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Sweet spot supersymmetry is a phenomenological effective Lagrangian of weak scale supersymmetry
with a certain set of natural assumptions. This framework is designed to avoid problems in low-energy
phenomenology and cosmology of supersymmetric models. We discuss a class of dynamical models of
supersymmetry breaking and its mediation, whose low-energy effective description falls into this frame-
work. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry
breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is
predicted to be 105 GeV � Mmess � 1010 GeV. Various values of the effective number of messenger fields
Nmess are possible depending on the choice of the gauge group.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

If N = 1 supersymmetry is hidden in nature, it helps us to un-
derstand the hierarchy between the strength of gravity and weak
interactions and also the variety of matter fields and gauge forces
in the Standard Model. It is, however, not straightforward to cor-
rectly hide supersymmetry at low energy. Especially, there has
been a trouble in making the Higgs sector suitable for electroweak
symmetry breaking, i.e., the μ-problem. Also, the smallness of fla-
vor mixing and CP violation has been considered as an unnatural
aspect of the hypothesis.

Recently, the present authors carefully considered those prob-
lems, including cosmological one, and found a simple and real-
istic framework of supersymmetry breaking and mediation [1].
A small explicit breaking of the Peccei–Quinn (PQ) symmetry
triggers supersymmetry to break down, and it induces μ-term
through (a generalized version of) the Giudice–Masiero mecha-
nism [2]. The explicit breaking term also makes messenger fields
massive via classical supergravity effects [3]. Correct sizes of gaug-
ino and sfermion masses are obtained through their loop diagrams
(gauge mediation [4–7]). The dangerous proton-decay operators
of the mass-dimensions four and five are forbidden by the PQ-
symmetry. A mechanism of producing dark matter of the universe
is built-in; non-thermally produced gravitinos through the decay
of the Polonyi field naturally explains the correct abundance [8].
This framework solves many known problems in supersymmetric
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model building, and serves as a good phenomenological Lagrangian
to calculate low-energy observables.

The framework, the sweet spot supersymmetry, is written in the
language of the low-energy effective field theory. It is possible
to construct various explicit models within this framework as
ultraviolet (UV) completions, and each of those falls into a pa-
rameter point (or region) in the sweet spot supersymmetry. The
parametrization can be done by four quantities: the number of
messenger Nmess, the μ-parameter, a gaugino mass, and the mes-
senger scale Mmess. Once we specify those parameters, we can
calculate the spectrum of superparticles by a simple program de-
scribed in Ref. [1]. Conversely, by measuring those quantities at
low energy experiments, we can obtain information on UV mod-
els.

In a recent paper [9], an economical UV model in this frame-
work was proposed, that addresses the origin of the small explicit
breaking term of the PQ-symmetry. (It is called U(1)H symmetry
in Ref. [9].) It is found that the term can be non-perturbatively
generated in a QCD-like theory (SU(Nc) gauge theory with Nc fla-
vors), and the quark fields in that supersymmetric QCD play a role
of the messenger fields. A parameter region of the sweet spot su-
persymmetry is identified for this UV completion: Nmess = 5 and
1011 GeV � Mmess � 1013 GeV. The lower bound on the messenger
scale is obtained from a consistency of the analysis.

In this Letter, we argue that this class of models predicts
Mmess � 1010 GeV, rather than Mmess � 1011 GeV where the anal-
ysis in Ref. [9] is meaningful. Nevertheless, we find that there
is a consistent effective description in terms of hadron fields
in that case. We can find a supersymmetry breaking vacuum
where gaugino/sfermion masses are generated by loop diagrams
of hadronic messenger fields instead of elementary quarks. Gen-
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eralizations with Sp(Nc) and SO(Nc) gauge theories are also dis-
cussed.

2. Model

We briefly review the framework of the sweet spot supersym-
metry, and present a dynamical model of supersymmetry breaking
which falls into this framework.

