euclidean norm, ξj (j =

1, 2, . . . ,N) are source points given in R2
\ D3and Qj (j = 1, 2, . . . ,N) are complex coefficients. We choose the coefficients

Qj (j = 1, 2, . . . ,N) so that uN(x) satisfies the Dirichlet boundary condition collocationally.4 Namely, we choose points
xi ∈ ∂D (i = 1, 2, . . . ,N) which we call the collocation points and we determine Qj such that uN(x) satisfies the collocation
condition

uN(xi) =

N−
j=1

QjH
(1)
0 (k‖xi − ξj‖) = f (xi) (i = 1, 2, . . . ,N). (3)

Eq. (3) form a linear system of equations

GQ⃗ = f⃗ , (4)

where G is the N × N matrix with the (i, j)-element

Gij = H(1)
0 (k‖xi − ξj‖) (i, j = 1, 2, . . . ,N) (5)

and

Q⃗ = [Q1,Q2, . . . ,QN ]
t , f⃗ = [f (x1), f (x2), . . . , f (xN)]t . (6)

It is crucial in general how to arrange the source points ξj and the collocation points xi for obtaining the approximate solution
uN(x) with high accuracy.

In this paper, we confine ourselves to the case where the domain D is the exterior to a disk

D = Dρ = {x ∈ R2
| ‖x‖ > ρ}, (7)

where ρ is a given positive constant corresponding to the radius of the disk, and establish a theorem on the convergence of
theMFS. This is a very special case but is important from a viewpoint of applications, for example, to the FEM–MFS combined

3 Throughout this paper, we denote the set of all positive integers by N, the set of all integers by Z, the set of all real numbers by R and the set of all
complex numbers by C.
4 In the methods shown in [3], the coefficients Qj are determined by the least square matching on the boundary.
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method, which is a kind of domain decomposition method, for two-dimensional wave problem in the exterior of a general
scattering body [16]. It is natural for this case to arrange the collocation points xi and the source points ξj as

xi = ρ


cos

2π(i − 1)
N

, sin
2π(i − 1)

N


ξi = qρ


cos

2π(i − 1)
N

, sin
2π(i − 1)

N


 (i = 1, 2, . . . ,N) (8)

with a constant q such that 0 < q < 1.We call the arrangement of the points (8) the equi-distant equally phased arrangement
and call q the assignment parameter. Ushijima and Chiba showed in [17] the unique solvability and the convergence of the
MFS applied to the reduced wave problem (1) in Dρ with the points in equi-distantly equally phased arrangement (8) as in
the following theorem.5

Theorem 1. We assume that the parameters k, ρ and q satisfy the condition that

Jn(qkρ) ≠ 0 (∀n ∈ Z). (9)

1. For sufficiently large N, the MFS determines an approximate solution uN(x) uniquely, that is, the linear system of Eq. (4) has a
unique solution Q⃗ .

2. We further assume that the boundary data f is a trigonometric polynomial or the plane wave f (x) = exp(ikx). Then, we have

sup
x∈∂Dρ

|u(x) − uN(x)| = O(N−m) as N → ∞ (10)

for an arbitrary positive integer m. �

Recently, Chiba and Ushijima [19] have improved the above theorem on the convergence of the MFS as in the following
theorem.

Theorem 2. We assume that the parameters k, ρ and q satisfy the condition (9) and that the Fourier coefficients of the boundary
data

fn =
1
2π

∫ 2π

0
f (ρ cos θ, ρ sin θ)e−inθdθ (n ∈ Z)

satisfy

|fn| = O(|H(1)
n (kρ)Jn(qkρ)|) as n → ±∞.

Then, we have

sup
x∈Dρ

|u(x) − uN(x)| = O(qN/2) as N → ∞. � (11)

In this paper, we further improve Chiba and Ushijima’s result on the convergence of the MFS (11), namely, we claim that

sup
x∈Dρ

|u(x) − uN(x)| = O(qN) as N → ∞ (12)

under different conditions from the conditions in Theorem 2. The following facts should be remarked.
(1) The above estimate cannot be derived from Theorem 2.
(2) For cases satisfying the conditions in Theorem 2, our main theorem still gives error estimates of the same order as the

error estimate by Theorem 2.
(3) Our main theorem gives theoretical error estimates for cases to which the results by the previous works cannot do.

In addition, for problemswith planewaves as the boundary data, our theorem gives the error estimate of order O(qN), which
is an improvement of the theoretical error estimate of order O(qN/2) by Theorem 2. The numerical examples included in this
paper support the above theoretical error estimate (12).

Related to the results of this paper mentioned above, we also remark the results of Chiba and Ushijima’s study on the
MFS applied to reducedwave Neumann problems in the exterior region of a disk [20,21]. In the papers [20,21], theMFSwith
points in equi-distantly equally phased arrangementwith assignment parameter q is estimated theoretically to give an error
decay of O(qN/2) but numerical examples in the paper show that the error decays of the MFS are of O(qN). We expect that
these results, though they are for Neumann problems, support the result (12) in this paper.

The contents of this paper are as follows. In Section 2, we define some notations and present the main theorem of this
paper, which claims the exponential error decay of O(qN) of the MFS. In Section 3, we present numerical examples for some
typical cases, which support the main theorem. In Section 4, we prove the main theorem. Some lemmas used for the proof
are proved in the Appendix. In Section 5, we give concluding remarks and refer to some problems for future studies.

5 In [18], the condition of Theorem 1 is given as H(1)
n (kρ)Jn(qkρ) ≠ 0 (∀n ∈ Z). However, since we have H(1)

n (kρ) ≠ 0 (∀n ∈ Z) for any k and ρ, this
condition is equivalent to the condition (9).
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2. Main theorem

We equalize a point in the two-dimensional Euclidean plane x = (x, y) ∈ R2 to the complex number z = x + iy ∈ C.
Then, the collocation points and the source points (8) are respectively rewritten as

zi = ρωi−1, ζi = qρωi−1 (i = 1, 2, . . . ,N) (13)

with ω = e2π i/N , where zi and ζi (i = 1, 2, . . . ,N) correspond to the collocation points xi and the source points ξi
respectively, and the approximate solution is rewritten as

uN(z) =

N−
j=1

QjH
(1)
0 (k|z − qρωj−1

|). (14)

The main theorem of this paper is as follows.

