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Abstract

Two-dimensional string vacua with Massive Spectrum boson–fermion Degeneracy Symmetry,
[MSDS]d=2, are explicitly constructed in Type II and Heterotic superstring theories. The study of their
moduli space indicates the existence of large marginal deformations that connect continuously the initial
[MSDS]d=2 vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry
is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [Max : MSDS]d=2,
Type II vacuum, is in correspondence with the maximal, N = 8, d = 4 “gauged supergravity”, where the
supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases
where the initial MSDS symmetry is reduced by orbifolds:

[Zorb : MSDS]d=2 ←→ [N � 8 : SUGRA]d=4,fluxes.

We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and iden-
tify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the
extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting
four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological
evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late
cosmological times it is described by an effective N = 1 supergravity theory with spontaneously broken
supersymmetry.
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1. Introduction

The quest for vacua with spontaneously broken supersymmetry has always been one of the
fundamental challenges for string phenomenology as well as for string cosmology. Whereas
string models with spacetime supersymmetry arise quite naturally within the framework of su-
perstring theory, naive attempts to break supersymmetry are usually plagued with tachyonic
instabilities, similar in fact to the Hagedorn instabilities of string theory at finite temperature.

Ideally, one would like to start with a supersymmetric string compactification and induce
a spontaneous breaking of supersymmetry by turning on non-trivial “geometrical fluxes” as-
sociated to a modulus. Vacua in the viscinity of the supersymmetric point would then acquire
arbitrarily small supersymmetry breaking scale(s). However, if such a vacuum exists, it nec-
essarily has to lie at the boundary2 of moduli space, where part (or all) of the internal space
decompactifies. A large class of vacua where the spontaneous breaking of supersymmetry arises
via geometrical fluxes [1,2] can be used to illustrate the main issues. The geometrical fluxes intro-
duce non-trivial correlations between R-symmetry charges QI and the momentum and winding
quantum numbers along non-trivial S1

I internal cycles. As a result, the induced supersymmetry
breaking scales are inversely proportional to the compactification radii, MI ∼ 1/RI , and super-
symmetry is recovered in the infinite-radius limit. On the other end, we often encounter tachyonic
instabilities whenever R � ls , which signal a non-trivial phase transition towards a new vacuum.

One may also consider vacua where supersymmetry is spontaneously broken via geometri-
cal fluxes at finite temperature T . Choosing, for instance, one supersymmetry breaking cycle
with radius R1, the induced supersymmetry breaking scale, M = 1/(2πR1), and the temperature
scale, T = 1/(2πR0), provide a symmetric partition function,

Z(T ,M) = Z(M,T ), (1.1)

once the R-symmetry charge Q is identified with the spacetime fermion number F . This is the
simplest realization of a “temperature/gravitino mass scale” duality, exemplified by the Euclidean
partition function Z(T ,M) [3]. It also illustrates how the existence of tachyons at small radii is
related to the Hagedorn instabilities of string theory at high temperature.

In more general situations, where QI �= F , the T ↔ M exchange is not a symmetry of the
theory but is replaced by other non-trivial duality relations involving the various supersymmetry
breaking scales and the temperature. In the context of non-perturbative string/string and M-theory
dualities, we expect a further non-perturbative generalization of such “temperature/gravitino
mass scale” dualities, beyond the “geometrical flux origin” of supersymmetry breaking. We do
not explore this generalization in the present work, even though we believe it to be of fundamen-
tal importance.

An important implication of temperature/gravitino mass scale dualities is that there may be
several physical interpretations of the same Euclidean partition function in models where super-
symmetry is broken spontaneously by geometrical fluxes. For instance, when Euclidean time is

2 This is, of course, related to the well-known fact that the order parameter of the super-Higgs mechanism is fermionic,
rather than bosonic. A very interesting exception that arises in theories with non-linear dilaton directions has been studied
in [5].
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identified with one of the non-compact directions, the model describes a cold string vacuum, with
the partition function determining the quantum effective potential, or the energy density of the
vacuum. Alternatively, the Euclidean time direction may be identified with one of the compact
cycles S1

I . In this case the description is in terms of a thermal ensemble. The same Euclidean
partition function determines the free energy and pressure of the thermal system.

The canonical ensemble corresponds to the case where the Euclidean time circle is completely
factorized from the other cycles. The spin/statistics connection requires that the corresponding
R-symmetry charge is identified with the spacetime fermion number F . The canonical ensem-
ble may then be deformed by turning on discrete “gravito-magnetic” fluxes associated to the
graviphoton, G0K , and axial vector, B0K , gauge fields, as in [4]. Their presence refines the
ensemble, and so chemical potentials for the graviphoton and axial vector charges appear. In
Ref. [4] thermal-like models of this type were constructed, where the Hagedorn instabilities are
lifted for specific values of the chemical potentials. Moreover, the partition function was shown
to be characterized by thermal duality symmetry: R0 → β2

c /R0 where βc ∼ RH (see also [6–8]).
Recently, significant progress towards the construction of tachyon-free, non supersymmetric

string vacua has been accomplished with the discovery of a novel Massive Spectrum boson–
fermion Degeneracy Symmetry (MSDS), which is manifested at special points in the bulk of
moduli space of a class of Heterotic and Type II orbifold compactifications to two (or even one)
dimensions [9,10]. At the MSDS points all radii of the internal T 8 torus are at the fermionic
point. Thus, the eight compact super-coordinates can be replaced by a set of 24 left-moving and
24 right-moving free fermions [11,12], with each set transforming in the adjoint representation of
a semi-simple gauge group H [13]. Whenever the boundary conditions respect the latter world-
sheet symmetry group, spacetime gauge symmetry is enhanced to a non-Abelian HL × HR local
gauge group. The worldsheet degrees of freedom give rise to a new local superconformal algebra
whose spectral-flow operator QMSDS has the property of transforming bosonic into fermionic
states at all massive levels, while leaving massless states unpaired [9,10]. Because of the similar-
ity with ordinary supersymmetry, we shall also make use of the term “massive supersymmetry”,
bearing in mind however, that the MSDS symmetry is realized in terms of a different local algebra
than ordinary supersymmetry. The degeneracy of states of mass M is:

nB(M) − nF (M) =
{ �= 0 for M = 0,

0 for M > 0.
(1.2)

Therefore, the MSDS vacua trivially satisfy the condition of asymptotic supersymmetry [14,15],
which in turn ensures the absence of (physical) tachyons from the spectrum.

One motivation for studying these exotic vacua is the following. Within a string cosmolog-
ical framework, it is quite natural to consider the possibility that the very early Universe arose
as a hot compact space with characteristic curvature close to the string scale [9,10,16]. The un-
derlying string dynamics may then drive three spatial directions to decompactify, with a large
four-dimensional Universe emerging naturally. In the very early cosmological era, where the
resulting description of spacetime is expected to be highly non-geometrical [17,18], the full
string theoretic degrees of freedom are relevant and must be properly taken into account. As
the MSDS vacua are non-singular, it was conjectured in [9,10] that they are suitable candidates
to describe this early stringy, non-geometrical era of the Universe. The high degree of symmetry
present in these vacua opens a window in identifying and analysing the relevant string dynam-
ics. Moreover, we will show in this paper that some Euclidean versions of the MSDS models
naturally describe thermal ensembles associated to (4,0) supersymmetric models (or, more gen-
erally, NL, NR � 4), which are further deformed by discrete gravito-magnetic fluxes and are
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very similar to the tachyon-free thermal models of [4]. The applicability of these thermal states
in the context of hot string gas cosmology is currently under investigation [19]. Previous work
on string cosmology includes [20,21].

As a first step in attacking the difficult problem of incorporating the backreaction due to ther-
mal and quantum effects in MSDS vacua, and in order to support the cosmological scenario
outlined above, we analyse tree-level marginal deformations away from the enhanced symmetry
points. The validity of such an adiabatic approximation requires the string coupling to be suffi-
ciently small. All marginal deformations are described in terms of worldsheet CFT perturbations
of the current–current type MIJ JI (z)× J̄J (z̄), where the MIJ describe the various moduli fields
associated with the compactification.3 As we deform away from the extended symmetry point,
the MSDS symmetry is broken spontaneously. Our goal is to identify classes of thermal and
cold MSDS vacua that remain tachyon-free under arbitrary marginal deformations, establishing
tachyon-free trajectories that connect the two-dimensional MSDS vacua to higher-dimensional
supersymmetric ones via large marginal deformations.

Below we outline the plan of the paper and a summary of our main results.
In Section 2, we briefly review the construction of the maximally symmetric MSDS vacua

[9] and their Z
N
2 -orbifolds [10]. We proceed in Section 3 to study marginal deformations of

the current–current type. We show the existence of large marginal deformations interpolating
between the maximally symmetric MSDS vacua (and their orbifolds), and four-dimensional su-
persymmetic models, thus establishing a correspondence between the MSDS space of vacua and
four-dimensional gauged supergravities.

In Section 3.3, we exhibit the thermal interpretation of various Euclidean versions of the mod-
els. The stability of the maximally symmetric vacua under arbitrary marginal deformations is
analysed in Section 3.4. We remark on the existence of marginal deformations of the maximally
symmetric MSDS models that can lead to tachyonic instabilities, and we show how the danger-
ous deformation directions can be projected out by considering asymmetric orbifold twists. Such
orbifolds that preserve the MSDS structure and produce vacua that remain tachyon-free under
arbitrary marginal deformations are explicitly constructed in Section 5. We also identify condi-
tions for general thermal versions of initially supersymmetric (4,0) vacua to remain stable under
arbitrary deformations of the dynamical moduli.

In Section 4, we present a new class of two-dimensional (4,0) supersymmetric models, which
will be referred to as ‘Hybrid’ models throughout the paper. In these constructions the right-
moving supersymmetries are broken at the string scale and are replaced by the MSDS structure.
The left-moving supersymmetries are then broken spontaneously via a further asymmetric (freely
acting) orbifold. The thermal partition function of the models exhibits thermal duality symmetry
and is free of tachyonic instabilities.

Finally, we present our conclusions and directions for future research.

2. Review of the MSDS vacua

In this section we briefly review the maximally symmetric MSDS vacua and their Z
N
2 orbifold

constructions. In their maximally symmetric version, the MSDS vacua are constructed as two-
dimensional compactifications M2 × K , where the compact space K is described by a ĉ = 8
superconformal field theory. The 8 compact super-coordinates are described in terms of free

3 These fields are massless at tree-level, but may generically acquire mass from one-loop or higher genus corrections.
The backreaction on the initially flat moduli fields due to quantum effects will be left for future investigation.
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worldsheet fermions [11–13]. This fermionization is possible at specific (“fermionic”) radii Ri =√
α′/2 for the compact worldsheet bosons. Throughout this paper we set α′ = 1.
In Type II theories, the left-moving worldsheet degrees of freedom consist of the 2 light-

cone super-coordinates, the superconformal ghosts (b, c), (β, γ ) and the 8 transverse super-
coordinates (∂XI ,χI ) (I = 1, . . . ,8). The right-movers have a similar content in Type II the-
ories, whereas in the Heterotic theory one adds 16 extra complex fermions ψA, A = 1, . . . ,16,
as required by the cancellation of the right-moving conformal anomaly.

Fermionizing (Refs. [11,13]) the compact worldsheet bosons, we can express the Abelian
transverse currents ∂XI in terms of free worldsheet fermions i∂XI (z) = yIωI (z). The fermions
{χI , yI ,ωI } then realize a global affine algebra based on G = ŜO(24)k=1. In the Heterotic the-
ories, the right-movers can be fermionized without subtleties. For sectors with local worldsheet
supersymmetry, however, as in Type II and the left-moving side of Heterotic theories, there are
extra constraints arising from the fact that worldsheet supersymmetry must now be realized non-
linearly among the free fermions:

δψa ∼ f a
bcψ

bψc, a = 1, . . . ,24.

Imposing that this be a real supersymmetry gauges the original symmetry G down to a sub-
group H , such that G/H is a symmetric space. The free fermions then transform in the adjoint
representation of the semi-simple Lie sub-algebra H , with dimH = 24. The local currents
Ja = fabcψ

bψc together with the 2d energy–momentum tensor TB and the N = 1 supercurrent
TF close into a worldsheet superconformal algebra. The possible gaugings are:

SU(2)8, SU(5), SO(7) × SU(2), G2 × Sp(4),

SU(4) × SU(2)3, SU(3)3.

In the following sections we restrict attention to the gauging of maximal rank H = SU(2)8
k=2, as

this is related to the maximal space of deformations.
Respecting the HL × HR = SU(2)8 × SU(2)8 symmetry in Type II or the HL × HR =

SU(2)8 ×SO(48) in the Heterotic, leads to very special tachyon-free constructions with left–right
holomorphic factorization of the partition function [9]. In the “prototype” maximally symmetric
constructions all left-moving fermions are assigned the same boundary conditions. The modular
invariant (mass generating) partition functions in Type II and Heterotic theories are given by

ZII = 1

22

∑
a,b=0,1

(−)a+b θ [ab]12

η12

∑
ā,b̄=0,1

(−)ā+b̄
θ̄ [ā

b̄
]12

η̄12
= (V24 − S24)(V̄24 − S̄24) = 576,

ZHet = 1

2

∑
a,b=0,1

(−)a+b θ [ab]12

η12
Γ [HR] = 24 × (

d[HR] + [
j̄ (z̄) − 744

])
. (2.1)

In the Heterotic case there are various possible choices for HR , corresponding to d[HR] = 1128
for HR = SO(48) and d[HR] = 744 for HR = SO(32) × E8 or HR = E3

8 . The Klein invariant
combination (j̄ (z̄) − 744) is eliminated after integration over the fundamental domain (or by
imposing level-matching).