2.1. Sweet spot supersymmetry

The Lagrangian of the sweet spot supersymmetry is written in
terms of the fields in the minimal supersymmetric Standard Model
(MSSM) (chiral superfields ΦMSSM and gauge fields Wα ), the Gold-
stino field S , and the messenger fields f and f̄ that have quantum
numbers of the Standard Model gauge group.1 It is defined by
the supergravity Lagrangian with a Kähler- and a superpotential,
K and W :

K = Φ
†
MSSMΦMSSM + S† S + f † f + f̄ † f̄

− (S† S)2

Λ2
+

(
cμS† Hu Hd

Λ
+ h.c.

)

− cH S† S(H†
u Hu + H†

d Hd)

Λ2
, (1)

W = WYukawa(ΦMSSM) + m2 S + kS f f̄ + w0. (2)

In the Kähler potential, there are direct interaction terms between
the Goldstino fields S and the Higgs fields Hu and Hd suppressed
by a ‘cut-off’ scale Λ. (cμ and cH are O(1) coefficients.) These in-
teractions are responsible for generating the μ-term and the soft
mass terms for the Higgs fields.

One may think that it is unnatural to assume the absence of
the terms S† S Q † Q /Λ2 where Q is the matter chiral superfields.
This assumption is indeed essential to solve the flavor problem.
To achieve this, the matter fields need to have a higher ‘cut-off’
scale than S , Hu and Hd . As is discussed in Refs. [1,10] this sit-
uation is reasonable rather than unnatural. As we see later, we
need to set the scale Λ to be the grand unification scale. The pres-
ence of Λ-suppressed operators indicates that S and the Higgs
fields get strongly coupled and/or new states which couple to S
and the Higgs fields appear above the GUT scale. We claim that
it is completely reasonable since the Higgs fields must couple to
the GUT breaking sector in order to achieve the doublet–triplet
splitting. On the other hand, we have no strong reason to as-
sume that the GUT breaking sector couples to the matter fields
directly as they form complete multiplets of a GUT gauge group.
In a concrete model in Ref. [10], S and the Higgs fields are com-
posite fields of a strong dynamics which breaks GUT gauge group
dynamically whereas the matter fields are elementary thereby ex-
plains the difference of the ‘cut-off’ scale. One can also imagine a
situation that S and the Higgs fields live in the bulk of a warped
extra-dimension but the matter fields are confined on an ultravi-
olet brane. Again, this structure is a somewhat natural set-up for
realistic GUT models. Independent of GUT models, what we have
assumed is that the Higgs fields are somewhat special, which most
of the particle theorists would agree in many respects. We further
proposed a unified picture that the Higgs field to break supersym-
metry (S) shares the same speciality. The two different ‘cut-off’
scales are analogous to the relation between ΛQCD and MW in the

1 The Lagrangian of the sweet spot supersymmetry is presented in Ref. [1] as the

one after integrating out the messenger fields f and f̄ . The original form contains
terms in Eqs. (6) and (7) instead of those involving f and f̄ . They are, of course,
equivalent.
Standard Model. Below the scale ΛQCD, the effective Lagrangian for
hadron fields contains many kinds of interaction terms suppressed
by ΛQCD ∼ 1 GeV. Meanwhile, the lepton-to-hadron couplings are
suppressed by the W boson mass MW ∼ 80 GeV. For detailed dis-
cussion taking into account Yukawa interactions, see Ref. [1].

In the superpotential, a linear term of S represents the source
term of the F -component of S . The interaction term between S
and messenger fields f and f̄ is responsible for gauge mediation.
The constant term w0 is needed to cancel the cosmological con-
stant such that w0 = m3/2M2

Pl = m2MPl/
√

3, where m3/2 is the
gravitino mass. This is the most general Lagrangian with the PQ-
symmetry, PQ(S) = 2, PQ(Hu) = PQ(Hd) = 1, and PQ(m2) = −2,
where m2 represents the small explicit breaking parameter. Small-
ness of the supersymmetry breaking scale and also of the μ-
parameter are controlled by this parameter. The assumption made
here is that the whatever dynamics at the scale Λ should possess
the (approximate) PQ-symmetry with the above charge assign-
ment.

Obviously, there is a supersymmetric vacuum in this model
where

〈S〉 = 0, 〈 f f̄ 〉 = −m2/k. (3)

However, we can find a local minimum with broken supersymme-
try if the value of k is small enough [3]. From the above K and W ,
we obtain a scalar potential for the S field:

V (S) = m4
(

4

Λ2
|S|2 + k2N

(4π)2
log

(
k2|S|2
Λ2

))

− (
2m3/2m2 S + h.c.