Theorem 3. We assume that the parameters k, ρ and q (0 < q < 1) satisfy the condition (9) and that the Fourier coefficients of
the boundary data

fn =
1
2π

∫ 2π

0
f (ρeiθ )e−inθdθ (n ∈ Z)

decay exponentially, i.e., there exist a constant a satisfying 0 < a < 1 and a positive constant Af depending on f such that

|fn| ≤ Af a|n| (n ∈ Z). (15)

Then the error of the approximate solution uN(z) of the MFS (14) for the problem (1) with the collocation points and the source
points given by (8) is bounded in the closure of the domain Dρ by

sup
z∈Dρ

|u(z) − uN(z)| ≤ Af C(k, ρ, a, q) ×

qN if q >
√
a

NqN if q =
√
a

aN/2 if q <
√
a

(16)

if N is sufficiently large for given k, ρ and q, where C(k, ρ, a, q) is a positive constant depending on k, ρ, a and q only. �

Remark 1. The following is noted in [18]: for given k (> 0) and ρ (> 0), the condition (9) is satisfied for every q ∈ (0, 1)
except for a finite number of q ∈ (0, 1) depending on k and ρ. Especially, if 0 < kρ < j0,1, where j0,1 is the smallest positive
zero of the Bessel function J0(x), the condition (9) is satisfied for every q ∈ (0, 1). �

Remark 2. The condition (15) is satisfied if and only if the boundary data is an analytic function in a neighborhood of the
boundary. In fact, if f (z) is analytic on the annulus r0 ≤ |z| ≤ ρ2/r0 with r0 such that 0 < r0 < ρ, we have

|fn| ≤ ‖f ‖r0,∞


r0
ρ

|n|

(n ∈ Z)

with

‖f ‖r0,∞ = sup
r0≤|z|≤ρ2/r0

|f (z)|

and Theorem 3 holds by taking a = r0/ρ. Conversely, if the condition (15) holds, let

F+(z) =

∞−
n=0

fnzn, F−(z) =

∞−
n=1

f−nz−n.

The functions F+, and F−, are analytic in a neighborhood of the closed unit disk in z-plane having the origin as its center,
and analytic in a neighborhood of the closure of the exterior of the unit disk, respectively. Hence the function F = F+ +F−

is certainly analytic in a neighborhood of the unit circle in z-plane. Let

F(z) = F


z
ρ


.

Then F(z) is analytic in a neighborhood of the circle ∂Dρ in z-plane, with radius ρ having the origin as its center. F(z)
coincides with the given boundary data f (ρeiθ ) on the boundary ∂Dρ . �
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Remark 3. Theorem 2 is a special case of Theorem 3. In fact, we have

H(1)
n (kρ)Jn(qkρ) = O


q|n|

|n|


as n → ±∞,

which will be shown in Lemma 7 in the Appendix. Therefore, if f satisfies the condition of Theorem 2, we can take a = q in
Theorem 3 and, remarking that q <

√
q, we have ϵN = O(qN/2) where ϵN = supz∈Dρ

|u(z) − uN(z)|. �

It is interesting to compare the above theoremwith the convergence theorem of theMFS applied to the Laplace equation
problem in the exterior to a disk [4]. We consider the Dirichlet boundary value problem of the Laplace equation

1u = 0 in Dρ

u = f on ∂Dρ

sup
z∈Dρ

|u(z)| < ∞,
(17)

where f is a given function on ∂Dρ . The MFS6 with the source points and the collocation points given by (8) approximates
the solution of the problem (17) by

u(z) ≃ uN(z) = Q0 +

N−
j=1

Qj log |z − qρωj−1
|, (18)

where the coefficients Qj (j = 0, 1, 2, . . . ,N) are determined by the collocation condition

uN(zi) = Q0 +

N−
j=1

Qj log |zi − qρωj−1
| = f (zi) (i = 1, 2, . . . ,N) (19)

with collocation points zi = ρωi−1 (i = 1, 2, . . . ,N) and the constraint

N−
j=1

Qj = 0. (20)

For the MFS shown above, we have the following theorem, which is proved by a way similar to that in [4].

Theorem 4. 1. We can determine uniquely the approximate solution uN of theMFS applied to the Dirichlet problem of the Laplace
equation (17), that is, the coefficient matrix of the simultaneous linear equations for Qj (j = 0, 1, . . . ,N) formed by (19) and
(20) is non-singular.

2. We further assume that the Fourier coefficients of the boundary data

fn =
1
2π

∫ 2π

0
f (ρeiθ )e−inθdθ

decay exponentially, i.e., there exist a constant a satisfying 0 < a < 1 and a positive constant Af depending on f such that
the condition (15) is satisfied. Then, we have the inequality

sup
z∈Dρ

|u(z) − uN(z)| ≤ AfC(ρ, a, q) ×

qN if q >
√
a

NqN if q =
√
a

aN/2 if q <
√
a

(21)

for sufficiently large N, whereC(ρ, a, q) is a positive constant depending on ρ, a and q only. �

We remark that the convergence rate of the MFS applied to the Helmholtz equation problem (1) given by (16) is the same
as the one of the MFS applied to the Laplace equation problem (17) given by (21).

3. Numerical examples

In this section, we show numerical examples for some typical cases, which support our theoretical result. All the
computations were performed on a DELL Precision 380 workstation with Intel Pentium 4 CPU 3.80 GHz and 1 GB memory
using programs coded in C++ with 100 decimal digit precision working except for the problem with kρ = 10 in
Example 3, where the computations are worked out in 200 decimal digit precision, by the multiple precision arithmetic
library exflib [24].