Both ZII and ZHet are seen to exhibit a remarkable property: the numbers of bosonic and
fermionic states are equal at each massive level nB − nF = 0, with the exception of the massless
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modes which are unpaired4 (Massive Spectrum Degeneracy Symmetry). One may further show
that the partition functions of MSDS models take the generic form:

Z = m + n(j̄ − 744), (2.2)

where m,n ∈ Z, and m = nB − nF counts the massless level degeneracy. The integer n gives the
degeneracy of the simple-pole contribution from unphysical tachyons in the right-moving sector.

The MSDS structure has a simple CFT interpretation. Indeed, it is possible to construct a
chiral current that ensures the mapping of massive bosonic to massive fermionic representations,
while leaving the massless spectrum invariant:

jα(z) = e
1
2 Φ− i

2 H0 C24,α(z), (2.3)

where C24,α is the spin-field of SO(24) with positive chirality. This acquires (1,0) conformal
weight once the ghost dressing −5/8 + 1/8 is taken into account. Its zero-mode QMSDS =∮

dz
2πijα(z)

defines a conserved MSDS charge ensuring the mapping of the massive towers of

states level by level. Acting with the MSDS current on the vectorial V = e−Φψ̂ and the spinorial

S = e− 1
2 Φ− i

2 H0S24,α representations, we find that the MSDS current annihilates the massless vec-
torial states j (z)V(w) = regular, whereas the first massive descendants of the vectorial family
[V](1) = e−Φ Dψ̂ transform into the spinorial S representation and vice-versa. In this nota-
tion, ψ̂ ≡ ψaγ a denotes the contraction with the γ -matrices of SO(24) and D ≡ ∂ + Ĵ is
the covariant-like derivative, associated to the gauging of supersymmetry and Ĵ ≡ ψ̂ψ̂ . Since
only the 24 (chiral) massless states ψa are unpaired, they contribute to the character difference
V24 − S24 = 24.

Despite their attractive uniqueness, the maximally symmetric MSDS vacua are not directly
useful for phenomenology. As discussed in [9,10], a direct decompactification of all 8 compact
coordinates leads to the conventional ten-dimensional superstrings with N = 8 supersymme-
tries (N = 4 in the Heterotic case), which have no hope of describing chiral matter. It was
shown in [10] that it is possible to break the HL × HR symmetry by considering orbifolds of
the maximally symmetric vacua that preserve the MSDS structure. A complete classification of
Z

N
2 -constructions was given in [10], where the necessary and sufficient conditions for MSDS

symmetry were derived. The result is that whenever the boundary conditions and Generalized
GSO-projections (henceforth referred to as GGSO) respect the global, chiral definition of the
spectral-flow operator jMSDS and if, in addition to the usual modular invariance conditions, the
boundary condition vectors ba :

ψa → −eiπbaψa, with ba ∈ {0,1}
satisfy the extra holomorphic constraint:

nL(ba) = 0(mod 8) for all ba,

the resulting vacuum possesses MSDS structure. It is possible to generalize this construction for
more general Zk-orbifolds, but this will be considered elsewhere.

Finally, we briefly comment on the moduli space of the maximally symmetric models. The
massless spectrum of these models contains dL × dR massless scalars parametrizing the mani-
fold:

4 In fact, in the maximally symmetric MSDS models, the massless spectrum is entirely composed of 576 scalar bosons
so that no matching between massless bosonic and fermionic states is possible.
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K = SO(dL, dR)

SO(dL) × SO(dR)
, (2.4)

where dL, dR are the dimensions of the HL, HR gauge groups, respectively. Not all of these
scalars correspond to moduli fields, since the symmetry enhancement at the MSDS point intro-
duces extra massless states into the theory. The marginal deformations (flat directions) are those
associated to the Cartan sub-algebra U(1)rL ×U(1)rR , with rL and rR being the ranks of HL and
HR , respectively. As discussed in [9], the moduli space of these current–current type deforma-
tions (modulo dualities) is given by the coset:

M = SO(rL, rR)

SO(rL) × SO(rR)
. (2.5)

3. Marginal deformations of the MSDS vacua

In this section we proceed to study marginal deformations of the MSDS vacua [9,10]. To
this extent, we locate these vacua in the moduli space of Type II and Heterotic (a-)symmetric
orbifold compactifications [22] to two dimensions, where supersymmetry is spontaneously bro-
ken by geometrical fluxes. The MSDS points are special in that they exhibit enhanced gauge
symmetry and massive boson/fermion degeneracy symmetry. As we will see, there are lines in
moduli space connecting the two-dimensional MSDS vacua with four-dimensional supersymmet-
ric string vacua. Our goal is to analyse the stability of the models under marginal deformations
along and around these lines, as well as to exhibit various thermal interpretations. The analysis
we perform in this work is at the string tree-level (and weak string coupling). The more diffi-
cult problem of obtaining the backreaction of the quantum corrections due to the spontaneous
breaking of supersymmetry will be left for future investigation.

3.1. Maximally symmetric MSDS vacuum as a half-shifted lattice

We begin by considering the Euclidean version of the maximally symmetric MSDS vacua. In
order to obtain the relevant half-shifted Γ(8,8) lattices [23], we express the partition function of
the Type II and Heterotic models as follows:

Z = V2

(2π)2

∫
F

d2τ

4(Im τ)2
ZII,Het,

ZII,Het = 1

22

∑
a,b=0,1

∑
ā,b̄=0,1

(−)a+b θ [ab]4

η12
Γ(8,8)

[ a, ā

b, b̄

] θ̄ [ā
b̄
]4

η̄12
(−)(ā+b̄)x

(
θ̄ [ā

b̄
]12

η̄12

)1−x

, (3.1)

where the values x = 1, x = 0 correspond to the Type II and Heterotic cases respectively. Here
V2 is the volume associated to the two very large, “spectator” directions, which do not couple
to any of the R-symmetry charges. At the MSDS point, the asymmetrically half-shifted Γ(8,8)

lattice admits holomorphic/anti-holomorphic factorization in terms of θ -functions:

Γ(8,8)

[ a, ā

b, b̄

]= θ
[ a

b

]8
θ̄
[

ā

b̄

]8
. (3.2)

The Type II and Heterotic moduli spaces are given by

M = SO(8,8 + 16(1 − x))
, (3.3)
SO(8) × SO(8 + 16(1 − x))
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modulo the corresponding discrete duality groups. To facilitate the analysis of the marginal de-
formations, we express the lattice in the familiar Lagrangian form so that the values of the Gμν ,
Bμν moduli at the MSDS point can be extracted.

It is convenient to define h ≡ a − ā and g ≡ b − b̄ and write the lattice as

Γ(8,8)

[ a, ā

b, b̄

]= θ
[ a

b

]8
θ̄
[ a−h

b−g

]8
. (3.4)

Then by using the identity [24]

θ
[ a

b

]
θ̄
[

ā

b̄

]= 1√
2τ2

∑
m,n∈Z

e
− π

2τ2
|m+ g

2 +τ(n+ h
2 )|2+iπ[mn−(a− h

2 )m+(b− g
2 )n+ h

2 (b− g
2 )]

, (3.5)

we can express (3.4) in terms of a product of eight Γ(1,1) shifted lattices

Γ(8,8) = 1

(
√

2τ2 )8

∑
mi,ni∈Z

e
− π

2τ2

∑
i |mi+ g

2 +τ(ni+ h
2 )|2+iπ[∑i mini+(a+ h

2 )
∑

i mi+(b− g
2 )
∑

i ni ]
,

(3.6)

where the i-summation is over the 8 internal directions. It is clear from this expression that ordi-
nary supersymmetry is spontaneously broken by the couplings of the lattice to the R-symmetry
charges (a, b) and (ā, b̄). In the Type II case, these correspond to the left- and right-moving
spacetime fermion numbers, FL and FR , respectively, while in the Heterotic case, the first pair
corresponds to the spacetime fermion number F and the latter to right-moving gauge R-charges.
Despite the breaking of supersymmetry, the model exhibits massive boson/fermion degeneracy
symmetry, which will generically be broken by marginal deformations away from the extended
symmetry point.

As is well known, supersymmetry can only be recovered at corners of the moduli space, where
certain moduli take infinite values and the R-symmetry charges decouple from the lattice. We
would like to identify the precise combinations of Kähler moduli that need to be decompactified
in order to recover supersymmetry. For this purpose, we show in Appendix A, that the Γ(8,8)

lattice (Eq. (3.6)) can be brought to the following Lagrangian form:

Γ(8,8)

[ a, ā

b, b̄

]=
√

detGμν

(
√

τ2)8

∑
m̃μ,nν∈Z

e
− π

τ2
(G+B)μν(m̃+τn)μ(m̃+τ̄ n)ν+iπ T

, (3.7)

where, for later convenience, we have denoted the lattice directions by Greek indices taking
values from 0,1, . . . ,7. Gμν and Bμν stand for the metric and parallelized torsion corresponding
to the deformed E8 ×E8 lattice. Their values are completely fixed by the MSDS symmetry point.
The phase T can be written in the form:

Tth. =
[
m̃0(a + ā) + n0(b + b̄)

]+ (
m̃1n1 + m̃1ā + n1b̄

)
. (3.8)

It describes the couplings of the lattice to the R-symmetry charges (a, b) and (ā, b̄). We see
that only two of the eight internal cycles couple to them in this representation. As a result, by
decompactifying these two cycles, we recover a four-dimensional supersymmetric vacuum. In the
Type II case, the X0 cycle is “thermally” coupled to the total fermion number FL + FR , whereas
the X1 direction is “thermally” coupled to the right-moving fermion number FR [24,25]. This
particular representation will prove very useful for the subsequent discussions concerning the
marginal deformations and the thermal interpretation of the Type II MSDS models. We shall
henceforth refer to it as the “thermal” or “temperature” representation.
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Alternatively, we can bring the lattice in a left–right symmetric form by a change of basis:
(m̃1, n1) → (m̃1 ± m̃0, n1 ± n0). The new phase-coupling is given by

Tsym. =
(
m̃0n0 + m̃0a + n0b

)+ (
m̃1n1 + m̃1ā + n1b̄

)
. (3.9)

This basis exhibits the two independent couplings to the R-charges (a, b) and (ā, b̄). Now it is
in the Heterotic case that the X0 cycle is “thermally” coupled to the spacetime fermion number,
while the X1 cycle couples to right-moving R-gauge charges. In the Type II case, the couplings
are associated to the left- (FL) and right- (FR) moving fermion numbers. This basis will be
henceforth referred to as the “symmetric” representation. The metric and antisymmetric tensor
in the symmetric representation are given in Eqs. (A.12) and (A.13) of Appendix A.

In either form, the original (8,8)-lattice is separated into a (2,2) sub-lattice coupled to the
R-symmetry charges and an “internal” (6,6) sub-lattice. It is interesting to note that the (2,2)

sub-lattice in the symmetric representation takes the form of the thermal Γ(2,2) lattice used in [4]
to construct tachyon-free thermal models in Type II theories. The difference here is the non-
trivial mixing with the (6,6) sub-lattice via the off-diagonal Gμν , Bμν elements, as dictated by
the MSDS point in moduli space. This “decomposed” form is in fact the most general possible
form of an (8,8) lattice “thermally” coupled to the left- and right-moving fermion numbers FL,
FR . It is the starting point for the discussions that follow.

3.2. The creation of spacetime and the MSDS/4d gauged supergravity correspondence

The physical interpretation of the Euclidean model depends on the choice of the time direc-
tion. We first consider two-dimensional cold MSDS vacua, where the Euclidean time is taken
along one of the non-compact, spectator directions. Upon rotation to Lorentzian signature, these
two directions analytically continue to the longitudinal lightcone directions X±. The Euclidean
partition function determines the energy density of the vacuum, which is induced at the one-loop
(and higher genus) level by the spontaneous breaking of supersymmetry.

In the previous section, the Γ(8,8) lattice corresponding to the maximally symmetric MSDS
vacuum was expressed in its fully “decomposed” form (3.8), where only a (2,2) sub-lattice cou-
ples to the R-symmetry charges (a + ā, b + b̄) and (ā, b̄). In that notation, the (2,2) sub-lattice
is spanned by the quantum numbers [(m̃0, n0); (m̃1, n1)]. We denote the associated compact di-
rections by X0 and X1 respectively. In Type II theories, the R-symmetry charges correspond
to the total and right-moving spacetime fermion numbers, FL + FR and FR . Their coupling
to the lattice breaks the initial (4,4) supersymmetries to (0,0) spontaneously. In the infinite-
radius limit, R0,R1 → ∞, where the X0 and X1 cycles decompactify, only the (m̃0, n0) = (0,0)

and (m̃1, n1) = (0,0) orbits survive, and the R-symmetry charges effectively decouple from the
lattice. In this limit we recover a four-dimensional maximally supersymmetric, N = 8, Type II
vacuum. As we will show in Section 3.4, this particular decompactification limit can be described
in terms of adiabatic motion along a tachyon-free trajectory in moduli space, which interpolates
continuously between the two-dimensional MSDS vacua and the four-dimensional supersymmet-
ric ones.

The decompactification limit can be achieved via large marginal deformations of the current–
current type. Specifically, one perturbs the sigma-model action by adding marginal operators of
the form

λ0J0 × J̄0 + λ1J1 × J̄1 ∼ λ0∂X0∂̄X0 + λ1∂X1∂̄X1, (3.10)
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and then takes the λ0, λ1 → ∞ limit adiabatically. Of course, we would like to identify more
trajectories along which we do not encounter tachyonic instabilities as we deform from the
non-singular MSDS vacuum to the supersymmetric one. This problem will be investigated in
Section 3.4.