)
. (4)

The logarithmic term is a loop correction from the interaction
term, kS f f̄ , and N is a number of fields running in the loop. For
example, N = 5 if the messenger fields f and f̄ transform as 5 and
5̄ representations under SU(5) symmetry ((3,1)−1/3 ⊕ (1,2)1/2 and
(3̄,1)1/3 ⊕ (1,2)−1/2 under the Standard Model gauge group). The
linear term, 2m3/2m2 S , is a supergravity effect; this is a soft su-
persymmetry breaking term associated with the linear term in the
superpotential in Eq. (2). Once we ignore the logarithmic term, the
minimum is at

〈S〉 =
√

3Λ2

6MPl
. (5)

This makes the messenger fields massive, and thus stabilizes the
f f̄ direction. Supersymmetry is broken by F S � m2 + k〈 f f̄ 〉 = m2.
For a large value of k, however, this local minimum disappears
because the quantum correction becomes stronger than the super-
gravity effects. As we will see in Section 3, the condition that there
is a meta-stable supersymmetry breaking vacuum provides an up-
per bound on the messenger scale, Mmess = k〈S〉.

By integrating out those massive messenger fields, we obtain
terms responsible for the gaugino and sfermion masses (gauge me-
diation) [11]:

fkin 	 − Nmess

(4π)2
log SW α Wα, (6)

for the gauge kinetic function, and

K 	 −4g4Nmess

(4π)4
C2(R)

(
log |S|2)Φ†

MSSMΦMSSM, (7)

with Nmess the number of the messenger fields (Nmess = 1 for a
pair of 5 and 5̄ representations of SU(5)). With the non-vanishing
value of F S and 〈S〉, we obtain gaugino/sfermion masses through
the above interaction terms.

There are two dimensionful parameters in this model: Λ and
m3/2(= m2/(

√
3MPl) = w0/M2

Pl). The interesting discovery in
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Ref. [1] is that there is a sweet spot in the two-dimensional param-
eter space (m3/2,Λ) where everything works out fine. The choice
is (m3/2,Λ) ∼ (1 GeV,1016 GeV) with which we obtain correct
sizes of the μ-term, gaugino and sfermion masses, and the abun-
dance of gravitino dark matter. The fact that Λ is at the grand
unification scale is also an interesting coincidence.

2.2. A model of dynamical supersymmetry breaking

A part of the above Lagrangian,

K 	 S† S − (S† S)2

Λ2
,

W 	 m2 S, (8)

provides an effective description of a quite general class of su-
persymmetry breaking models. As long as the Goldstino superfield
(a field or a combination of fields which gets F -component VEV)
is weakly coupled in the actual supersymmetry breaking model,
the above Lagrangian is obtained by integrating out other massive
fields in the model.2 The Λ parameter represents the strength of
the self interactions of the Goldstino and m2 is the size of the
supersymmetry breaking. We consider a simple example of such
models where the superpotential terms in Eq. (2), m2 S +kS f f̄ , are
replaced with a single term,

W 	 kS(F F̄ ), (9)

where F and F̄ transform as 5 and 5̄ representations of an SU(5)F

group (which contains the Standard Model gauge group as a sub-
group), respectively. They also have quantum numbers (5 and 5̄)
of another gauge group SU(5)H which becomes strongly coupled
at an energy scale Λdyn. In the above term, the indices of SU(5)H

and SU(5)F are contracted in (F F̄ ).
By taking into account non-perturbative effects of the SU(5)H

gauge interaction, there appears a supersymmetry breaking vac-
uum which is stabilized by interaction terms in the supergravity
action as we will see below. The supersymmetry breaking model
above has first been discussed in Ref. [12], although there is a little
difference that it is a model of gravity mediation and the SU(5)F

group is not gauged. In Ref. [12], it has been assumed that the
leading contribution to the Kähler potential term, (S† S)2, comes
from the SU(5)H dynamics itself, rather than the ‘cut-off’ sup-
pressed operator in Eq. (1). In this case, unfortunately, there is no
gravitationally stabilized local minimum corresponding to Eq. (5)
once we take into account the logarithmic term in Eq. (4) gener-
ated by loop diagrams of light particles. We can find an extremum
at 〈S〉 
= 0 when the coupling constant k is small enough, but that
is in fact a local maximum in the Im S direction [3]. In a recent
paper [9], a model with a (partly) gauged SU(5)F symmetry has
been considered. Once the S field gets the supersymmetry break-
ing VEV, the quark fields F and F̄ mediate it to the gauge/matter
fields via gauge mediation. They also introduced the Kähler terms
in Eq. (1) so that it fits to the program of the sweet spot super-
symmetry.