6 As a scheme of the MFS for potential problems, we consider the invariant scheme proposed in [22,23] which remains invariant with respect to affine
transformations due to the constraint (20).
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Example 1. The first example is the problem with the boundary data of single mode cosine function.
1u + k2u = 0 in Dρ

u = cosmθ on ∂Dρ (m = 1, 8, 16)

lim
r→∞

√
r


∂u
∂r

− iku


= 0.
(22)

The exact solution u(z) of this problem is

u(z) =
H(1)

m (kr)

H(1)
m (kρ)

cosmθ. (23)

We computed the approximate solution uN by obtaining the coefficients Qj which are the solution of the linear system
of equations (4) rewritten as

G′Q⃗ ′
= f⃗ ′ (24)

with

G′
=


ReG11 −ImG11 · · · ReG1N −ImG1N
ImG11 ReG11 · · · ImG1N ReG1N

...
...

...
...

ReGN1 −ImGN1 · · · ReGNN −ImGNN
ImGN1 ReGN1 · · · ImGNN ReGNN

 , (25)

Q⃗ ′
= [ReQ1 ImQ1 · · · ReQN ImQN ]

t ,

and

f⃗ ′
= [Re f1 Im f1 · · · Re fN Im fN ]

t ,

and substituting Qj into (2). From Theorem 3, we expect that the error estimate

ϵN = sup
z∈Dρ

|uN(z) − u(z)| (26)

obeys

ϵN = O(qN) (27)

since we can take the constant a in (15) as an arbitrary small positive number less than 1 for this example. In order to
examine this theoretical error estimate, we computed the value7

ϵN = max
i=1,...,1000

|uN(zi) − u(zi)|, (28)

wherezi (i = 1, 2, . . . , 1000) are random points distributed on the set

Dρ = {z ∈ Dρ | |Re z| ≤ R, |Im z| ≤ R} (R = 10), (29)

instead of ϵN . The pointszi are chosen different in each computation. Fig. 1 shows the behavior ofϵN , as a function of N , for
m = 1, 8, 16 and kρ = 1, and 10. From Fig. 1, we find that, if N is sufficiently large,ϵN obeys the relation

ϵN ≃ (positive constant) × αN , (30)

where α is a constant such that 0 < α < 1. Table 1 shows the constant α in (30) for eachm = 1, 8, 16 and each kρ = 1 and
10 estimated by the least squares fitting using the fit command of the software gnuplot. From the table, we find that α ≃ q
for eachm and each kρ. These results are in agreement with the theoretical error estimate (27) obtained from Theorem 3.

Besides, we remark that, in the cases of m = 8 and 16, the error estimatesϵN become very small at N = 2m. The reason
why this phenomena occur will be given in the Appendix.

7 In the computations of the Hankel functionsH(1)
n (·) = Jn(·)+ iYn(·) (n = 0, 1, 2, . . .)which appear in (23) and so on, we computed the Bessel functions

Jn(·) and Yn(·) using the programs in the header file ‘‘exfutil.h’’ included in the exflib library.
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Fig. 1. The error estimateϵN of the MFS applied to Example 1.

Table 1
The constant α in the experimental error estimate ϵN ≃

(positive constant) × αN of (30).

q 0.1 0.3 0.5 0.7

α

m = 1 kρ = 1 0.098 0.29 0.49 0.69
kρ = 10 0.094 0.29 0.46 0.68

m = 8 kρ = 1 0.098 0.29 0.49 0.69
kρ = 10 0.096 0.29 0.49 0.68

m = 16 kρ = 1 0.098 0.29 0.48 0.68
kρ = 10 0.097 0.29 0.49 0.68

We also find that, in the case of kρ = 10, the error estimatesϵN do not decrease if N is large and remain of order
10−80–10−100. From these results, it seems that the problems are ill-conditioned if kρ is large. Fig. 2 shows the L∞-condition
numbers κ(G′) of thematricesG′ of (25) for kρ = 1 and 10 computed through a program included in the exflib library. From
Fig. 2, it can be seen that condition numbers κ(G′) are very large and increase exponentially, as functions of N , but there are
not much differences between the cases kρ = 1 and 10.
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Fig. 2. The L∞-condition number κ(G′) of the matrix G′ of (25).

Example 2. The second example is the problem
1u + k2u = 0 in Dρ

u =
1 − b cos θ

1 − 2b cos θ + b2
on ∂Dρ

lim
r→∞

√
r


∂u
∂r

− iku


= 0

(31)

with a constant b such that 0 < b < 1 which is taken as b = 0.16 here. The exact solution of this problem is

u(z) =
H(1)

0 (kr)

H(1)
0 (kρ)

+

∞−
n=1

H(1)
n (kr)

H(1)
n (kρ)

bn cos nθ. (32)

This problemmay be artificial, but, as explained below, the authors believe that it is a good example for examining whether
our theoretical result in Theorem 3 gives error estimates which agree with numerical results. The boundary data f is
expanded as

f (ρeiθ ) = 1 +
1
2

−
n∈Z\{0}

b|n|einθ ,

which implies that the order of the Fourier coefficients are given as fn = O(b|n|) (as n → ±∞). Therefore, we can take the
constant a in (15) as a = b = 0.16 and, from Theorem 3, we find that

ϵN =


O(qN) if q >

√
b = 0.4

O(bN/2) = O(0.4N) if q <
√
b = 0.4.

(33)

To examine this theoretical error estimate, we computed the value ϵN defined by Eq. (28).8 The points zi, i =

1, 2, . . . , 1000 used in computingϵN by (28) are different from the points used in Example 1 and are chosen different in
each computation. Fig. 3 shows the behavior of the error estimatesϵN of the MFS as functions of N . From Fig. 3, we find thatϵN obeys the relation (30) if N is large. Table 2 shows the constant α in (30) estimated by the least squares fitting. From
Table 2, we find that we have

α ≃


q if q > 0.4
0.4 if q < 0.4,

that is,

ϵN =


O(qN) if q > 0.4
O(0.4N) if q < 0.4

and these results are in agreement with the theoretical error estimate (33).