Near the extended symmetry point, the corresponding T 2 sub-manifold is threaded by non-
trivial “gravito-magnetic” fluxes, as indicated by the non-vanishing values of the G0I , G1I and
B0I , B1I , I = 1, . . . ,6, moduli and the couplings to the R-symmetry charges. When the size of
space is of the order of the string scale, classical notions such as geometry, topology and even the
dimensionality of the underlying manifold are ill-defined (see [17] for discussions). A familiar
example, the SU(2)k=1 WZW model, serves to illustrate these issues: the target space can be
taken to be a highly curved three-dimensional sphere with one unit of NS–NS 3-form flux, or in
an equivalent description, a circle at the self-dual radius. For large level k, however, the target
space can be unambiguously described as a large 3-sphere with NS–NS 3-form flux. Similarly,
in our case, a clear geometrical picture involving four large spacetime dimensions, along with an
effective field theory description, arises in the large moduli limit. Two additional large dimen-
sions emerge via marginal deformations of the current–current type. In a cosmological setting,
the deformation moduli acquire time-dependence. It is plausible then that a four-dimensional
cosmological space is created dynamically from an initially non-singular, 2d MSDS vacuum.

The four-dimensional maximally supersymmetric vacuum (obtained in the infinite-radius
limit) corresponds to a Type II compactification on a T 6 torus with fluxes, with the T 6 mod-
uli remaining close to the fermionic point. The internal moduli can be also deformed, and so
one obtains a rich manifold of maximally supersymmetric vacua. The low energy effective de-
scription is in terms of d = 4, N = 8 gauged supergravity, where the gauging is induced by the
internal fluxes. This illustrates the correspondence of the maximally symmetric MSDS vacuum
with the maximal d = 4, N = 8 gauged supergravity. This correspondence can be also extended
to less symmetric cases, where the initial MSDS symmetry is reduced by orbifolds [10]:

[Zorb : MSDS]d=2 ←→ [N � 8 : SUGRA]d=4,fluxes. (3.11)

This more general class of models includes also four-dimensional (4,0) and (0,4) vacua, as
well as their orbifolds, obtained by decompactifying a suitable cycle within the (2,2) sub-lattice
together with one of the directions associated with the (6,6) sub-lattice.

In the Heterotic models, only the left-moving spin structures (a, b) are associated with the
spacetime fermion number and, thus, only one modulus need be infinitely deformed in order to
yield a supersymmetric theory. Starting with the maximally symmetric MSDS Heterotic model,
a four-dimensional N = 4 model can be obtained by decompactifying one additional direction.
A novel feature is the coupling of the X1 cycle to internal, right-moving gauge charges. This
coupling is induced by discrete Wilson lines associated with the non-Abelian gauge field (arising
from the right-moving sector). It would be interesting to identify initially MSDS Heterotic vacua,
which can be connected via large marginal deformations to phenomenologically viable, d = 4,
N = 1 chiral models. The classification of the N = 1 models and their phenomenology will be
studied elsewhere [26].

At intermediate values of the radii R0,R1, the four-dimensional spacetime part includes
non-trivial geometrical fluxes which induce the spontaneous breaking of supersymmetry. In the
maximally symmetric Type II models there are two supersymmetry breaking scales associated
with the breaking of the left- and right-supersymmetries respectively. In a cosmological setting,
one should also introduce temperature into the system. The conventional thermal deformation is
obtained as follows. One starts with a cold MSDS vacuum where the Euclidean time is along one
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of the two non-compact spectator directions, and compactifies it on a circle. This circle must be
coupled to the total fermion number F in a manner consistent with the spin/statistics connec-
tion. The induced temperature is inversely proportional to its radius, and leads to the familiar
Hagedorn instabilities when it becomes of the order of the string scale. As we will explicitly
show in the next section, however, some Euclidean versions of the models, where the two specta-
tor dimensions remain non-compact, admit a thermal interpretation of their own. They describe
thermal string vacua in the presence of left/right asymmetric gravito-magnetic fluxes, very sim-
ilar in fact to the tachyon-free thermal models studied in [4]. In these Euclidean models one of
(the already existing) supersymmetry breaking scales is identified with the temperature.

3.3. Thermal interpretation of the models

In this section, we consider Euclidean versions of Type II MSDS models, where time is identi-
fied with one of the compact directions associated with the T 8 torus. The physical interpretation
of such a model is in terms of a string thermal ensemble, with the temperature given by the inverse
radius of the Euclidean time cycle. Consistency with the spin/statistics connection and modular
invariance require that the quantum numbers associated with the Euclidean time cycle couple to
the spacetime fermion number F through a specific cocycle. At the level of the one-loop thermal
amplitude, this cocycle takes the form

eiπ(m̃0F+n0F̃ ), (3.12)

correlating the string winding numbers with the spacetime spin [24,25].
In the MSDS models, we can identify a thermal cycle, which couples to the spacetime fermion

number as dictated by the spin/statistics connection, within the (2,2) sub-lattice responsible
for the supersymmetry breaking. However, as in the models of [4], this cycle is also threaded
by non-trivial “gravito-magnetic” fluxes, associated with various U(1) graviphoton and axial
vector gauge fields. The presence of these fluxes refines the thermal ensemble, and so chemical
potentials associated with the fluxes appear [4]. Despite the fact that the radius of the Euclidean
time circle is smaller than the Hagedorn one, these additional fluxes render the partition function
at the MSDS points finite. In light of the thermal interpretation of the models, we motivate them
further.

At finite temperature, the one-loop string partition function diverges when the radius of the
Euclidean time circle is smaller than the Hagedorn value: R0 < RH . This divergence can be as-
sociated with the exponential growth of the density of single-particle string states as a function
of mass. It can also be interpreted as an infrared divergence since, precisely for R0 < RH , certain
stringy states winding around the Euclidean time circle become tachyonic. These instabilities
signal the onset of a non-trivial phase transition at around the Hagedorn temperature [27,28].
If a stable high temperature phase exists, it should be reachable through the process of tachyon
condensation, where the tachyon “rolls” to a new stable vacuum. In the literature there are many
proposals concerning the nature of this phase transition, but the large values of the tachyon con-
densates involved drive the system outside the perturbative domain, and so adequate quantitative
description of the dynamics is lacking (see e.g. [27–29]).

Another way to proceed is to deform the background via other types of condensates that can
be implemented at the string perturbative level, so that the tachyonic instabilities are removed.
In addition to the temperature deformation, we turn on certain discrete gravito-magnetic fluxes
threading the Euclidean time circle, as well as other internal spatial circles [4]. In fact, these
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fluxes can be described in terms of gauge field condensates, of zero field strength, but with non-
zero value of the Wilson line around the Euclidean time circle. The would-be winding tachyons
get lifted as they are charged under the corresponding gauge fields. An analogue to keep in mind
is the case of a charged particle moving on a plane, under the influence of an inverted harmonic
oscillator potential. A large enough magnetic field can stabilize the motion of the particle. The
thermal MSDS vacua correspond precisely to such tachyon-free setups. The MSDS algebra com-
pletely fixes the structure of the corresponding statistical ensemble, determining the values of the
temperature and the chemical potentials associated with the gravito-magnetic fluxes.

The thermal vacua are of particular interest in the context of string cosmology. It was argued
in [9], that the MSDS vacua are promising candidates to describe the very early phase of the Uni-
verse. As the thermal MSDS vacua are free of Hagedorn instabilities, they could be the starting
point of the cosmological evolution. In such a dynamical setting, the physical moduli acquire
time dependence, so it is necessary to construct thermal MSDS vacua that remain tachyon-free
under fluctuations of the dynamical moduli, as well as to identify safe trajectories in moduli
space that connect the models to higher-dimensional thermal ones.

Now not all of the 64 moduli in the SO(8,8)
SO(8)×SO(8)

space correspond to fluctuating fields. Local
worldsheet symmetry permits one to gauge away the oscillator degrees of freedom associated
to the Euclidean time direction and to an additional spatial direction. This implies in particular
that certain combinations involving the G0I and B0I moduli can be frozen, and the correspond-
ing fluctuations are set to zero. As we will see, the various geometrical data associated to the
Euclidean time direction are naturally interpreted as the thermodynamical parameters of the
statistical ensemble. For the maximally symmetric MSDS models, we choose the direction of
Euclidean time to lie in the first direction, X0, of the (2,2) sub-lattice, see Eq. (3.9), coupling
to the left-moving R-symmetry charges. As before, the coordinates of the full (8,8)-lattice are
collectively denoted by Greek characters {μ = 0,1, . . . ,7}; the coordinates XI , other than the
Euclidean time will be denoted by Latin characters {I = 1,2,3, . . . ,7}. This includes, in par-
ticular, the direction I = 1 in the (2,2) sub-lattice coupling to the right-moving R-symmetry
charges.

3.3.1. The thermal ensembles
In this section we exhibit the thermal interpretation of the class of models considered in this

paper. Our discussion will be focused on the maximally symmetric MSDS models, but may be
suitably adapted to apply to the twisted MSDS and Hybrid models of the following sections. Our
starting point will be a general lattice of the form (A.11):

Γ(8,8)

[ a, ā

b, b̄

]=
√

detGμν

(
√

τ2 )8

∑
m̃μ,nν∈Z

e
− π

τ2
(G+B)μν(m̃+τn)μ(m̃+τ̄ n)ν+iπ T

. (3.13)

We use the tilde and upper indices (m̃μ,nμ) to denote the winding numbers around the two non-
trivial loops of the worldsheet torus. The momentum quantum numbers (mμ) are denoted without
tildes and with lower indices.

We single-out the direction (m̃0, n0) of the lattice, corresponding to the compact Euclidean
time direction. We assume the following general form for the metric Gμν and antisymmetric
tensor Bμν :

Gμν =
(

G00 G0J

G G

)
, Bμν =

(
0 B0J

B B

)
. (3.14)
I0 IJ I0 IJ
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For the case of the maximally symmetric MSDS models, their numerical values are given in
(A.12) and (A.13). The phase coupling T takes the form

T = (
m̃0n0 + am̃0 + bn0)+ (

m̃1n1 + ām̃1 + b̄n1). (3.15)

For later convenience, the determinant may be written as

detGμν = R2
0 detGIJ , (3.16)

where R2
0 is given by5

R2
0 ≡ G00 − G0IG

IJ GJ0, (3.17)

and will be shown below to correspond precisely to the inverse temperature β = 2πR0.
In this form the X0 and X1 directions couple (independently) to left- (FL) and right- (FR)

moving fermion numbers respectively. To make the thermal nature of the coupling explicit, we
change basis by shifting (m̃1, n1) → (m̃1 − m̃0, n1 −n0), so that the X0-cycle couples to the total
spacetime fermion number FL + FR :

T → [
(a + ā)m̃0 + (b + b̄)n0]+ [

m̃1n1 + ām̃1 + b̄n1]+ (
m̃0n1 − m̃1n0)

= T ′ + (
m̃0n1 − m̃1n0). (3.18)

The new phase coupling T ′ is the sum of a thermal coupling to the total fermion number FL+FR ,
which corresponds precisely to the conventional thermal deformation of Type II theories, along
with an independent coupling of the X′1 direction to FR . The latter deformation breaks spon-
taneously the right-moving supersymmetries, N = (4,4) → (4,0), before finite temperature is
introduced into the theory. The thermal deformation breaks the remaining left-moving supersym-
metries to (0,0). The last term in the transformation (3.18) is the discrete torsion contribution
to B ′

01. In the new basis, the metric and antisymmetric tensor are given by

G′
μν =

(
G00 + 2G01 + G11 G0J + G1J

GI0 + GI1 GIJ

)
,

B ′
μν =

(
0 B0J + B1J + 1

2δ1J

BI0 + BI1 − 1
2δI1 BIJ

)
. (3.19)

The radius R2
0 is left invariant by the change of basis:

G′
00 − G′

0IG
′IJ

G′
J0 = G00 − G0IG

IJ GJ0 = R2
0 . (3.20)

Next we Poisson re-sum all the m̃I windings transverse to the temperature direction. This sets
the (7,7) lattice associated with X′ I directions to its Hamiltonian picture. The full (8,8) lattice
reads:

R0√
τ2

∑
m̃0,n0∈Z

e
− πR2

0
τ2

|m̃0+τn0|2
(−)(a+ā)m̃0+(b+b̄)n0

×
∑

mI ,nI ∈Z

q
1
2 P 2

L q̄
1
2 P 2

R (−)b̄n1
e

2πim̃0(G′
0I QI

(M)
−B ′

0I QI
(N)

)
. (3.21)

5 Throughout, GIJ is the inverse of GJK : GIJ GJK = δI .

K
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Here, P 2
L,R ≡ GIJ P I

L,RP J
L,R are the canonical momenta of the transverse lattice:

P I
L,R = 1√

2
GIJ

(
mJ + ā + n1

2
δJ1 + (

B ′
Jμ ± G′

Jμ

)
nμ

)
, (3.22)

with (+) and (−) corresponding to the left- and right-moving canonical momenta, respectively.
We have also defined

QI
(M) ≡ 1√

2

(
P I

L + P I
R

)
, QI

(N) ≡ 1√
2

(
P I

L − P I
R

)
. (3.23)

The thermal interpretation of the models becomes manifest, when we decompose the lat-
tice (3.21) in modular orbits. These are the (m̃0, n0) = (0,0) orbit which is integrated over the
fundamental domain, and the (m̃0,0), m̃0 �= 0 orbit which is integrated over the strip6 [4]. At
zero temperature, we recover a supersymmetric 3-dimensional (4,0) model, and so the contribu-
tion of the (0,0) orbit vanishes. The strip integral determines the free energy of the model at one
loop. The integrand involves

R0√
τ2

∑
m̃0 �=0

e
− π

τ2
(R0m̃

0)2

(−)(a+ā)m̃0 ∑
mI ,nI ∈Z

q
1
2 P 2

L q̄
1
2 P 2

R (−)b̄n1
e

2πim̃0(G′
0I QI

(M)
−B ′

0I QI
(N)

)
,

(3.24)

where now the 14 transverse U(1) charges QI
(M), Q

I
(N) (evaluated at n0 = 0) are those associated

with the graviphoton, G′
Iμ, and axial vector, B ′

Iμ, fields.
From the above expression, we can infer the form of the complete spacetime partition func-

tion:

Z
(
β,G′

0I ,B
′
0I

)= tr
[
e−βH e

2πi(G′
0I QI

(M)
−B ′

0I QI
(N)

)]
, (3.25)

where the trace is over the Hilbert space of the 3-dimensional (4,0) theory.7 The model de-
scribes a thermal ensemble at temperature T −1 = β = 2πR0, which is further deformed by
(imaginary) chemical potentials for the graviphoton and axial vector charges QI

(M), QI
(N). At

temperatures sufficiently below the string scale, with the other compact spatial cycles held fixed
at the fermionic point, the massive states carrying these charges effectively decouple from the
thermal system, and so in this limit we get a conventional thermal ensemble.