We assume here that the gauge interaction of SU(5)H becomes
strong in the regime where the masses of messenger particles,
Mmess(≡ k〈S〉), are not important, i.e., Mmess < Λdyn.3 In fact, in

2 In general, if there is no (approximate) symmetry under which S is charged in a
supersymmetry breaking model, there can be a cubic term in the Kähler potential,
K 	 S† S2 + h.c. However, such terms can be shifted away by an appropriate field
redefinition S → S + c. In the case of the sweet spot supersymmetry, the presence
of the approximate PQ-symmetry is assumed. That restricts the form of Kähler and
superpotential to be the ones in Eqs. (1) and (2).

3 Precisely speaking, the corresponding inequality should be Mmess �
4πΛdyn/

√
NC with NC = 5 according to the naive dimensional analysis. The
Ref. [9], it has been claimed that this regime is incompatible with
the mechanism of supersymmetry breaking and mediation since
the meta-stable vacuum in Eq. (5) disappears. We show, however,
that we still have the gravitationally stabilized vacuum where su-
persymmetry is spontaneously broken. Furthermore, we will see in
the next section that Mmess is almost always lower than the dy-
namical scale Λdyn for the vacuum to be meta-stable.

Below the scale Λdyn, there is an effective description of the
theory in terms of meson Mij ∼ Fi F̄ j and baryon fields B ∼ F 5 and
B̄ ∼ F̄ 5. The indices i, j(= 1 − 5) are those of SU(5)F . The effective
superpotential is given by

W = kS · Tr M + X
(
det M − B B̄ − (

Λ2
dyn/5

)5)
, (10)

where a Lagrange multiplier X is introduced in order to ensure
the quantum modified constraint to be satisfied [13]. We can find
a meta-stable vacuum in the meson branch, det M = (Λ2

dyn/5)5. By

solving the constraint around the point Mij = Λ2
dynδi j/5, we obtain

Tr M = Λ2
dyn + 1

2

Tr δM2

Λ2
dyn/5

+ B B̄

(Λ2
dyn/5)4

+ · · · , (11)

where δM is the traceless part of the matrix M . We have neglected
higher order terms in the field expansion. The effective superpo-
tential below the scale Λdyn is then given by

Weff = kΛ2
dyn S + S

(
k̂M

2
Tr δM̂2 + k̂B B̂ ˆ̄B

)
. (12)

The fields δM̂ , B̂ , and ˆ̄B are canonically normalized fields. Through
this normalization procedure, O(1) uncertainties arise in the cou-
pling constants k̂M ∼ k̂B ∼ k.

The effective superpotential above is exactly the one in Eq. (2)
by the identifications of m2 ∼ kΛ2

dyn, k ∼ k̂M , f ∼ δM̂ and f̄ ∼
δM̂ . The baryon fields do not contribute to the gaugino/sfermion
masses since they are singlet under the Standard Model gauge
group. The field δM̂ , on the other hand, transforms as the adjoint
representation under the SU(5)F flavor group. (The quantum num-
bers under the Standard Model gauge group are (8,1)0 ⊕ (1,3)0 ⊕
(3,2)−5/6 ⊕ (3̄,2)5/6 ⊕ (1,1)0.) By integrating out those meson
fields, the terms in Eqs. (6) and (7) are obtained with Nmess = 5.
The fact that Nmess did not change from the elementary pic-
ture can be understood by looking at the U(1)R –SU(5)F –SU(5)F

anomaly, where R(S) = 2 and R(F ) = R( F̄ ) = 0. When we integrate
out the F and F̄ field in the elementary picture, we obtain terms
in Eq. (6) where the factor Nmess reflects the anomaly, i.e., a phase
rotation of S shifts the θ -term. Since the SU(5)H gauge interac-
tion does not violate U(1)R symmetry even at the non-perturbative
level, this structure remains unchanged after taking into account
the strong dynamics.