8 In the computations ofϵN , we computed the exact solution u(z) in (32) by truncating the infinite sum on the right-hand side at the νth term such that
u(ν)(z) ≃ u(ν−1)(z) numerically with

u(ν)(z) =
H(1)

0 (kr)

H(1)
0 (kρ)

+

ν−
n=1

H(1)
n (kr)

H(1)
n (kρ)

bn cos nθ.
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Table 2
The constant α in the experimental error estimateϵN ≃ (positive constant) × αN of
(30).

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

α
kρ = 1 0.38 0.40 0.39 0.40 0.49 0.59 0.69 0.78
kρ = 10 0.39 0.38 0.39 0.39 0.48 0.58 0.68 0.78

Table 3
The constant α in the experimental error estimate
of (30).

q 0.1 0.3 0.5 0.7

α
kρ = 1 0.10 0.29 0.49 0.69
kρ = 10 0.21 0.30 0.49 0.69

Example 3. The last example is the problem
1u + k2u = 0 in Dρ

u = − exp(ik(Re z)) on ∂Dρ

lim
r→∞

√
r


∂u
∂r

− iku


= 0,
(34)

which illustrate the scattering of a plane wave by a cylinder. The exact solution of this problem is

u(z) = −


J0(kρ)

H(1)
0 (kr)

H(1)
0 (kρ)

+ 2
∞−
n=1

inJn(kρ)
H(1)

n (kr)

H(1)
n (kρ)

cos nθ


. (35)

The boundary data f is expanded as

f (ρeiθ ) = −

−
n∈Z

inJn(kρ)einθ ,

and, by the asymptotic formula for fixed x > 0 (see Section 9.3 of [25])

Jm(x) ∼
1

√
2πm

 ex
2m

m
and the formula J−m(x) = (−1)mJm(x), we can take the constant a in (15) as an arbitrary small positive number less than 1.
Therefore, from Theorem 3, we expect that

ϵN = O(qN). (36)

In order to examine this theoretical error estimate, we computed the valueϵN defined by Eq. (28).9 We computedϵN with
200 decimal digit precision only in the case of kρ = 10. Fig. 4 shows the behavior of the numerical error estimatesϵN as
functions ofN . From Fig. 4, we find thatϵN obeys the relation (30) ifN is large. Table 3 shows the constantα in (30) estimated
by the least squares fitting. From Table 3, we find that, if kρ = 1, α ≃ q, that is,

ϵN = O(qN), (37)

which agrees with the theoretical error estimate (36), except for q = 0.1. The reason that the error estimateϵN , for the case
q = 0.1 and kρ = 10, does not obey the relation (37) may be that N taken in this example is not ‘‘sufficiently’’ large in the
sense of Theorem 3.

Besides, we find from Fig. 4 that the decay of the errorϵN in the case kρ = 10, as N increases, is slow compared with the
error in the case kρ = 1. To understand this experimental convergence behavior thoroughly, the following points need to
be examined.
(1) The necessity of fine discretization for the case of large wave number k, that is, small wave length.
(2) The effect of round-off error for the ill-conditioned linear system of Eq. (4).

The examinations for the above points remain our future works.

9 In the computations ofϵN , we computed the exact solution u(z) in (35) by truncating the infinite sum on the right-hand side at the νth term such that
u(ν)(z) ≃ u(ν−1)(z) numerically with

u(ν)(z) = −


J0(kr)

H(1)
0 (kr)

H(1)
0 (kρ)

+ 2
ν−

n=1

inJn(kρ)
H(1)

n (kr)

H(1)
n (kρ)

cos nθ


.
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Fig. 3. The error estimateϵN of the MFS applied to Example 2.

Fig. 4. The error estimateϵN of the MFS applied to Example 3. The least squares fitting lines are also included.

4. Proof of the main theorem

We prove Theorem 3 in two steps. In the first step, we obtain explicit expressions of the approximate solution uN(z) and
the error function eN(z) ≡ u(z) − uN(z). In the second step, we obtain an upper bound of supz∈Dρ

|eN(z)|.

Step 1. In the problem considered in this study, the coefficient matrix G of the linear system of Eq. (4) is given by

G =


G11 G12 · · · G1N
G21 G22 · · · G2N
...

...
...

GN1 GN2 · · · GNN

 , Gij = H(1)
0 (kρ|1 − qωj−i

|) (1 ≤ i, j ≤ N). (38)
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Remarking that G is a cyclic matrix, G is diagonalized explicitly as

W−1GW = N


g(N)
0 (ρ)

g(N)
1 (ρ)

. . .

g(N)
N−1(ρ)

 , (39)

where W is the N × N matrix with the (i, j)-element

Wij =
1

√
N

ω(i−1)(j−1) (40)

and

g(N)
n (z) =

1
N

N−1−
j=0

ωnjH(1)
0 (k|z − qρωj

|), z ∈ Dρ, n ∈ Z. (41)

The symbol g(N)
n (z) will play an important role in the proof of the theorem.

From (39), we have

G−1
=

1
N
W


g(N)
0 (ρ)

−1

g(N)
1 (ρ)

−1

. . .

g(N)
N−1(ρ)

−1

W−1

and

the (j, l)-element of G−1
=

1
N2

N−1−
m=0

ωm(j−l)

g(N)
m (ρ)

.

Here, we remark that

g(N)
n (ρ) ≠ 0, n = 0, 1, . . . ,N − 1. (42)

In fact, from the assumption (9), we have g(N)
n (ρ) ≠ 0 (0 ≤ |n| ≤ N/2) by Lemma 8 in the Appendix, and we have (42) by

the obvious relation

g(N)
n (z) = g(N)

m (z) if n ≡ m mod N. (43)

Then, we obtain the coefficients Qj (j = 1, 2, . . . ,N), i.e., the solution of the linear system of Eq. (4) as

Qj =
1
N2

N−1−
l=0

N−1−
m=0

ωm(j−l−1) f (ρωl)

g(N)
m (ρ)

. (44)

Substituting this into (14), we obtain the expression of the approximate solution uN(z) as

uN(z) =
1
N2

N−1−
j=0

N−1−
l=0

N−1−
m=0

ω(j−l)m f (ρωl)

g(N)
m (ρ)

H(1)
0 (k|z − qρωj

|)