Notice that the argument of the phase in (3.25) is scale invariant. To make this invariance
explicit, we rewrite it in terms of the integral charges

m̂I ≡ mI + ā + n1

2
δ1I , nI . (3.26)

We obtain that

Z
(
β,μI , μ̃I

)= tr
[
e−βH e2π(μI m̂I −μ̃I nI )

]
, (3.27)

where μI ≡ iG′
0KGKI , μ̃I ≡ i(B ′

0I − G′
0J GJKBKI ) are the chemical potentials for the charges

m̂I , nI . The background expectation values

6 For sufficiently large R0 to ensure absolute convergence. See also the discussion in Section 4.2.1.
7 Since the Hamiltonian is quadratic in the charges, the partition function is real.
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ĜI
0 ≡ G′

0KGKI ,

B̂0I ≡ B ′
0I − ĜK

0 BKI , (3.28)

associated to the Euclidean time direction are non-fluctuating thermodynamical parameters
(chemical potentials) of the statistical ensemble.

3.4. Deformations and stability

In this section we investigate whether the MSDS vacua are stable under marginal deforma-
tions; that is, whether small (or even large) deformations in moduli space around the MSDS
point remain free of tree-level tachyonic instabilities. The answer depends on the number of de-
formable moduli, their relative size, as well as on the interpretation of the model, which may
describe a two-dimensional string model on M2 × T 8 or a string thermal ensemble.

In the remaining part of this section we will be concerned with the stability properties of the
maximally symmetric MSDS vacua under arbitrary marginal deformations of the current–current
type. Our analysis focuses on thermal Type II vacua, but it can be easily extended to the other
cases. We show that the maximally symmetric MSDS models are unstable under arbitrary defor-
mations of the dynamical moduli. Note that for the two-dimensional (cold) maximally symmetric
vacua, the negative curvature induced once we take the backreaction of the quantum corrections
into account, may lift such tree-level “tachyonic instabilities” (which may occur as we deform
away from the MSDS point). We also identify the necessary conditions for more general ther-
mal vacua to be stable under arbitrary deformations of the dynamical moduli. We show that
only for a very specific thermodynamical phase (choice of chemical potentials) are the corre-
sponding thermal vacua stable under arbitrary marginal deformations of the transverse moduli
and the temperature. This restriction can be waived by considering orbifold twists of the original
model, which project out some of the deformation moduli. Stable orbifold MSDS vacua will be
constructed in Section 5 of the paper.

Tachyons in the string spectrum may only appear in the NS–NS sector, where a = ā = 0. In
terms of SO(8)-characters, the ‘dangerous’ sector in the partition function is the sector with odd
chiral and anti-chiral GSO projections to the lattice:

O8Ō8
1

2

∑
b′,b̄′=0,1

(−)b
′+b̄′

Γ(8,8)

[ 0, 0
b′, b̄′

]
(GIJ ,BIJ ). (3.29)

The odd GSO projection is imposed independently to the left- and right-movers by the b′, b̄′-
summations. It is clear that only lattice BPS states can become tachyonic, since any left-moving
(right-moving) oscillator would immediately make the state massless, at least holomorphically
(anti-holomorphically). At the MSDS point, where the moduli take the precise values given in
Eqs. (A.12) and (A.13), the lowest lying physical states in the NS–NS spectrum are all massless.
The question we would like to address is what happens to these particular states under arbitrary
marginal deformations.

The metric and antisymmetric tensor will be assumed to be in the “temperature basis”, where
the phase coupling has the form

T = [
(a + ā)m̃0 + (b + b̄)n0]+ [

m̃1n1 + ām̃1 + b̄n1]. (3.30)

The primes in the metric and antisymmetric tensor used in the previous section are here omitted
for notational simplicity. Recall from the previous section that the temperature modulus was
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identified with R2
0 = G00 − G0IG

IJ GJ0. We can use vielbein notation that brings the lattice
metric to the flat frame Gμν = ea

μea
ν . It is a well-known fact in linear algebra that any positive

definite symmetric matrix Gμν has a unique decomposition8 into the product of an upper and a
lower triangular matrix. Indeed, let us choose the vielbein matrix (ea)μ to be the unique lower
triangular matrix in this decomposition. The first row of this vielbein matrix,(

ea=0)
μ

= (R0,0, . . . ,0), (3.31)

corresponds precisely to the radius R0 associated to the temperature. The inverse metric is simi-
larly decomposable Gμν = (e∗a)μ(e∗a)ν in terms of the dual vielbein lattice base vectors (e∗a)μ,
which can be equivalently seen as an upper triangular matrix. The first row of the dual vielbein
matrix is given by(

e∗,a=0)μ = 1

R0

(
1,−ĜJ

0

)
, (3.32)

with J = 1, . . . ,7, and

ĜJ
0 ≡ G0IG

IJ (3.33)

are the (frozen) chemical potentials (3.28) associated with the U(1) graviphoton charges. Sim-
ilarly, we define the antisymmetric tensor bab in the flat frame using the decomposition Bμν =
ea
μeb

νb
ab . We then find

b0
K ≡ b0beb

K = 1

R0

(
B0K − ĜJ

0 BJK

)= B̂0K

R0
, (3.34)

which were identified in the previous section as the chemical potentials associated with the axial
U(1) charges. Similarly:

b0
0 ≡ b0b

(
eb
)

0 = (
e∗,0)IBI0 = ĜI

0B̂0I

R0
.

From the point of view of the thermal interpretation, this particular vielbein decomposition is
natural because it directly reveals the temperature and chemical potentials of the statistical sys-
tem.

In the flat vielbein frame, the mass formula for the BPS-spectrum becomes

1

2
P 2

L,R = 1

4

7∑
a=0

((
e∗a

)μ(
m̂μ + Bμνn

ν
)± ea

μnμ
)2

, (3.35)

where m̂μ ≡ mμ + 1
2 (ā + n1)δμ,1. The half-shifted momentum, m1, corresponds to the direction

associated with the breaking of the right-moving supersymmetries. The decomposition of the
mass formula into 8 perfect squares is very useful for the subsequent stability analysis. We first
examine the contribution of the first square in (3.35), involving the temperature radius R0:

1

4

(
m0 − ĜI

0m̂I + B̂0J nJ + B̂0I Ĝ
I
0n

0

R0
± R0n

0
)2

. (3.36)

8 This decomposition is a special case of the standard LU -decomposition and is called Cholesky decomposition.
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We note that contribution (3.36) is entirely determined by the thermodynamical variables
of the statistical ensemble and is unaffected by the fluctuations of the dynamical moduli. The
fluctuations of the latter will only affect the 7 remaining contributions in (3.35), organized into
squares associated to the “transverse” moduli space. Now arbitrary fluctuations of the dynamical
moduli can always lower such a “transverse” contribution to its minimum (vanishing) value.
Consequently, if the model under consideration is to be free of tachyonic instabilities for any
deformations of the dynamical moduli, the frozen contribution (3.36) should suffice to render the
low-lying spectrum at least chirally massless.9 Next we examine under what conditions this is
the case.

Imposing independent odd left- and right-moving GSO projections as in (3.29) yields:

n0 ∈ 2Z + 1 and n1 ∈ 2Z. (3.37)

The level-matching condition is then written as

m0n
0 +

(
m1 + n1

2

)
n1 + m2n

2 + · · · + m7n
7 = 0. (3.38)

The thermal contribution (3.36) to the mass of a state with charges (mμ,nμ) has a minimum at
radius

R0,min =
∣∣∣∣m0 − ĜI

0m̂I + B̂0J nJ + B̂0I Ĝ
I
0n

0

n0

∣∣∣∣, (3.39)

and the minimum, yet non-vanishing, value of 1
2P 2

L,R is given by

1

2
P 2

min = ∣∣(m0 − ĜI
0m̂I + B̂0J nJ + B̂0I Ĝ

I
0n

0)n0
∣∣. (3.40)

A thermal model that is tachyon-free regardless of deformations along the “transverse” moduli
space should, necessarily, have 1

2P 2
min � 1

2 . It is straightforward to show, by considering various
states (mμ,nμ) that satisfy level-matching, that the corresponding conditions on the chemical
potentials are:

Ĝk
0 ∈ Z

B̂0k ∈ Z

}
, for k = 2, . . . ,7,

Ĝ1
0 ∈ 2Z + 1, B̂01 ∈ Z + 1

2
. (3.41)

As a result, any Type II vacuum in a thermodynamical phase satisfying (3.41) will be tachyon-
free for any value of the temperature R0 and for all expectation values of the “transverse”,
dynamical moduli. It is shown in Appendix D that, whenever these conditions are met, the chem-
ical potentials can always be rotated (by a discrete O(8,Z) × O(8,Z) rotation) to the form
Ĝk

0 = B̂0k = 0, Ĝ1
0 = 2B̂01 = ±1. This is precisely the case when the temperature cycle S1 can

be factorized from the remaining toroidal manifold, in which case it couples to the left-moving
fermion number FL only, as in the models of [4]. It is straightforward to show that the spacetime
partition function (3.27) reduces in this case to

9 By chirally massless we mean states that are massless either from the holomorphic or anti-holomorphic sector of the
theory. This is because only level-matched states are physical.
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Z = tr
[
e−βH (−1)FR

]
, (3.42)

the right-moving fermion index.
For the maximally symmetric MSDS models, the thermodynamical parameters are numeri-

cally determined to be:

R0 = 1

4
,

ĜI
0 =

(
3

2
,

1

4
,0,

1

4
,

1

2
,

1

4
,0

)
,

B̂0I =
(

0,−3

4
,−1

4
,−3

4
,0,−1

4
,0

)
. (3.43)

They obviously do not satisfy conditions (3.41) and so, the maximally symmetric MSDS models
are not tachyon-free for arbitrary marginal deformations, including small marginal deformations
around the non-singular point.

However, we can now show that the asymptotic limit R0 → ∞ continuously interpolates
between the thermal MSDS vacuum and supersymmetric vacua at zero temperature, without en-
countering tachyonic states. For this purpose we notice that the (shifted) momentum contribution
M̂0 ≡ m0 − ĜI

0m̂I + B̂0J nJ + B̂0I Ĝ
I
0n

0 comes as

|M̂0| =
∣∣∣∣Z + Z

2
+ Z

4

∣∣∣∣ ∈ {0,
1

4
,

1

2
, . . .

}
. (3.44)

Since n0 is odd, only states with n0 = ±1 winding number can become tachyonic. Clearly, only
the two cases M̂0 = 0, M̂0 = 1

4 need be examined, since all others are at least massless.

For M̂0 = 0 the corresponding states have vanishing momentum and non-trivial winding along
the temperature cycle. The mass of these states vanishes at R0 → 0 and diverges at R0 → ∞.
The MSDS point corresponds to the radius R0 = 1

4 and is tachyon-free. As a result, increasing
the radius (lowering the temperature) never produces tachyonic instabilities, since the masses
of these states can only further increase, provided of course that the transverse moduli are kept
fixed at their MSDS values. For the states M̂0 = 1

4 , the mass contribution (3.36) has a minimum at
R0 = 1

4 (assuming n0 = ±1), which corresponds to the tachyon-free MSDS point. Again, keeping
all transverse moduli fixed and varying only the temperature modulus R0, we never encounter
tachyons since the most dangerous point for these states is precisely the MSDS point, which we
know to be free of tachyons.

This establishes the existence of a deformation trajectory R0 → ∞ that takes the initial MSDS
thermal vacuum to a supersymmetric vacuum at zero temperature, without encountering tachy-
onic instabilities. Once the temperature has fallen considerably, marginal deformations along the
“transverse moduli” are free of tachyons. As a result, it is possible to further decompactify one or
more spatial dimensions to obtain higher-dimensional vacua. If one of the decompactified spatial
radii is the one coupling to the right R-symmetry charges, one eventually obtains a d = 4, N = 8
supersymmetric vacuum at zero temperature.

Finally, it should be noted that the conditions (3.41) apply only to the case of string vacua of
the “maximally symmetric type”. For vacua in which some of the (dynamical) moduli are twisted
by orbifolds, the previous argument is no longer necessarily restrictive and it is, in fact, possible
to construct orbifold MSDS vacua that are tachyon-free with respect to any deformation in the
“transverse” moduli space. We construct such tachyon-free vacua in Section 5.
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3.5. Connection to tachyon-free Type II thermal models

It is interesting to observe that the maximally symmetric MSDS vacua are continuously con-
nected to the class of tachyon-free Type II thermal vacua constructed in [4]. In what follows we
present the interpolation between the two classes of models.