The linear term kΛ2
dyn S violates the PQ-symmetry which we

discussed before: PQ(S) = 2. This is due to the fact that the PQ-
symmetry is anomalous to the SU(5)H gauge interaction. As we
have seen already, the linear term triggers to break supersymmetry
and induces the μ-term.

We need to make sure that the strong dynamics does not desta-
bilize the vacuum in Eq. (5). Through the interaction term, kS F F̄ ,
it is expected to appear higher-dimensional operators in the Kähler
potential such as

δK ∼ N

(4π)2

|kS|4
Λ2

dyn

, (13)

dynamical scale Λdyn will be defined more clearly (but still implicitly) in Eq. (10).
In the following analysis, we will ignore a factor of 4π/

√
NC . Obviously, inclusion

of those factors will just make the assumption milder.
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where N = 25. However, the effect of this term is smaller than that
of the term −(S† S)2/Λ2 in Eq. (8) if

k � 3 × 10−3
(

N

25

)−1/5( m3/2

1 GeV

)1/5(
Λ

1 × 1016 GeV

)−2/5

. (14)

Here we have used a relation, m2 = kΛ2
dyn = √

3m3/2MPl. As
we will see later, the above condition is always satisfied when
Mmess < Λdyn that we have already assumed.

On top of the gauge mediation effects via loop diagrams of δM̂ ,
there can be uncalculable gauge mediation effects, i.e., generation
of couplings between S and the Standard Model fields through the
Standard Model gauge interaction mediated by heavy degrees of
freedom (of the order of Λdyn). Those contributions are uncalcu-
lable, but suppressed by the scale Λdyn. Therefore, the effects are
smaller than the calculable gauge mediation effects when Mmess <

Λdyn and thus negligible. For example, a term proportional to

(kS)†(kS)(H†
u Hu + H†

d Hd)/Λ
2
dyn may appear in the Kähler potential.

It gives contribution to the soft terms of the Higgs fields in addi-
tion to the two comparable ones from (S† S)(H†

u Hu + H†
d Hd)/Λ

2 in

Eq. (1) and from gauge mediation (δM̂ loops). It is clear that the
additional contribution is always smaller than the δM̂-loop effects,
∝ log |(kS)|2(H†

u Hu + H†
d Hd) ∼ (kS)†(kS)(H†

u Hu + H†
d Hd)/|〈kS〉|2,

for 〈kS〉 ≡ Mmess < Λdyn. Potentially dangerous terms such as
kS† Hu Hd/Λdyn and (kS)†(kS)Hu Hd/Λ

2
dyn which induce the μ- and

μB-terms do not appear as is usually the case in gauge mediation
models. Those terms carry a charge, e.g., Q (Hu) = Q (Hd) = 1 and
Q (S) = Q (F ) = Q ( F̄ ) = 0, which is conserved as far as the SU(5)H

and the Standard Model gauge interactions are concerned.
Uncalculable higher order Kähler terms involving hadron fields

δM̂ , B̂ and ˆ̄B are not important in our discussion. Although the ef-
fects would become sizable when their classical values approach

Λdyn, we are interested in the vacuum at δM̂ = B̂ = ˆ̄B = 0 and
S 
= 0. This vacuum remains stable even in the presence of the

higher order terms. First, a linear term of δM̂ , B̂ or ˆ̄B in the po-
tential cannot appear because of the unbroken symmetries (SU(5)F

and U(1)B ). With the VEV of S in Eq. (5), those fields obtain su-
persymmetric masses. Above two facts ensure the stability of the
vacuum in the meson and baryon directions. Once we set δM̂ =
B̂ = ˆ̄B = 0, the only term we should worry about is Eq. (13) that
we have already discussed. The cubic terms kS†(kS)2/Λdyn + h.c.
are not allowed by the non-anomalous R-symmetry we discussed.