=
1
N

N−1−
l=0

N−1−
m=0

ω−lmf (ρωl)
g(N)
m (z)

g(N)
m (ρ)

. (45)

Further, we rewrite the expression (45) using the Fourier expansion of the boundary data f (ρeiθ ) =
∑

n∈Z fneinθ .
Substituting f (ρωl) =

∑
n∈Z fnωnl into (45), we have

uN(z) =
1
N

N−1−
l=0

N−1−
m=0

−
n∈Z

ω(n−m)lfn
g(N)
m (z)

g(N)
m (ρ)

=
1
N

N−1−
m=0

−
n∈Z


N−1−
l=0

ω(n−m)l


fn

g(N)
m (z)

g(N)
m (ρ)

=

N−1−
m=0

−
n≡m modN

fn
g(N)
m (z)

g(N)
m (ρ)

=

N−1−
m=0

−
n≡m modN

fn
g(N)
n (z)

g(N)
n (ρ)

,
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where we used the relation
N−1−
l=0

ω(n−m)l
=


N if n ≡ m mod N
0 otherwise (46)

on the third equality, and we used (43) on the fourth equality. Therefore, we obtain the expression of uN(z) as

uN(z) =

−
n∈Z

fn
g(N)
n (z)

g(N)
n (ρ)

. (47)

On the other hand, the exact solution of our problem (1) is written as

u(reiθ ) =

−
n∈Z

fn
H(1)

n (kr)

H(1)
n (kρ)

einθ . (48)

Finally, the error function eN(z) ≡ u(z) − uN(z) is written as

eN(reiθ ) =

−
n∈Z

fnφ(N)
n (r, θ), (49)

where

φ(N)
n (r, θ) =

H(1)
n (kr)

H(1)
n (kρ)

einθ −
g(N)
n (reiθ )

g(N)
n (ρ)

. (50)

Step 2. We estimate the error of the MFS using the inequality

|eN(reiθ )| ≤

−
n∈Z

|fn||φ(N)
n (r, θ)|, r ≥ ρ, 0 ≤ θ < 2π (51)

obtained by (49). For this purpose, we need upper bounds for |fn| and |φ
(N)
n (r, θ)|. An upper bound of |fn| is given by the

assumption (15) of Theorem 3. Regarding an upper bound of |φ(N)
n (r, θ)|, we have the following lemma.

Lemma 5. We assume that the constants k, ρ and q satisfy the condition (9). Then there exist a positive integer N ′(kρ, q) and
positive constants C ′(kρ, q) and C ′′(kρ, q) which depend on kρ and q only such that, if N ≥ N ′(kρ, q),

|φ(N)
n (r, θ)| ≤ C ′(kρ, q)qN−2|n|


0 ≤ |n| ≤

N
2

, r ≥ ρ, 0 ≤ θ < 2π


, (52)

|φ(N)
n (r, θ)| ≤ C ′′(kρ, q) (n ∈ N, r ≥ ρ, 0 ≤ θ < 2π) . (53)

This lemma will be proved in the Appendix.
We are now ready to prove Theorem 3. We divide the infinite sum on the right-hand side of (51) into three terms as

|eN(reiθ )| ≤ |f0||φ
(N)
0 (r, θ)| +

−
1≤|n|≤N/2

|fn||φ(N)
n (r, θ)| +

−
|n|>N/2

|fn||φ(N)
n (r, θ)|. (54)

We assume that N ≥ N ′(kρ, q). For the first term, we have

|f0||φ
(N)
0 (r, θ)| ≤ C ′(kρ, q)Af qN (55)

by (15) and (52). For the third term, we have−
|n|>N/2

|fn||φ(N)
n (r, θ)| ≤ 2C ′′(kρ, q)Af

∞−
n=⌊N/2⌋+1

an

≤ 2C ′′(kρ, q)Af
a⌊N/2⌋+1

1 − a
≤

2C ′′(kρ, q)
1 − a

Af aN/2. (56)

by the inequalities (15) and (53), where ⌊N/2⌋ is the largest integer less than or equal to N/2. For the second term, by (15)
and (52), we have−

1≤|n|≤N/2

Af |φ
(N)
n (r, θ)| ≤ 2C ′(kρ, q)Af

⌊N/2⌋−
n=1

qN−2nan

≤ 2C ′(kρ, q)Af qN
⌊N/2⌋−
n=1


a
q2

n

≤ (constant depending on k, ρ, a and q only) × Af

qN if q >
√
a

NqN if q =
√
a

aN/2 if q <
√
a,

(57)
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where we used

⌊N/2⌋−
n=1


a
q2

n

≤


a/q2

1 − a/q2
if a/q2 < 1

N/2 if a/q2 = 1
(a/q2)N/2+1

a/q2 − 1
if a/q2 > 1

on the third inequality.
By (55), (56) and (57), we obtain the inequality (16).

5. Concluding remarks

In this paper, we presented a theoretical error estimate of the MFS to the Dirichlet problem of the Helmholtz equation in
the exterior of a disk. In the Theorem 3 of this paper, we have shown that the error of the MFS with equi-distantly equally
phased arrangement of the collocation and source points with assignment parameter q is of order O(qN). This theorem
includes the results of the previous studies. We also showed numerical examples for some problems, and the results are in
good agreement with the theoretical error estimate.

Problems related to future studies are as follows.
• Theoretical error estimates of the MFS applied to Neumann problems of the Helmholtz equation in the exterior of a disk

and boundary value problems of the Helmholtz equation in a general exterior domain such as the exterior of an ellipse.
• Improvement of the scheme of the MFS for reduced wave problems with large wave numbers k.
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Appendix A. Proof of Lemma 5

In order to prove Lemma 5, we prepare the following four lemmas, Lemmas 6–9.

Lemma 6. The symbol g(N)
n (z) defined in (41) is also expressed as

g(N)
n (z) =

−
m≡n(modN)

H(1)
m (kr)Jm(qkρ)eimθ (z = reiθ ). (A.1)

This lemma is proved in Section 3 of [19], where Graf’s addition theorem for the Bessel functions (see Section 11.3 of [26])
is used.