We take the representation (A.11) for the Γ(8,8) lattice, and consider large marginal deforma-
tions along which the T 6 torus decompactifies. In this limit, only the zero orbits survive:

(m2, n2) = (m3, n3) = (m̃4, ñ4) = (
m′

2, n
′
2

)= (
m′

3, n
′
3

)= (
M ′,N ′)= (0,0), (3.45)

which effectively decouples the full lattice into the (2,2) and (6,6) sublattices. with their con-
tribution reducing to a volume factor V6. The original lattice (A.11) reduces into the product of
two Γ(1,1) lattices, each “thermally” coupled to the left-moving and right-moving R-symmetry
charges, respectively:

V 0 = m̃0 + τn0, V 1 = m̃1 + τn1,

− 1

2τ2

(∣∣V 0
∣∣2 + ∣∣V 1

∣∣2)+ iπ
[
m̃1n1 + ām̃1 + b̄n1 + m̃0n0 + am̃0 + bn0]. (3.46)

One may then shift V 1 → V 1 + V 0 in order to obtain the thermal lattice of [4] at the fermionic
point in moduli space:

Γ(8,8) → V6

(2τ2)4

×
∑

m̃0,n0,m̃1,n1∈Z

e
− π

2τ2
(|V 0|2+|V 0+V 1|2)+iπ[m̃0(a+ā)+n0(b+b̄)+(m̃1n1+ām̃1+b̄n1)+(m̃1n0−m̃0n1)]

.

(3.47)

In this form the X0 cycle couples to the total spacetime fermion number FL + FR , while the X1

cycle couples only to the right-moving fermion number FR .
Following the discussion of the previous section on the thermal interpretation of the max-

imally symmetric MSDS models, we can identify the Euclidean time direction along the X0

circle, and then its radius determines the inverse temperature β = 2πR0. The chemical potentials
are given by μ = 2μ̃ = i. Freezing the chemical potentials at these special values, the models
were shown to be tachyon-free under radial deformations and to be characterized by thermal
duality symmetry in [4]. Notice that they satisfy the conditions (3.41), derived in the previous
section, for such a thermal model to be tachyon-free under arbitrary marginal deformations.
A four-dimensional thermal model of this type can be obtained if we compactify the two lon-
gitudinal dimensions, and re-compactify 3 directions associated with the (6,6) sub-lattice. The
cosmology of these models is under investigation [19].

4. The tachyon-free Hybrid models

In the previous section, we developed the general framework needed to describe the marginal
deformations of the MSDS models. Our analysis focused on the cases of the maximally sym-
metric Type II and Heterotic models. Even though these points are non-singular, arbitrary small
marginal deformations generically produce tree-level tachyonic instabilities. In the remaining
two sections of this paper, we present classes of non-singular models that remain tachyon-free
under arbitrary marginal deformations.
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It was found in Section 3.4 (see also Appendix D) that in order to construct thermal-like
models, which are tachyon-free under all10 possible deformations of the dynamical moduli, the
compactification lattice should admit a factorization involving a (1,1)-lattice factor coupled to
the left-moving fermion number FL only, in a suitable basis:

Γ(d,d)

[ a, ā

b, b̄

]= Γ(1,1)

[ a
b

]
(R0) ⊗ Γ(d−1,d−1)

[
ā

b̄

]
(GIJ ,BIJ ). (4.1)

This (1,1) factor is associated with the Euclidean time circle. In this section we construct a
large class of such thermal models and analyse their stability under marginal deformations. They
are based on asymmetric (freely acting) orbifold compactifications of two-dimensional Hybrid
MSDS models to one dimension. In the Hybrid models, spacetime supersymmetry arises from the
left-moving side of the string. The right-moving supersymmetries are broken at the string scale
and are replaced by the MSDS structure. The full supersymmetry will be spontaneously broken
by the asymmetric (freely acting) orbifold compactification to one dimension.

4.1. The Hybrid models

We can construct a two-dimensional Hybrid model as follows. The 24 left-moving fermions
are split into two groups of 8 and 16, described in terms of SO(8) and E8 characters respectively.
The 16 fermions arise via fermionization of the 8 left-moving internal coordinates: i∂XI

L =
yIwI (z), I = 1, . . . ,8. As in the Type II MSDS models, the right-moving fermions are described
in terms of SO(24) characters. The partition function is given by:

Z = V2

(2π)2

∫
F

d2τ

4(Im τ)2

[
1

2

∑
a,b

(−)a+b
θ
[ a

b

]4

η4

][
1

2

∑
γ,δ

θ
[γ
δ

]8

η8

][
1

2

∑
ā,b̄

(−)ā+b̄
θ̄
[ā
b̄

]12

η̄12

]

= V2

(2π)2

∫
F

d2τ

4(Im τ)2

1

η8
ΓE8(τ )(V8 − S8)(V̄24 − S̄24). (4.2)

In the last line we have expressed the partition function in terms of the SO(8) and SO(24) char-
acters and of the chiral E8 lattice. This is a (4,0) supersymmetric model with respect to ordinary
supersymmetry, with an MSDS-symmetric anti-holomorphic sector with respect to the MSDS
symmetry of [9,10]. Both the left- and right-moving characters are by themselves modular in-
variant. Because of supersymmetry, the partition function is identically zero. There are 24 × 8
massless bosons and 24 × 8 massless fermions, arising in the V8V̄24 and S8V̄24 sectors respec-
tively. A large class of chiral orbifolds that preserve the right-moving MSDS structure can be
constructed following [10].

It is interesting to note that the Hybrid model can be obtained from the maximally symmetric
Type II MSDS model by performing an asymmetric Z2 orbifold XI

L → XI
L + π , which shifts

the transverse left-moving coordinates. The orbifold projection breaks the left-moving gauge
group HL = [SU(2)L]8

k=2 of the maximally symmetric MSDS model down to an Abelian U(1)8
L,

whereas HR = [SU(2)R]8
k=2 remains unbroken. The latter is spontaneously broken to U(1)8

R as
soon as one deforms the model away from the fermionic point.

To exhibit the model as a Type II asymmetric orbifold compactification to two dimensions,
we write the partition function as follows

10 With the exception of the frozen chemical potentials that appear in the thermal ensemble of the models.
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Z = V2

(2π)2

∫
F

d2τ

4(Im τ)2
ZHybr.,

ZHybr. = 1

η12η̄12

1

2

∑
a,b=0,1

(−)a+bθ
[ a

b

]4 1

2

∑
ā,b̄

(−)ā+b̄ θ̄
[

ā

b̄

]4
Γ(8,8)

[
ā

b̄

]
. (4.3)

We identify the internal (8,8) lattice at the fermionic point with:

Γ(8,8)

[
ā

b̄

]= ΓE8 × θ̄
[

ā

b̄

]8 = 1

2

∑
γ,δ=0,1

θ
[ γ

δ

]8
θ̄
[

ā

b̄

]8
. (4.4)

This is nothing but the asymmetrically half-shifted (8,8) lattice analysed in detail in Section 3.1.
The summation over the left-moving charges (γ, δ) imposes that the winding numbers (m,n)

coupling to them be even integers. Since the Hybrid (8,8) lattice couples to the right-moving
fermion number FR only, it suffices to infinitely deform a single radial modulus in order to
recover a maximally supersymmetric model.

4.2. Asymmetric orbifold compactification to one dimension

Next we compactify one of the longitudinal directions on a circle, whose radius we denote
by R. In particular, we consider an asymmetric orbifold obtained by modding out with (−1)FLδ,
where δ is an order-2 shift along the compact circle and FL is the left-moving fermion number.
We will eventually be interested in the thermal interpretation of the model, identifying the circle
with the Euclidean time direction. Throughout we use the following notations associated with
the Γ(1,1) lattice:

Γ(1,1)(R) = R√
τ2

∑
m̃,n

e
−π R2

τ2
|m̃+nτ |2 =

∑
m,n

Γm,n,

Γm,n = q
1
2 p2

L q̄
1
2 p2

R , q = e2πiτ , and pL,R = 1√
2

(
m

R
± nR

)
. (4.5)

The partition function is given by [4]

Z

V1
=
∫

F

d2τ

8π(Im τ)3/2
(V̄24 − S̄24)

ΓE8

η8

×
∑
m,n

(V8Γm,2n + O8Γm+ 1
2 ,2n+1 − S8Γm+ 1

2 ,2n
− C8Γm,2n+1). (4.6)

The deformation affects the left movers and breaks the (4,0) supersymmetry spontaneously. For
generic values of R, the only massless states arise in the V8V̄24 sector. The initially massless
fermions in the S8V̄24 sector are now massive. Notice the appearance of the O8 sector, which
contains the left-moving NS vacuum. Here, as in [4], it carries non-trivial momentum and wind-
ing numbers along the circle. The right-moving sector, on the other hand, begins at the massless
level and so the model remains tachyon-free for all values of R. The model is T -duality invariant,
where now R → 1/2R and as usual the S8 and C8 sectors get interchanged.

The lowest mass in O8V̄24 sector is given by

2m2
OV̄

=
(

1√ − √
2R

)2

. (4.7)

2R
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So from this sector we get additional massless states at the fermionic point, R = 1/
√

2. These
states induce non-analyticity in Z, precisely at this point. As we shall see, the partition function
is finite at this point, but its first derivative is discontinuous. The second derivative diverges.
Thus we get a first order phase transition. In the higher-dimensional model of [4], the transition
is much milder. At R = 1/

√
2 there is a further enhancement of the gauge symmetry:

U(1)L × U(1)R → SU(2)L × U(1)R. (4.8)

This can be understood as follows. Due to the asymmetric nature of the orbifold, which involves
a twist by (−1)FL , the U(1) current algebra of i∂X becomes extended to SU(2)k=2. The bound-
ary conditions of the longitudinal spacetime fermion ψ become correlated to those of the χ,ω

fermions arising from the fermionization of ∂X at the fermionic radius R = 1/
√

2. Similar phase
transitions have been found to occur in the context of non-critical Heterotic strings in two dimen-
sions in [30]. Two-dimensional non-critical strings, as well as their matrix model descriptions,
also exhibit thermal duality symmetry (see e.g. [31]).

We now proceed to compute the partition function. For R > 1/
√

2, we Poisson re-sum over
the momentum m to obtain

Z

V1
=
∫

F

d2τ

8π(Im τ)3/2
(V̄24 − S̄24)

ΓE8

η8

× 1

2

∑
a,b

(−)a+b R√
τ2

∑
m̃,n

e
− πR2

τ2
|m̃+nτ |2

(−)m̃a+nb+m̃n
θ
[ a

b

]4

η4
. (4.9)

The last line in the integrand of Eq. (4.9) exhibits the asymmetric nature of the (freely acting)
orbifold in terms of a Γ(1,1) lattice, “thermally” coupled to the left movers. Explicitly, the last
line is given by

Γ(1,1)(R)(V8 − S8) − 1

η4

(
Γ
[ 1

1

]
θ4

3 − Γ
[ 1

0

]
θ4

4 − Γ
[ 0

1

]
θ4

2

)
, (4.10)

where we introduced the notation for the shifted latices

Γ
[ h

g̃

]= R√
τ2

∑
m̃,n

e
− πR2

τ2
|(2m̃+g̃)+(2n+h)τ |2

. (4.11)

The untwisted piece in (4.10) vanishes due to the initial left-moving supersymmetries. In total
we get:

Z

V1
= −

∫
F

d2τ

8π(Im τ)3/2

1

η4

(
Γ
[ 1

1

]
θ4

3 − Γ
[ 1

0

]
θ4

4 − Γ
[ 0

1

]
θ4

2

)ΓE8

η8
(V̄24 − S̄24). (4.12)

We will compute the integral by mapping it to the strip. Notice that for very small R, the
various terms appearing in the lattice sum over (m̃, n) in (4.12) (or (4.9)) do not give convergent
integrals by themselves. To be able to exchange the order of summation and integration in the
small R case, we should Poisson re-sum over the winding number n in (4.6). Then we obtain
a similar expression as in (4.9), with R → 1/2R. This is essentially T -duality. In Appendix E,
we explicitly demonstrate the action of T -duality by performing a double Poisson re-summation
(see (B.1) in Appendix B) on the thermally shifted Γ(1,1) lattice appearing in (4.9). Alternatively,
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we can compute the integral for R > 1/
√

2, and then apply T -duality to the result in order to find
the answer for R < 1/

√
2 [30].

Before we proceed, we check how modular transformations act on the various terms in the
integrand of (4.12). The right-moving character V̄24 − S̄24 is modular invariant. Under τ → τ +1
the rest transform as follows

Γ
[ 1

1

] ↔ Γ
[1

0

]
, Γ

[ 0
1

] ↔ Γ
[ 0

1

]
,

θ4
3 ΓE8

η12
↔ −θ4

4 ΓE8

η12
,

θ4
2 ΓE8

η12
↔ θ4

2 ΓE8

η12
. (4.13)

Under τ → −1/τ ,

Γ
[ 1

1

] ↔ Γ
[ 1

1

]
, Γ

[ 1
0

] ↔ Γ
[ 0

1

]
,

θ4
3 ΓE8

η12
↔ θ4

3 ΓE8

η12
,

θ4
4 ΓE8

η12
↔ θ4

2 ΓE8

η12
. (4.14)

So modular transformations act as permutations, where the shifted lattices and the accompanying
left-moving theta functions are permuted in exactly the same way.