There is a lower bound on the messenger scale by a condition
that the messenger fields should not be tachyonic:

M2
mess = k̂2

M〈S〉2 > k̂M F S . (15)

Thus, we obtain

Mmess = k̂M〈S〉 >
F S

〈S〉

= 3 × 105 GeV

(
m3/2

1 GeV

)(
Λ

1 × 1016 GeV

)−2

. (16)

We will examine in the next section whether we have a consistent
parameter region.

3. Upper bound on the messenger scale

We derive an upper bound on the messenger scale from the
stability of the vacuum in Eq. (5). From the discussion, we will
learn that the messenger scale is almost always lower than the
dynamical scale Λdyn, consistent with the assumption made in the
previous section. In order to derive an upper bound on the mes-
senger scale we first consider a region with Mmess > Λdyn. In this
case, the quark fields F and F̄ can be integrated out without con-
sidering the non-perturbative effects. The phenomenon of super-
symmetry breaking can be understood in a slightly different way in
this regime. Below the scale Mmess, the theory matches to the pure
supersymmetric SU(5)H gauge theory. Eventually at a scale Λeff,
the superpotential acquires a contribution from the gaugino con-
densation, W 	 Λ3

eff. Now, by a matching condition of the gauge
coupling constant at the scale Mmess, we can see that this term has
a dependence on the field value of S: Λ3

eff = MmessΛ
2
dyn = kSΛ2

dyn.
This is the linear term of S in Eq. (2) which causes supersymmetry
breaking by F S = m2 = kΛ2

dyn [9].
The quantum corrections to the scalar potential of S can be

calculated perturbatively in the picture where F and F̄ are ele-
mentary fields. It is simply the logarithmic term in Eq. (4) with
N = 25. A condition to have a local minimum in the scalar poten-
tial (4) is

1

3M2
Pl

− 4

Λ2

k2 N

(4π)2
> 0, (17)

from which the bound on k is obtained to be

k < 3 × 10−3
(

N

25

)−1/2(
Λ

1 × 1016 GeV

)
. (18)

Therefore, with the VEV of S in Eq. (5), we obtain the upper bound
on the messenger scale to be

Mmess < 4 × 1010 GeV

(
N

25

)−1/2(
Λ

1 × 1016 GeV

)3

. (19)

On the other hand, the dynamical scale Λdyn has a relation to
the m2 parameter:

m2 = kΛ2
dyn = √

3m3/2MPl. (20)

From this, we obtain

Λdyn = 4 × 1010 GeV

(
k

3 × 10−3

)−1/2( m3/2

1 GeV

)1/2

. (21)

From Eqs. (18), (19) and (21), we conclude that the messenger scale
is lower than the dynamical scale unless the bound in Eq. (18) is
saturated. Note that we cannot go far from the sweet spot values
of m3/2 and Λ, otherwise the natural solution to the μ-problem is
spoiled.

This discussion justifies the assumption Mmess � Λdyn. Since
we have a weakly coupled description of the theory even in the
Mmess � Λdyn regime in terms of mesons and baryons, we can re-
liably estimate the quantum correction to the potential [14]. That
is simply the logarithmic term in Eq. (4) with k replaced by k̂M

and k̂B . Therefore, Eq. (18) should be understood as a condition for
the coupling constants k̂M and k̂B rather than for the fundamental
coupling constant k. Then, by a relation k̂M ∼ k̂B ∼ k, the inequality
in Eq. (19) just results in a consistency condition: Mmess � Λdyn.
The bound in Eq. (18) (barring O(1) ambiguities in the relation be-
tween k and k̂M ) is identical to the previously obtained constraint
in Eq. (14) which ensures the stability of the potential against un-
calculable corrections from the strong dynamics.