Lemma 7. We assume that k, ρ and q (0 < q < 1) satisfy the condition (9).
1. There exists a positive integer N1(kρ, q) depending on kρ and q only such thatH(1)

m (kρ)Jm(qkρ) −
q|m|

iπ |m|

 ≤
q|m|

2π |m|
if m ∈ Z, |m| ≥ N1(kρ, q). (A.2)

2. There exist positive constants C (L)
1 (kρ, q) and C (U)

1 (kρ, q) depending on kρ and q such that

C (L)
1 (kρ, q)

q|m|

|m|
≤ |H(1)

m (kρ)Jm(qkρ)| ≤ C (U)
1 (kρ, q)

q|m|

|m|
(∀m ∈ Z \ {0}). (A.3)

This lemma will be proved later.

Lemma 8. We assume the condition (9).

1. There exist positive constants C (U)
2 (kρ, q) and C (U)

3 (kρ, q) which depend on kρ and q (0 < q < 1) only such that

|g(N)
n (z)| ≤ C (U)

2 (kρ, q)
q|n|

|n|
if |z| ≥ ρ, 1 ≤ |n| ≤

N
2

, (A.4)

|g(N)
0 (z)| ≤ C (U)

3 (kρ, q) if |z| ≥ ρ. (A.5)
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2. There exist a positive integer N2(kρ, q) and positive constants C (L)
2 (kρ, q) and C (L)

3 (kρ, q) which depend on kρ and q (0 <
q < 1) only such that, if N ≥ N2(kρ, q),

|g(N)
n (ρ)| ≥ C (L)

2 (kρ, q)
q|n|

|n|
if 1 ≤ |n| ≤

N
2

, (A.6)

|g(N)
0 (ρ)| ≥ C (L)

3 (kρ, q). (A.7)

This lemma will be proved later.

Lemma 9. |H(1)
n (kr)| is a decreasing function of r(≥ ρ).

This lemma is proved in the proof of Proposition 6 of [19].
Using the above lemmas, we prove Lemma 5 as follows.
First we prove inequality (52). In the case where 1 ≤ |n| ≤ N/2, by (A.1), we express φ

(N)
n (r, θ) as

φ(N)
n (r, θ) =


g(N)
n (ρ)

H(1)
n (kr)

H(1)
n (kρ)

einθ − g(N)
n (reiθ )


g(N)
n (ρ)

=

−
m≡n
mod N

Jm(qkρ)


H(1)

m (kρ)
H(1)

n (kr)

H(1)
n (kρ)

einθ − H(1)
m (kr)eimθ


g(N)
n (ρ). (A.8)

For the denominator, by (A.6), we have

|g(N)
n (ρ)| ≥ C (L)

2 (kρ, q)
q|n|

|n|
≥ 2C (L)

2 (kρ, q)
q|n|

N
(A.9)

if N ≥ N2(kρ, q). For the numerator, remarking that the sum does not include the term ofm = n, we have−m≡n

Jm(qkρ)


H(1)

m (kρ)
H(1)

n (kr)

H(1)
n (kρ)

einθ − H(1)
m (kr)eimθ


≤

−
m≡n(m≠n)

|Jm(qkρ)H(1)
m (kρ)|

 H(1)
n (kr)

H(1)
n (kρ)

+ −
m≡n(m≠n)

|H(1)
m (kr)Jm(qkρ)|

≤ 2
−

m≡n(m≠n)

|H(1)
m (kρ)Jm(qkρ)|

≤ 2
∞−
l=1

|H(1)
n+Nl(kρ)Jn+Nl(qkρ)| + 2

∞−
l=1

|H(1)
n−Nl(kρ)Jn−Nl(qkρ)|

≤ 2C (U)
1 (kρ, q)


∞−
l=1

qn+Nl

n + Nl
+

∞−
l=1

q−n+Nl

−n + Nl



≤ 2C (U)
1 (kρ, q)


qN+|n|

(N + |n|)(1 − qN)
+

qN−|n|

(N − |n|)(1 − qN)


≤

8C (U)
1 (kρ, q)

N(1 − qN)
qN−|n|

≤
8C (U)

1 (kρ, q)
N(1 − q)

qN−|n|, (A.10)

where we used Lemma 9 on the second inequality and (A.3) on the fourth inequality. Consequently, by (A.9) and (A.10), we
have (52) for the case that 1 ≤ |n| ≤ N/2. The inequality for the case n = 0 is proved similarly.

Second, we prove (53). Since g(N)
n (z) = g(N)

n′ (z) if n ≡ n′ mod N , we only have to prove the inequality for the case that
|n| ≤ N/2. If 1 ≤ |n| ≤ N/2, we have by (A.4) and (A.6)

|φ(N)
n (r, θ)| ≤ 1 +

|g(N)
n (reiθ )|

|g(N)
n (ρ)|

≤ 1 +
C (U)
2 (kρ, q)

C (L)
2 (kρ, q)

if N ≥ N2(kρ, q). Consequently, we obtain inequality (53) if we take N sufficiently large for given kρ and q. Inequality (53)
for n = 0 is obtained similarly.

We still have to prove the lemmas used in this section. Among these, Lemmas 6 and 9 are proved in [19] as mentioned
above. Therefore, we only have to prove Lemmas 7 and 8.
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Proof of Lemma 7.

1. By the asymptotic formulas for fixed x > 0 (see Section 9.3 of [25])

H(1)
m (x) ∼ −i


2

πm


2m
ex

m

, Jm(x) ∼
1

√
2πm

 ex
2m

m
asm → ∞,

we have

H(1)
m (kρ)Jm(qkρ) ∼

qm

iπm
as m → ∞.

This implies that there exists a positive integer N1(kρ, q) depending on kρ and q only such thatH(1)
m (kρ)Jm(qkρ)

qm/(iπm)
− 1

 ≤
1
2

ifm ∈ N,m ≥ N1(kρ, q).