Now consider the three sets of integers appearing in the various orbits of the shifted lattices:

(2m̃ + 1,2n + 1), (2m̃,2n + 1), (2m̃ + 1,2n). (4.15)

In each set we can write the pair of integers as (2k̃ + 1)(p, q), where the greatest common
divisor is odd and p and q are relatively prime. Among all sets, we generate in this way all pairs
of relatively prime integers. For each such pair, we can find a unique modular transformation that
maps (p, q) → (1,0), and the fundamental region F to a region in the strip [32]. Any two such
regions are non-intersecting and their union makes up the entire strip. Since the relevant modular
transformation maps (p, q) → (1,0), the corresponding orbit gets mapped to an orbit in the Γ [0

1]
shifted lattice. So the accompanying theta function gets permuted to θ2. The partition function
for R > 1/

√
2, can be written as follows

Z

V1
= 2R

∞∑
k̃=0

∫
||

d2τ

8π(Im τ)2
e
−(2k̃+1)2 πR2

τ2
θ4

2

η12
ΓE8(τ )(V̄24 − S̄24). (4.16)

The right-moving MSDS structure allows us to compute the integral exactly. Since V̄24 − S̄24 =
24, level matching implies that the only non-vanishing contributions are those of the massless
level

Z

V1
= 2R

∞∑
k̃=0

∫
||

d2τ

8π(Im τ)2
e
−(2k̃+1)2 πR2

τ2 (16 × 24). (4.17)

In the parenthesis we get the multiplicity of the massless level of the initially supersymmetric
model. In all we have

Z

V1
= (16 × 24)

1

2π2R

∞∑
k̃=0

1

(2k̃ + 1)2
= (16 × 24)

1

16R
= 24

R
. (4.18)

The result above is valid for R > 1/
√

2. To get the answer for R < 1/
√

2, we impose the
R → 1/2R duality. We get
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Z

V1
= 24 × (2R). (4.19)

The formula valid for all R is

Z

V1
= 24 ×

(
R + 1

2R

)
− 24 ×

∣∣∣∣R − 1

2R

∣∣∣∣. (4.20)

The result is manifestly invariant under the R → 1/2R duality, and contains the expected non-
analyticity induced by the extra massless states at the dual fermionic point R = 1/

√
2. In fact,

the non-analytic part of Z can be written as

−24
∣∣mOV̄ (R)

∣∣ (4.21)

and can be understood as follows. Consider the contribution from the massless states in the O8V̄24
sector to Z, Eq. (4.6), near the extended symmetry point. There are 24 complex (or 48 real) such
scalars. Their contribution is given by

48 ×
∞∫

1

dt

4πt
t−1/2e−πm2t = 48|m| 1

4
√

π

∞∫
πm2

dy

y
y−1/2e−y. (4.22)

In the limit m → 0, the leading contribution is

48|m| 1

4
√

π
Γ

(
−1

2

)
= −24|m|. (4.23)

From Eq. (4.20), we see that the first derivative of the partition function is discontinuous and
so we have a first order phase transition which connects the two dual phases. When enough
additional dimensions decompactify, the transition becomes a higher order one and it will be
essentially smooth.

4.2.1. Thermal interpretation
We now identify the additional compact cycle with the Euclidean time direction. To analyse

the thermal interpretation of the model, we begin with Eq. (4.16). We may rewrite it using (4.4)
as follows

Z

V1
= 2R0

∞∑
m̃0=0

∫
||

d2τ

8π(Im τ)2
e
−(2m̃0+1)2 πR2

0
τ2

θ4
2

η12

1

2η̄12

∑
ā,b̄

(−)ā+b̄ θ̄
[

ā

b̄

]4
Γ(8,8)

[
ā

b̄

]
. (4.24)

This expression exhibits the model as an asymmetric orbifold compactification of Type II theory
to one dimension. Since the Euclidean time cycle is factorized, the above formula remains valid
for arbitrary deformations of the “transverse” moduli associated with the (8,8) internal lattice.
The integral is finite but harder to compute analytically, once we deform away from the MSDS
point.

The one-loop partition function is also written as

Z

V1
= R0

∞∑
m̃0 �=0

∫
||

d2τ

8π(Im τ)2
e
− π(m̃0R0)2

τ2
1

2η12

∑
a,b

(−)a+bθ
[ a

b

]4
(−)m̃

0a

× 1

2η̄12

∑
¯
(−)ā+b̄ θ̄

[
ā

b̄

]4
Γ(8,8)

[
ā

b̄

]
. (4.25)
ā,b
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As the integral is over the strip, we can easily infer the complete spacetime partition function. It
is given by the right-moving fermion index

Z = tr
[
e−βH (−1)FR

]
, (4.26)

which now, because of the phase transition, is strictly valid for R0 > 1/
√

2. The trace is over the
Hilbert space of the initially supersymmetric (4,0) model and β = 2πR0. For R0 < 1/

√
2, we get

a similar expression but with β = π/R0. Thus the system at small radii is again effectively cold.
Since there is no unique expression valid for all values of the radius R0, the underlying duality
symmetry of the model R0 → 1/2R0 is not manifest in the “thermal” trace. The fundamental
object is, rather, the Euclidean path integral, which is valid for all temperatures and manifestly
exhibits the stringy thermal duality of the model.

The (8,8) internal lattice can be written in the Hamiltonian form in terms of the left- and
right-moving momenta, which are explicitly given by

P I
L,R = 1√

2
GIJ

(
m̂J + (BJK ± GJK)nK

)
, (4.27)

where m̂J ≡ mJ + 1
2 (ā + n1)δ1J . The momentum along the X1 direction is half-shifted due to

the coupling to the right-moving fermion number FR . Using these expressions, we can exhibit
the trace as a conventional thermal ensemble, which is further deformed by chemical potentials
associated with “gravito-magnetic” fluxes, as in Eq. (3.27):

Z(β,μ, μ̃) = tr
[
e−βH e2π(μm̂1−μ̃n1)

]
. (4.28)

Here μ = i, μ̃ = i
2 are the imaginary chemical potentials coupled to the U(1) charges

m̂1 = m1 + 1

2

(
ā + n1), n1. (4.29)

As we anticipated in Section 3.4, freezing these particular values of the chemical potentials,
or equivalently, when the (1,1) and (8,8) lattices are initially factorized, the model is free of
tachyonic instabilities for arbitrary deformations of the “transverse” moduli. We verify this ex-
plicitly in the following section. Essentially, the stability is guaranteed by the thermal duality,
R0 → 1/2R0, of the model.

4.3. Deformations and stability of the thermal Hybrid models

We next analyse the stability of the thermal Hybrid models under marginal deformations. We
show that they are free of tachyonic instabilities for any deformation in the “transverse” moduli
space. The integrand of the partition function can be fully decomposed in terms of the SO(8)

characters as follows

∼ 1

η8η̄8

∑
m0,n0

(
V8Γ

(1,1)
m0,2n0

+ O8Γ
(1,1)

m0+ 1
2 ,2n0+1

− S8Γ
(1,1)

m0+ 1
2 ,2n0

− C8Γ
(1,1)
m0,2n0+1

)
×
∑
M,N

(
V̄8Γ

(8,8)
M,2N + Ō8Γ

(8,8)

M+ 1
2 ,2N+1

− S̄8Γ
(8,8)

M+ 1
2 ,2N

− C̄8Γ
(8,8)
M,2N+1

)
, (4.30)

where (m0, n0) are the momenta and windings along the Euclidean time circle. The decompo-
sition in the second line for the Γ(8,8) lattice is given in terms of the momentum and winding
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modes (M,N) along the cycle that couples to the right-moving R-symmetry charges. The latter
can be obtained by Poisson re-summing the Lagrangian lattice (A.11).

We focus on the O8Ō8 sector since this is the only sector dangerous of producing tachyons.
The lowest mass states in this sector are entirely determined by the Γ(1,1) ⊕ Γ(8,8) lattice con-
tributions. The Γ(1,1)(R0) contribution to the mass formula is given in terms of the left- and
right-moving momenta along the Euclidean time circle:

1

2
P 2

L,R = 1

4

(
m0 + 1

2 (a + n0)

R0
± n0R

)2

. (4.31)

In the OŌ sector, the windings n0 are odd. Notice that the (1,1) lattice is uncoupled from the
Γ(8,8) lattice and so

min

∣∣∣∣12(P 2
L − P 2

R

)∣∣∣∣= min

∣∣∣∣(m0 + 1

2
n0

)
n0

∣∣∣∣= 1

2
. (4.32)

This is clearly just enough to produce a state that is massless at least holomorphically (or anti-
holomorphically). This observation is independent of the value of the radius R0 or of the other
moduli GIJ ,BIJ of Γ(8,8). It crucially depends, however, on the factorization Γ(1,1) ⊕Γ(8,8) into
lattices with independent couplings to the left and right R-symmetry charges, respectively.

There is another way to see the stability as a property of the factorization of the coupling on
the left and right R-symmetries. To illustrate this, consider the two lattices Γ(1,1)[ab], Γ(8,8)[ ā

b̄
].

The difference �L − �R ≡ 1
2 (P 2

L − P 2
R) between the left- and right-moving conformal weights

of a lattice is always independent of the deformation parameters, as shown in (C.8). Therefore,
one may calculate it at the fermionic point where the representation (4.4) in terms of ϑ -functions
is available. In this case one may further decompose the lattice part of the “dangerous” sector
(3.29) in terms of SO(2) × SO(16) characters:

(O2V̄2 + V2Ō2) × (O16V̄16 + C16V̄16).

The two lattices are factorized and one may calculate the (partial) difference in the conformal
weights of the lowest lying states independently:

O2V̄2: (�L − �R)(1,1) = −1

2
, V2Ō2: (�L − �R)(1,1) = +1

2
,

O16V̄16: (�L − �R)(8,8) = −1

2
, C16V̄16: (�L − �R)(8,8) = +1

2
.

This implies that the difference in the conformal weights for each of the two lattices separately
is

|�L − �R| ≡
∣∣∣∣12(P 2

L − P 2
R

)∣∣∣∣= 1

2
, (4.33)

independently of the deformations. For Type II theories, where the lowest possible weight is
(− 1

2 ) for both the left- and the right-moving NS-vacuum, this forces the left- or right-moving
sector to be at least massless and, thus, guarantees the absence of physical tachyons from the
spectrum for any deformation that preserves the factorization (4.1).

Explicitly, the mass of the lowest OŌ states is given by

m2
OŌ

= 1
(

1 − R0

)2

+ m2
(8,8) − 1

, (4.34)

2 2R0 2
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where m2
(8,8) is the (8,8)-lattice contribution:

m2
(8,8) ≡ 1

2

(
P 2

L,(8,8) + P 2
R,(8,8)

)
� |�L − �R|(8,8). (4.35)

In view of (4.33), m2
(8,8) � 1

2 for any deformation and, thus, the physical states in the OŌ-sector
are at least massless.

We conclude this section by describing some simple deformation limits. Assuming the form
(4.4) for the Γ(8,8) lattice at the fermionic point, we obtain the following.

• In the limit of infinite radius R0 → ∞, corresponding to zero temperature, the left-moving
O and C sectors become infinitely massive and decouple from the spectrum, whereas
the fermionic states S8V̄24 become massless and one recovers the supersymmetric (4,0)

Type IIB Hybrid model.
• In the zero radius limit R0 → 0, the left-moving O and S sectors decouple, while the

fermionic states that become massless are now C8V̄24. One, therefore, recovers the super-
symmetric (4,0) Type IIA Hybrid model.

• At the self dual radius R0 → 1/
√

2 one obtains extra massless states, which is the signal of
enhanced gauge symmetry. As previously discussed, this is the enhanced [SU(2)L ×U(1)R]
gauge symmetry which originates from the worldsheet [SU(2)L]k=2 × U(1)R current alge-
bra.

• Another interesting case is the limit in which the (8,8) lattice asymptotically decouples
from the right-moving R-symmetry charges, at zero temperature. This limit asymptotically
restores the 4 right-moving supersymmetries. The relevant modulus corresponds to the su-
persymmetry breaking scale M .

• Deforming the (8,8) lattice along the radial directions that are orthogonal to the M-modulus,
one obtains new non-compact dimensions in the decompactification limit. In these limits,
new stable vacua may be obtained in d � 1 spacetime dimensions, where supersymmetry
is either (asymptotically) present or spontaneously broken in the presence of thermal and
“gravito-magnetic” fluxes.

5. Tachyon-free MSDS orbifold models in two dimensions

In this section we present a second class of tachyon-free Type II MSDS theories, constructed
as Z2 ×Z2 orbifolds of the maximally symmetric MSDS models. The possible Z

N
2 orbifolds pre-

serving the MSDS structure were classified in [10]. Here we will be interested in orbifolds of the
internal ĉ = 8 compact CFT that realizes a chiral (anti-chiral) MSDS algebra in both the holomor-
phic and antiholomorphic sectors. Initially, the target space will be taken to be a 2-dimensional
Euclidean or Minkowski background. The choice of the time direction will determine the inter-
pretation of the model along the lines described in the previous sections. The desired vacuum
should have the property that all extra massless states become massive as one deforms away
from the extended symmetry point. Essentially, the orbifolds project out the dangerous mod-
uli that lead to tachyonic instabilities in the maximally symmetric models. Extended symmetry
points are associated to an affine Lie algebra, whose Weyl reflections give rise to the various
T -dualities of the theory. As a result, one expects the masses of extra physical states in these
stable vacua to be invariant under the duality group with a minimum at the self-dual point, when
variations of the VEVs of the various moduli are considered.
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In this section we will combine Z2-orbifold shifts and twists [33] in order to construct MSDS
vacua stable under all possible deformations of the remaining (fluctuating) moduli. Both cold and
thermal tachyon-free vacua can be constructed. We first discuss the construction of the models
and comment on their stability under marginal deformations. Then we discuss various defor-
mation limits, including their (continuous) connection with higher-dimensional supersymmetric
vacua and, in particular, with conventional four-dimensional superstring vacua.