In summary, we have obtained a consistent region

105 GeV � Mmess � 1010 GeV, (22)

for the messenger scale, where the hadron picture is appropri-
ate for the analysis. Note, however, that this prediction is gen-
erally true in any models of the sweet spot supersymmetry. The
only non-trivial prediction of this model is Nmess = 5. In the
next section, we examine the same class of models with differ-
ent strong gauge groups. We find those models predict different
values of Nmess.
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4. Sp(Nc) and SO(Nc) models

The mechanism of supersymmetry breaking and its mediation
works also in Sp(Nc) and SO(Nc) gauge theories instead of SU(5)H .
In order for the matching condition, Λ3

eff = MmessΛ
2
dyn, to hold,

gauge groups are determined to be Sp(4) or SO(12).
The discussion is almost the same for the Sp(4) case. We in-

troduce F and F̄ , that are (8,5) and (8, 5̄) under Sp(4)H × SU(5)F

group. Again, the Standard Model gauge group is a subgroup of
the SU(5)F global symmetry. We assume an interaction term, W 	
kS(F F̄ ), where both Sp(4)H and SU(5)F indices are appropriately
contracted in (F F̄ ). Below the dynamical scale of the Sp(4)H gauge
theory, Λdyn, the theory is described by meson fields, M . The su-
perpotential is

W = kS · Tr M F F̄ + X
(
Pf M − (

Λ2
dyn/5

)5)
, (23)

with X a Lagrange multiplier [15]. The meson field M is a 10 × 10
antisymmetric matrix:

M =
(

M F F M F F̄

−MT
F F̄

M F̄ F̄

)
. (24)

The submatrices M F F , M F̄ F̄ , and M F F̄ transform as 10, 10, and
1 + 24 under the SU(5)F flavor group, respectively. By solving the
constraint and canonically normalizing the fields, we obtain

Weff = kΛ2
dyn S + S

(
k̂F F Tr(M̂ F F M̂ F̄ F̄ ) + k̂F F̄

2
Tr δM̂2

F F̄

)
. (25)

The effective number of messengers are Nmess = 8 in this case.
The case with an SO(12) gauge group is essentially the same,

yet a little bit more complicated. The quarks F and F̄ transform
as (12,5) and (12, 5̄) this time. Below the dynamical scale, the
effective theory is a U(1) gauge theory with superpotential:

W = kS · Tr M F F̄ + (
det M − (

Λ2
dyn/5

)10)
E+E−, (26)

near a point det M = (Λ2
dyn/5)10. The fields E± are dyons [16]. The

meson field M is a 10 × 10 symmetric matrix:

M =
(

M F F M F F̄

MT
F F̄

M F̄ F̄

)
. (27)

The submatrices M F F , M F̄ F̄ , and M F F̄ transform as 15, 15, and 1 +
24 under the SU(5)F flavor group, respectively. By turning on the
VEV of S , the minimum of the potential is at

〈M F F̄ 〉 = (
Λ2

dyn/5
)
δi j, (28)

〈
E+E−〉 = − kS

2(Λ2
dyn/5)9

. (29)

In this vacuum, the U(1) symmetry is Higgsed at the scale
(k〈S〉Λdyn)1/2 and the trace part of M F F̄ and E± obtain masses
(or eaten by the U(1) gauge field) and decouple. The effects of
those massive particles on the S potential are always smaller
than the term K 	 −(S† S)2/Λ2 for Mmess < Λdyn. Below the scale
(MmessΛdyn)1/2, the effective superpotential is

Weff = kΛ2
dyn S + S

(
k̂F F Tr(M̂ F F M̂ F̄ F̄ ) + k̂F F̄

2
Tr δM̂2

F F̄

)
. (30)

Here, we canonically normalized fields. Again, this is the super-
potential of the sweet spot supersymmetry. As anticipated, the
effective number of messengers is Nmess = 12 in this SO(12) model.

In fact, there is another branch in the SO(12) model where the
superpotential is given by

W = kS · Tr M F F̄ + Mijq
+
i q−

j , (31)

where q’s are monopoles. There is no supersymmetry breaking
vacuum in this branch. This is consistent with the fact that gaugino
condensation cancels and Weff = 0 in this case.

Although these models are similar to the IYIT model of su-
persymmetry breaking [17], there are essential differences. In the
IYIT model, we need to introduce gauge singlet fields for each flat
direction in order to kill all the supersymmetric vacuum. In the
model presented in this Letter, we introduced only one singlet
field S . Therefore, there is a supersymmetric vacuum at S = 0 since
we do not fix all the flat directions. However, by the help of an ex-
ternal dynamics, i.e., supergravity interactions, S can be stabilized
away from the supersymmetric vacuum.
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