Therefore, remarking H(1)
−m(x) = (−1)mH(1)

m (x), J−m(x) = (−1)mJm(x), we obtain the inequality (A.2).
2. From (A.2), we have

q|m|

2π |m|
≤ |H(1)

m (kρ)Jm(qkρ)| ≤
3q|m|

2π |m|
ifm ∈ Z, |m| ≥ N1(kρ, q).

Then, we obtain the inequality (A.3) by putting

C (L)
1 (kρ, q) = min


1
2π

,
|m|

q|m|

H(1)
m (kρ)Jm(qkρ)

  m ∈ Z,
0 < |m| < N1(kρ, q)


, (A.11)

C (U)
1 (kρ, q) = max


3
2π

,
|m|

q|m|

H(1)
m (kρ)Jm(qkρ)

  m ∈ Z,
0 < |m| < N1(kρ, q)


, (A.12)

where we remark that C (L)
1 (kρ, q) > 0 since we assume the condition (9). �

Proof of Lemma 8.

1. By (A.1) and (A.3), we have

|g(N)
n (z)| ≤

−
m≡nmodN

|H(1)
m (kr)Jm(qkρ)| ≤

−
m≡nmodN

|H(1)
m (kρ)Jm(qkρ)|.

In the case 1 ≤ |n| ≤ N/2, we have

|g(N)
n (z)| ≤ |H(1)

n (kρ)Jn(qkρ)| +

∞−
l=1

|H(1)
n+Nl(kρ)Jn+Nl(qkρ)| +

∞−
l=1

|H(1)
n−Nl(kρ)Jn−Nl(qkρ)|

≤ C (U)
1 (kρ, q)


q|n|

|n|
+

∞−
l=1

qn+Nl

n + Nl
+

∞−
l=1

q−n+Nl

−n + Nl



≤ C (U)
1 (kρ, q)


q|n|

|n|
+

qN+|n|

(N + |n|)(1 − qN)
+

qN−|n|

(N − |n|)(1 − qN)



≤ C (U)
1 (kρ, q)


q|n|

|n|
+

qN+|n|

3|n|(1 − qN)
+

qN−|n|

|n|(1 − qN)



≤ C (U)
1 (kρ, q)

q|n|

|n|


1 +

1
1 − qN


qN

3
+ qN−2|n|



≤ C (U)
1 (kρ, q)

7 − 3q
3(1 − q)

q|n|

|n|
,

where we used N − 2|n| ≥ 0 on the last inequality. Consequently, we obtain (A.4). Inequality (A.5) is obtained similarly.
2. We prove (A.6) dividing the problem into two cases, namely, the case 1 ≤ |n| ≤ N/4 and the case N/4 < |n| ≤ N/2.

First, we consider the case where 1 ≤ |n| ≤ N/4. In this case, we have

|g(N)
n (ρ)| ≥ |H(1)

n (kρ)Jn(qkρ)| −

∞−
l=1

|H(1)
n+Nl(kρ)Jn+Nl(qkρ)| −

∞−
l=1

|H(1)
n−Nl(kρ)Jn−Nl(qkρ)|
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≥ C (L)
1 (kρ, q)

q|n|

|n|
− C (U)

1 (kρ, q)


∞−
l=1

qn+Nl

n + Nl
+

∞−
l=1

q−n+Nl

−n + Nl



≥ C (L)
1 (kρ, q)

q|n|

|n|
− C (U)

1 (kρ, q)


qN+|n|

(N + |n|)(1 − qN)
+

qN−|n|

(N − |n|)(1 − qN)


≥ C (L)

1 (kρ, q)
q|n|

|n|
− C (U)

1 (kρ, q)


qN+|n|

5|n|(1 − qN)
+

qN−|n|

3|n|(1 − qN)


≥ C (L)

I (kρ, q)
q|n|

|n|


1 −

C (U)
I (kρ, q)

C (L)
I (kρ, q)(1 − qN)


qN

5
+

qN−2|n|

3



≥ C (L)
I (kρ, q)

q|n|

|n|


1 −

C (U)
I (kρ, q)

C (L)
I (kρ, q)(1 − qN)


qN

5
+

qN/2

3


,

where we used (A.1) on the first inequality and (A.3) on the second inequality. Remarking that the underlined part on the
right-hand side can be arbitrarily small by taking N sufficiently large, we obtain inequality (A.6) in the case 1 ≤ |n| ≤ N/4.

Second, we consider the case N/4 < |n| ≤ N/2. In this case, we only have to consider the case N/4 < n ≤ N/2 since
g(N)
−n (ρ) = g(N)

n (ρ). If N/4 < n ≤ N/2, we have

|g(N)
n (ρ)| ≥ |H(1)

n (kρ)Jn(qkρ) + H(1)
N−n(kρ)JN−n(qkρ)| −

N−
l=1

|H(1)
n+Nl(kρ)Jn+Nl(qkρ)| −

N−
l=2

|H(1)
n−Nl(kρ)Jn−Nl(qkρ)|.

For the first term on the right-hand side, by (A.2), we haveH(1)
n (kρ)Jn(qkρ) + H(1)

N−n(kρ)JN−n(qkρ) −
1
iπ


qn

n
+

qN−n

N − n

 ≤
1
2π


qn

n
+

qN−n

N − n


,

which implies

|H(1)
n (kρ)Jn(qkρ) + H(1)

N−n(kρ)JN−n(qkρ)| ≥
1
2π


qn

n
+

qN−n

N − n


≥

qn

2πn


1 +

qN−2n

3


≥

2qn

3πn
.