5.1. Tachyon-free MSDS orbifold models: General setup

We now consider Z2 × Z
′
2 asymmetric orbifold twists of the maximally symmetric Type II

MSDS model acting on four of the internal coordinates as follows:

XI
L(z) → (−)gXI

L(z),

for the left-moving internal bosons and

XI
R(z̄) → (−)g+g′

XI
R(z̄),

for the right-moving ones, with g,g′ ∈ {0,1} and for I = 5,6,7,8. Furthermore, we introduce
independent asymmetric Z

(1)
2 × Z

(2)
2 shifts on all 8 internal coordinates as follows:

XI
L(z) → XI

L(z) + πG1, for I = 1,2,3,4,

XI
R(z̄) → XI

R(z̄) + πG2, for I = 1,2,3,4,

XJ
L(z) → XJ

L(z) + πG2, for I = 5,6,7,8,

XJ
R(z̄) → XJ

R(z̄) + πG1, for I = 5,6,7,8.

The full modular invariant partition function of the model is given by

ZTwisted = 1

24η12η̄12

∑
h,g,h′,g′

∑
a,b

(−)a+bθ
[ a

b

]2
θ
[ a+h

b+g

]
θ
[ a−h

b−g

]
×
∑
ā,b̄

(−)ā+b̄ θ̄
[

ā

b̄

]2
θ̄
[ ā+h+h′

b̄+g+g′
]
θ̄
[ ā−h−h′

b̄−g−g′
]
Γ(8,8)

[ a,ā,h,h′
b,b̄,g,g′

]
, (5.1)

where the twisted and shifted Γ(8,8) lattice is factorized into a shifted Γ
(1)
(4,4) lattice and a

shifted/twisted Γ
(2)
(4,4) lattice:

Γ(8,8)

[ a,ā,h,h′
b,b̄,g,g′

]= 1

22

∑
Hi,Gi

Γ
(1)
(4,4)

[ a,ā; H1,H2

b,b̄; G1,G2

]× Γ
(2)
(4,4)

[ a,ā; H1,H2

b,b̄; G1,G2

∣∣ h,h′
g,g′

]
. (5.2)

Written at the MSDS point, the shifted lattice can be written in terms of free fermion characters

Γ
(1)
(4,4)

[ a,ā; H1,H2

b,b̄; G1,G2

]= θ
[ a+H1

b+G1

]2
θ
[ a−H1

b−G1

]2 × θ̄
[ ā+H2

b̄+G2

]2
θ̄
[ ā−H2

b̄−G2

]2
. (5.3)

Similarly, the asymmetrically twisted (4,4)-lattice reads

Γ
(2)
(4,4)

[ a,ā; H1,H2

b,b̄; G1,G2

∣∣ h,h′
g,g′

]= θ
[ a+H2+h

b+G2+g

]2
θ
[ a−H2

b−G2

]2 × θ̄
[ ā+H1+h+h′

b̄+G1+g+g′
]2

θ̄
[ ā−H1

b̄−G1

]2
(−)h

′g′
. (5.4)

Its non-vanishing components are collected below:
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Γ
(2)
(4,4)

[ a,ā; H1,H2

b,b̄; G1,G2

∣∣ h,h′
g,g′

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
[ a+H2

b+G2

]4
θ̄
[ ā+H1

b̄+G1

]4
, for (h, g) = (h′, g′) = (0,0),

θ
[ a+H2

b+G2

]4( 2η̄3

θ̄
[ 1−h′
1−g′

] )2
, for

{
(h, g) = (0,0), (h′, g′) �= (0,0) and
(H1,G1) = (ā, b̄) or (ā + h′, b̄ + g′),

∣∣ 2η3

θ
[ 1−h
1−g

] ∣∣4, for

⎧⎨⎩ (h, g) �= (0,0), (h′, g′) = (0,0) and
(H1,G1) = (ā, b̄) or (ā + h, b̄ + g) and
(H2,G2) = (a, b) or (a + h,b + g),

( 2η3

θ
[ 1−h
1−g

] )2
θ̄
[ ā+H1

b̄+G1

]4
, for

⎧⎨⎩ (h, g) �= (0,0), (h′, g′) �= (0,0),

(h, g) = (h′, g′) and
(H2,G2) = (a, b) or (a + h,b + g),

( 2η3·2η̄3

θ
[ 1−h
1−g

]
θ̄
[ 1−h−h′
1−g−g′

] )2
, for

⎧⎪⎨⎪⎩
(h, g) �= (0,0), (h′, g′) �= (0,0),

(h, g) �= (h′, g′) and
(H1,G1) = (ā, b̄) or (ā + h + h′, b̄ + g + g′) and
(H2,G2) = (a, b) or (a + h,b + g).

(5.5)

The model satisfies the conditions for MSDS structure discussed in [10]. The partition function
at the MSDS point in moduli space is given by

ZTwisted(τ, τ̄ ) = 208 = constant. (5.6)

5.2. Deformations and stability

We now address the problem of stability under marginal deformations of the current–current
type. First, the asymmetric nature of the Z

′
2 orbifold projects out all moduli associated to the

X5,6,7,8-directions. Indeed, under the general action of the Z2 × Z
′
2 orbifold, the marginal oper-

ators transform as:

Jp(z) × J̄ q (z̄)
Z2×Z

′
2−→ +Jp(z) × J̄ q (z̄),

J p(z) × J̄ J (z̄)
Z2×Z

′
2−→ (−)g+g′

Jp(z) × J̄ J (z̄),

J I (z) × J̄ q (z̄)
Z2×Z

′
2−→ (−)gJ I (z) × J̄ q (z̄),

J I (z) × J̄ J (z̄)
Z2×Z

′
2−→ (−)g

′
J I (z) × J̄ J (z̄),

where p,q = 1,2,3,4 and I, J = 5,6,7,8. This has important consequences for the stability of
the model. The only marginal operators that are invariant under the orbifold and which can, thus,
be used to perturb the sigma model are those associated entirely with the shifted Γ

(1)
(4,4) lattice.

The moduli space of the theory is then reduced to

SO(8,8)

SO(8) × SO(8)

Z2×Z
′
2−→ SO(4,4)

SO(4) × SO(4)
. (5.7)

Note that the special asymmetric structure of the orbifold twist projects out all moduli associ-
ated to the twisted Γ

(2)
(4,4)

-lattice and, as a result, drastically reduces the rank of the space of
propagating moduli. In what follows we show the absence of physical tachyons for any marginal
deformation in the moduli space of the orbifolded theory. For this purpose, the following discus-
sion will be restricted entirely to the NS–NS sector, where a = ā = 0.
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Let us first recall the well-known fact that tachyonic states cannot appear in the twisted sectors.
Indeed, consider the twisted sector corresponding to h = 1 (the analogous argument holds for h′).
The non-vanishing contribution of the fermions in the R-symmetry lattice is at least θ [0

1]2 ∼ q1/4,

whereas the twisted Γ
(2)
(4,4) lattice (twisted bosons) contributes (at least chirally) (

2η3

θ [ 0
1±1

]
)2 ∼ q1/4.

Therefore, the twisted spectrum is always at least chirally (or anti-chirally) massless and, thus,
no tachyonic excitations can appear in these sectors.

We now concentrate our attention on the untwisted NS–NS sector a = ā = h = h′ = 0, cou-
pling to the OŌ fermion characters. We will show that the twisted Γ

(2)
(4,4)

lattice in this sector is
always at least chirally (anti-chirally) massless, and that the spectrum is free of tachyonic modes,
for any deformation of the shifted Γ

(1)
(4,4) lattice. The twisted lattice has no (untwisted) moduli as

a result of the asymmetric action of the Z
′
2-orbifold, as discussed above. It is straightforward to

see from (5.4) that only the unshifted states H1 = H2 = 0 are in danger11 of becoming tachyonic.
Indeed, any one of the Hi -shifts would “excite” the spinorial representation of SO(4) × SO(4),
which is always (at least) chirally massless. To illustrate the statement, taking H2 = 1 would
imply that the non-vanishing contribution has weight:

θ
[ 1

b+G2+g

]2
θ
[ 1

b+G2

]2 ∼ q1/2 + O(q). (5.8)

This is also easy to see by noticing that the H2-shifted internal bosons X5,6,7,8(z) appear in the
spectrum as excitations of the affine primary (spin-)field:

e
i
2 (±X5±X6±X7±X8), (5.9)

whose conformal weight for Z2-shifts is (1/2,0). It therefore suffices to check the “unshifted”
sector H1 = H2 = 0. The twisted lattice (5.4) in this sector reads:

Γ
(2)
(4,4)

[ 0,0; 0,0
b,b̄; G1,G2

∣∣ 0,0
g,g′

]= θ
[ 0

b+G2+g

]2
θ
[ 0

b−G2

]2 × θ̄
[ 0

b̄+G1+g+g′
]2

θ̄
[ 0

b̄−G1

]2
. (5.10)

Let us now discuss the GGSO projections that need to be carried out. In our formalism, they
correspond to summations over b, b̄,G1,G2, g, g′. Once the projections are imposed, the above
sector of the twisted Γ

(2)
(4,4) lattice will be organized in terms of [SO(4) × SO(4)]L × [SO(4) ×

SO(4)]R characters in the vectorial V4 (V̄4) and vacuum O4 (Ō4) representations, whereas
the shifted Γ

(1)
(4,4) lattice will be decomposed into the V8 (V̄8) and O8 (Ō8) characters of

SO(8)L × SO(8)R . Of course, for the shifted Γ
(1)
(4,4) lattice this decomposition is only valid at

the MSDS point where the enhanced symmetry contains an SO(8)L × SO(8)R factor of global
(classification) symmetry.

The subsector of interest is clearly the one in which the left- and right-moving R-symmetry
lattices come only with characters in the vacuum O,Ō representation. In this case, the full Γ(8,8)

lattice has odd b and b̄ and even g, g′ GGSO-projections. However, as it is straightforward to see
from (5.10), imposing an odd projection on the characters of the twisted Γ

(2)
(4,4) lattice necessarily

leads to chiral (or anti-chiral) vectorial representations V4 (or V̄4) appearing in the spectrum, and
the sector is at least (anti-)chirally massless. On the other hand, if we impose even projections on

11 When we refer to states as being in danger of becoming tachyonic, we imply that they crucially depend on the mass

contribution from the (deformable) shifted Γ
(1)
(4,4)

lattice in order to maintain a positive squared mass. As a result, these
states could become tachyonic for some deformation of the shifted lattice.
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the characters of the twisted lattice, the overall odd projections force an odd GGSO-projection
on the shifted lattice. This subsector is expressed as follows:

1

η8η̄8
Γ(8,8)|subsector

→
(

1

24η4η̄4

∑
b,b̄,G1,G2

(−)b+b̄Γ
(1)
(4,4)

[ 0,0; 0,0
b,b̄; G1,G2

])× (O4O4 × Ō4Ō4), (5.11)

where the projections now act only upon the shifted Γ
(1)
(4,4)

lattice, whereas the twisted Γ
(2)
(4,4)

lattice only contributes with the vacuum representation in this subsector of interest. It is now
straightforward to see that this subsector, which is the only one dangerous of producing tachy-
onic modes, is in fact projected out by the b, b̄,G1,G2 GGSO projections. Indeed, it suffices to
consider the above projection at the (undeformed) MSDS point of moduli space where the simple
expression (5.3) for the shifted lattice is available. Expressed in terms of SO(2n) characters, the
only state surviving the odd b, b̄-projections would be:

(V8 × V̄8) × (O4O4 × Ō4Ō4). (5.12)

However, this state violates the even G1,G2-projection correlating the parity of the two lattices
and is projected out of the spectrum. Since all other sectors are at least (anti-)chirally massless,
any deformation of the shifted Γ

(1)
(4,4) lattice in SO(4,4)

SO(4)×SO(4)
will not produce tachyonic states and

the vacuum is, from that point of view, stable.

5.3. Connection with supersymmetric vacua

We now discuss various deformation limits and establish the continuous connection of the
tachyon-free MSDS vacua with higher-dimensional vacua of Type II superstring theory. It will
be convenient to shift the summation variables H1 → H1 − ā, G1 → G1 − b̄ and H2 → H2 − a,
G2 → G2 − b, since they are defined modulo 2. With this shifting, the twisted Γ(4,4) lattice does
not depend on the R-symmetry charges. The shifted lattice at the fermionic point can be written
in the Lagrangian form as:

Γ
(1)
(4,4) =

∑
mi,ni∈Z

e
− π

τ2
(G+B)ij (mi+τni )(mj +τ̄ nj )+iπ T

, (5.13)

where G and B were defined in (A.7), and the phase coupling T is:

T = m1n1 + (a + ā + H2)m
1 + (b + b̄ + G2)n

1 + (H1 + H2)m
4

+ (G1 + G2)n
4 + (G1 + G2)(H1 + H2). (5.14)

It is easy to see that the modulus that couples to the total fermion number FL + FR is G11,
corresponding to the current–current deformation G11∂X1∂̄X1. Of course, this is expressed in
the transformed basis of Appendix A, where the lattice frame was repeatedly rotated. In terms of
the initial bosonization coordinates X

1,2,3,4
(0)

, the deformation lies along the “diagonal” direction:(
∂X1

(0) + ∂X2
(0) + ∂X3

(0) + ∂X4
(0)

)(
∂̄X1

(0) + ∂̄X2
(0) + ∂̄X3

(0) + ∂̄X4
(0)

)
. (5.15)

We now discuss certain interesting points regarding marginal deformations.
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• Taking the infinite G11 → ∞ limit, the X1 cycle of T 4 decompactifies and the coupling to
the R-symmetry charges is washed out. The resulting model is a supersymmetric N = 4
Type II model in 2 + 1 spacetime dimensions. The new non-compact dimension is inter-
preted as an emergent spatial-dimension as it can be generated dynamically. Furthermore,
additional Z2-orbifold twists could further reduce the supersymmetry down to N = 2 or
N = 1, without altering the tachyon-free structure of the theory.