By the above inequality and (A.3), we have

|g(N)
n (ρ)| ≥

2qn

3πn
− C (U)

1 (kρ, q)


∞−
l=1

qn+Nl

n + Nl
+

∞−
l=2

q−n+Nl

−n + Nl



≥
2qn

3πn
− C (U)

1 (kρ, q)


qn+N

(N + n)(1 − qN)
+

q2N−n

(2N − n)(1 − qN)


≥

qn

n


2
3π

−
C (U)
1 (kρ, q)
1 − qN


4nqN

5N
+

2nq2(N−n)

3N



≥
qn

n


2
3π

−
11
15

C (U)
1 (kρ, q)
1 − qN

qN


,

where the underlined part can be arbitrarily small by taking N sufficiently large for given kρ and q.
Consequently, (A.6) is obtained for n such that 1 ≤ |n| ≤ N/2.
Inequality (A.7) is proved similarly. �

Appendix B. On the error estimate for problems with single mode cosine functions as boundary data

Wegive a reasonwhy the error estimates ϵN for Example 1 become small ifN = 2m. In this case, we have fm = f−m = 1/2
and fn = 0 (n ≠ ±m), and then we have

eN(reiθ ) =
1
2
φ(N)
m (r, θ) +

1
2
φ

(N)
−m(r, θ)

=
1

2g(N)
m (ρ)


g(N)
m (ρ)

H(1)
m (kr)

H(1)
m (kρ)

eimθ
− g(N)

m (reiθ )


+

1

2g(N)
−m(ρ)


g(N)
−m(ρ)

H(1)
−m(kr)

H(1)
−m(kρ)

e−imθ
− g(N)

−m(reiθ )
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=
1

g(N)
m (ρ)


g(N)
m (ρ)

H(1)
m (kr)

H(1)
m (kρ)

cosmθ −
1
2
g(N)
m (reiθ ) −

1
2
g(N)
m (re−iθ )



=
1

g(N)
m (ρ)


∞−
l=1

h(N)
l,m (r, θ) +

∞−
l=1

h(N)
−l,m(r, θ)


, (B.1)

where

h(N)
l,m (r, θ) = JlN+m(qkρ)


H(1)

lN+m(kρ)
H(1)

m (kr)

H(1)
m (kρ)

cosmθ − H(1)
lN+m(kr) cos(lN + m)θ


(B.2)

and we used (A.8) on the second equality, the formula H(1)
−m(x) = (−1)mH(1)

m (x) and the equality g(N)
−m(z) = g(N)

m (z) obtained
from (41) on the third equality and (A.1) on the last equality. The magnitude of each term h(N)

l,m (reiθ ) is of order O(q|lN+m|)
since we have

|h(N)
l,m (r, θ)| ≤ |H(1)

lN+m(kρ)JlN+m(qkρ)|
|H(1)

lN+m(kr)|

|H(1)
lN+m(kr)|

+ |H(1)
lN+m(kr)||JlN+m(qkρ)|

≤ 2|H(1)
lN+m(kρ)JlN+m(qkρ)| ≤ 2C (U)

1 (kρ, q)
q|lN+m|

|lN + m|
,

where we used Lemma 9 on the second inequality and (A.3) on the last inequality. Therefore, the term h(N)
−1,m(r, θ), which is

of order O(qN−m), is the most dominant term in the error eN(z) of (B.1).
In the case N > 2m, we obtain again the error estimate ϵN = O(qN), which is the result of Theorem 3. In fact, by the

inequalities ∞−
l=1

h(N)
l,m (r, θ)

 ≤ 2C (U)
1 (kρ, q)

∞−
l=1

qlN+m

lN + m
≤ 2C (U)

1 (kρ, q)
∞−
l=1

qlN+m

N + m

= 2C (U)
1 (kρ, q)

qN+m

(N + m)(1 − qN)
≤

2C (U)
1 (kρ, q)
N(1 − q)

qN+m, (B.3) ∞−
l=1

h(N)
−l,m(r, θ)

 ≤ 2C (U)
1 (kρ, q)

∞−
l=1

qlN−m

lN − m
≤ 2C (U)

1 (kρ, q)
∞−
l=1

qlN−m

N − m

= 2C (U)
1 (kρ, q)

qN−m

(N − m)(1 − qN)
≤

4C (U)
1 (kρ, q)
N(1 − q)

qN−m, (B.4)

and by the inequality

|g(N)
m (ρ)| ≥ 2C (L)

2 (kρ, q)
qm

m
≥ 4C (L)

2 (kρ, q)
qm

N
, (B.5)

which is obtained by (A.6), we have

|eN(reiθ )| ≤
1

|g(N)
m (ρ)|


∞−
l=1

|h(N)
l,m (r, θ)| +

∞−
l=1

|h(N)
−l,m(r, θ)|



≤
(1 + 2q−2m)C (U)

1 (kρ, q)

2(1 − q)C (L)
2 (kρ, q)

qN ≡ Em(N). (B.6)

However, in the case N = 2m, we remark that the most dominant term h(N)
−1,m(r, θ) in (B.1) vanishes since

h(2m)
−1,m(r, θ) = J−m(qkρ)


H(1)

−m(kρ)
H(1)

m (kr)

H(1)
m (kρ)

cosmθ − H(1)
−m(kr) cos(−mθ)



= Jm(qkρ)


H(1)

m (kρ)
H(1)

m (kr)

H(1)
m (kρ)

cosmθ − H(1)
m (kr) cosmθ


= 0,

where we used H(1)
−m(x) = (−1)mH(1)

m (x) and J−m(x) = (−1)mJm(x) on the second equality. Therefore, the error estimate ϵN
becomes small if N = 2m. In fact, if N = 2m, we have

|eN(reiθ )| ≤
1

|g(N)
m (ρ)|


∞−
l=1

|h(N)
l,m (r, θ)| +

∞−
l=2

|h(N)
−l,m(r, θ)|
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≤
N

4C (L)
2 (kρ, q)qm


2C (U)

1 (kρ, q)
∞−
l=1

qlN+m

lN + m
+ 2C (U)

1 (kρ, q)
∞−
l=2

qLN−m

lN − m



≤
NC (U)

1 (kρ, q)

2C (L)
2 (kρ, q)


1

N + m

∞−
l=1

qlN +
1

N − m

∞−
l=2

qlN−2m



≤
NC (U)

1 (kρ, q)

2C (L)
2 (kρ, q)


qN

N(1 − q)
+

2q2N−2m

N(1 − q)


=

3C (U)
1 (kρ, q)q2m

2(1 − q)C (L)
2 (kρ, q)

< Em(2m),

where Em is defined in (B.6).
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