• In the thermal version of the models, Euclidean time is identified with the compact toroidal
cycle coupled to the total fermion number as in the Hybrid models of the previous section.
Note that the difference between the two cases, however, is that the present breaking of su-
persymmetry is by no means an arbitrary one. It is, rather, a very specific breaking dictated
by the underlying MSDS algebra. Within the thermal interpretation, the moduli associated to
the X1 direction are interpreted as the thermodynamical parameters of the theory. The “in-
finite radius” limit G11 → ∞ corresponds to zero temperature and yields a supersymmetric
vacuum with 2 non-compact spatial dimensions.

• Other interesting limits involve the radial deformations along the 3 remaining spatial di-
rections, orthogonal to the X1 direction. In the infinite (decompactification) limit new non-
compact dimensions emerge continuously. In particular, one may obtain three-dimensional
vacua, with supersymmetry spontaneously broken by thermal or gravito-magnetic fluxes
or, in the infinite limit, four-dimensional superstring vacua (superstring vacua with 3 non-
compact spatial dimensions at zero temperature, in the thermal version).

6. Conclusions

In this paper we studied current–current type marginal deformations of MSDS vacua [9] and
their orbifolds [10]. We explicitly identified the relevant half-shifted Γ(8,8)[ a,ā

b,b̄
] lattices, which

exhibit the maximally symmetric MSDS models as special points in the moduli space of Type II
and Heterotic compactifications to two dimensions. It was shown that MSDS models admit at
most two independent moduli, which participate in the supersymmetry breaking via couplings
to the left- and right-moving spacetime fermion numbers FL,FR , respectively. We showed the
existence of marginal deformations interpolating between MSDS vacua (and their orbifolds) and
conventional four-dimensional string models where supersymmetry is spontaneously broken by
geometrical fluxes. This establishes a correspondence between the MSDS space of vacua and
four-dimensional gauged supergravities of the “no-scale” type [34].

We would like to stress here, that this correspondence is of fundamental importance within the
string cosmological framework, where the MSDS vacua, free of tachyons and other pathological
instabilities, become natural candidates to describe the very early stringy, “non-geometric era” of
the Universe. This is because the correspondence permits one to connect, at least adiabatically,
the initially two-dimensional MSDS vacua with semi-realistic four-dimensional string vacua,
where spacetime supersymmetry is spontaneously broken at late cosmological times via thermal
or supersymmetry breaking moduli. Specifically, the thermal interpretation of various Euclidean
versions of these exotic constructions was analysed in detail and the finite-temperature descrip-
tion was presented in terms of thermal ensembles, further deformed by discrete gravito-magnetic
fluxes.

Furthermore, the stability of MSDS vacua under arbitrary marginal deformations was exten-
sively analysed, allowing the identification of deformation directions along which tachyonic
instabilities are generically encountered. An important result of this paper is that such “dan-
gerous” deformation moduli can be projected out by introducing asymmetric Z2 × Z2 orbifolds.
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Such tachyon-free orbifolds are not only compatible with the MSDS structure but also reduce
the number of (spontaneously broken) supersymmetries restored at late cosmological times. The
necessary stability conditions, under arbitrary deformations of the dynamical moduli, were de-
termined for general (untwisted) thermal Type II MSDS vacua. Once met, the corresponding
ensemble is equivalent to the right-moving spacetime fermion index and the model is character-
ized by thermal duality symmetry.

A very special class of Hybrid MSDS models, sharing similar properties as those described in
the above correspondence, were constructed in this work. These two-dimensional Type II models
are characterized by an asymmetry in the left- and right- moving sectors of the theory. Namely,
the left-moving side enjoys conventional supersymmetry (which can be regarded as a special
case of MSDS symmetry), whereas the right-moving side realizes the MSDS structure. These
models were shown to admit a natural implementation of temperature, where the left-moving
supersymmetries are spontaneously broken by thermal effects. The thermal partition function of
the models was analysed and was found to be finite for all values of the temperature, and to be
characterized by thermal duality symmetry. The two dual phases were shown to be connected via
a first-order phase transition at the MSDS point. In the limit where some of the spatial dimensions
decompactify, the phase transition becomes milder.

Obviously, the adiabatic connection outlined above is not sufficient to define the complete
cosmological evolution from the early MSDS era towards the late time Universe, described by
N = 1 spontaneously broken supersymmetry. A dynamical realization of the adiabatic evolution
is still lacking, especially during the non-geometrical era close to the extended symmetry (MSDS)
points, where conventional effective field-theoretic techniques are still absent. Once some of the
moduli become sufficiently large, so that a conventional spacetime description emerges, the sub-
sequent evolution in the intermediate cosmological regime can be unambiguously described, as
shown in Ref. [3,36] (see also [35] for related earlier work). There, an attractor mechanism was
discovered dominating the late-time cosmological evolution, depending only on the particular
structure of supersymmetry breaking induced by the fluxes. The fact that the initial MSDS struc-
ture unambiguously determines these fluxes, strongly indicates that we are in a good direction.
Furthermore, the qualitative infrared behavior of string-induced effective gauged supergravity
suggests that we are describing a “non-singular string evolutionary scenario” connecting particle
physics and cosmology.

The above attractive scenario crucially depends on the spontaneous dynamical exit from the
early non-geometrical MSDS phase. In this respect, it is possible to construct (at least Heterotic)
MSDS vacua whose massless spectra are characterized by an abundance of fermionic (rather than
bosonic) degrees of freedom nF > nB [37]. There are strong indications that this configuration
induces a quantum instability (at the one-loop level) that could trigger the desired cosmological
evolution, providing the spontaneous exit from the early MSDS era. The details of this investiga-
tion will be considered elsewhere [37].

Finally, let us conclude by restating that the problem of initial MSDS-vacuum selection is a
highly non-trivial one, because of constraints arising from the observed particle phenomenol-
ogy at late cosmological times. Demanding that late-time four-dimensional semi-realistic N = 1
string vacua, with phenomenologically viable gauge interactions (such as those based on an
SO(10) GUT-gauge group [38]) are in adiabatic correspondence with the initial MSDS vacua,
impose severe restrictions on the initial vacuum space. A study of these restrictions is expected
to significantly reduce the number of initial candidate vacua and is currently under investigation
[26].
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Appendix A. The half-shifted (8,8)-lattice

In this appendix we give a detailed derivation of the form of the half-shifted (8,8) lattice of
Eq. (3.7). We begin with the lattice in the form of Eq. (3.6), and split the lattice directions into
two groups of four, indicated by primed and unprimed quantum numbers, respectively, and define

vi ≡ mi + τni,

wi ≡ m′
i + τn′

i ,

V ≡ M + τN, W ≡ M ′ + τN ′,
ξ ≡ g + τh, (A.1)

where i = 1,2,3,4, and

M ≡
4∑

i=1

miN ≡
4∑

i=1

ni,

M ′ ≡
4∑

i=1

m′
iN

′ ≡
4∑

i=1

n′
i . (A.2)

In terms of these variables, the (8,8) lattice (3.6) factorizes into two (4,4) sub-lattices. The
exponent of the first (4,4) sub-lattice is given by

− π

8τ2

(|V + 2ξ |2 + |V − 2v3 − 2v4|2 + |V − 2v2 − 2v3|2 + |V − 2v2 − 2v4|2
)

+ iπ

[
MN +

(
a + h

2

)
M +

(
b − g

2

)
N + M(n2 + n3 + n4) − N(m2 + m3 + m4)

+ (m2n3 − m3n2) + (m2 + m3)n4 − m4(n2 + n3)

]
, (A.3)

which is the representation of the Cartan matrix of E8. The phase couplings mInJ with I < J

correspond to the parallelized torsion BIJ . A similar expression holds for the (4,4) lattice
spanned by the primed quantum numbers.

We next shift the summation variables in the following order: V → V − 2ξ , v3 → v3 − v4 − ξ

and v2 → v2 − v3 + v4, and the lattice exponent becomes

− π

8τ2

(|V |2 + |V − 2v3|2 + |V − 2v2|2 + | − V + 2ξ + 4v4 + 2v2 − 2v3|2
)

(A.4)

along with the phase

iπ

[
MN +

(
a − h

2

)
M +

(
b + g

2

)
N − M(n2 + n4) + (m2 + m4)N

+ (m2 + m3)h + (n2 + n3)g − (m2n3 − m3n2)

]
. (A.5)
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Performing a double Poisson re-summation on v4 (see Appendix B), which takes the correspond-
ing torus to its dual picture (m̃4 ≡ n4, ñ4 ≡ −m4), allows for the (h, g)-dependence to appear
only in the phase:

− π

8τ2

(|V |2 + |V − 2v2|2 + |V − 2v3|2 + |V + 2ṽ4 − 2v2 + 2v3|2
)

+ iπ

[
MN + āM + b̄N + (a + ā)m̃4 + (b + b̄)ñ4 + 1

2
Mñ4 − 1

2
m̃4N

− (Mn2 − m2N) − (m2n3 − m3n2) − (m2ñ4 − m̃4n2) + (m3ñ4 − m̃4n3)

]
. (A.6)

From this expression of the (4,4) sub-lattice, we obtain the metric G and parallelized torsion B:

G =

⎛⎜⎜⎜⎝
1
2 − 1

2 0 1
4

− 1
2 1 − 1

2 − 1
2

0 − 1
2 1 1

2
1
4 − 1

2
1
2

1
2

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
0 − 1

2 0 1
4

1
2 0 − 1

2 − 1
2

0 1
2 0 1

2

− 1
4

1
2 − 1

2 0

⎞⎟⎟⎟⎠ . (A.7)

Notice that the sum E ≡ G + B is an upper triangular matrix, as required for the holomorphic
factorization of the theory and the presence of a Kac–Moody algebra of extended symmetry.

Adding the contribution of the remaining (4,4)-sub-lattice, we obtain the full (8,8) lattice:

− π

8τ2

(|V |2 + |V − 2v2|2 + |V − 2v3|2 + |V + 2ṽ4 − 2v2 + 2v3|2

+ |W |2 + |W − 2w2|2 + |W − 2w3|2 + |W + 2w̃4 − 2w2 + 2w3|2
)

+ iπ

[
MN + M ′N ′ + ā

(
M + M ′)+ b̄

(
N + N ′)+ (a + ā)

(
m̃4 + m̃′

4

)
+ (b + b̄)

(
ñ4 + ñ′

4

)+ 1

2
Mñ4 − 1

2
m̃4N − (Mn2 − m2N) − (m2n3 − m3n2)

− (m2ñ4 − m̃4n2) + (m3ñ4 − m̃4n3) + 1

2
M ′ñ′

4 − 1

2
m̃′

4N
′ − (

M ′n′
2 − m′

2N
′)

− (
m′

2n
′
3 − m′

3n
′
2

)− (
m′

2ñ
′
4 − m̃′

4n
′
2

)+ (
m′

3ñ
′
4 − m̃′

4n
′
3

)]
. (A.8)

The full metric and torsion are 8 × 8 symmetric and antisymmetric matrices expressed in block-
diagonal form in terms of the 4 × 4 matrices G and B of (A.7):

G =
(

G 0

0 G

)
, B =

(
B 0

0 B

)
. (A.9)

The source of supersymmetry breaking in the Type II models is the coupling to the momentum
lattice of the two independent R-symmetry charges: the left- and right-moving spacetime fermion
numbers FL and FR . It is then clear that one needs to infinitely deform at most two independent
“radial” moduli in order to recover a maximally supersymmetric vacuum which, in fact, will be
four-dimensional. To identify these, we cast the coupling in left/right symmetric form [4], by
shifting (V ,W) → (V − ṽ4,W − w̃4):

− π

8τ2

(|V − ṽ4|2 + |V − ṽ4 − 2v2|2 + |V − ṽ4 − 2v3|2 + |V + ṽ4 − 2v2 + 2v3|2

× |W − w̃4|2 + |W − w̃4 − 2w2|2 + |W − w̃4 − 2w3|2 + |W + w̃4 − 2w2 + 2w3|2
)
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+ iπ
(
MN + M ′N ′ + m̃4ñ4 + m̃′

4ñ
′
4 + a

(
m̃4 + m̃′

4

)+ b
(
ñ4 + ñ′

4

)+ ā
(
M + M ′)

+ b̄
(
N + N ′)+ 2BIJ mInJ

)
. (A.10)

By further shifting V → V − W , w̃4 → w̃4 − ṽ4, we can completely isolate the R-symmetry
couplings to within a (2,2) sub-lattice:

− π

8τ2

(|V − W − ṽ4|2 + |V − W − ṽ4 − 2v2|2 + |V − W − ṽ4 − 2v3|2

+ |V − W + ṽ4 − 2v2 + 2v3|2|W − w̃4 + ṽ4|2 + |W − w̃4 + ṽ4 − 2w2|2
+ |W − w̃4 + ṽ4 − 2w3|2 + |W + w̃4 − ṽ4 − 2w2 + 2w3|2

)
+ iπ

(
MN + āM + b̄N + m̃′

4ñ
′
4 + am̃′

4 + bñ′
4 + 2BIJ mInJ

)
. (A.11)

As in [4], one cycle of this (2,2) lattice is “thermally” coupled to FL and the other is “thermally”
coupled to FR .

Finally, it is convenient to use the reshuffled basis mT = (M, m̃′
4|m2,m3, m̃4,M

′,m′
2,m

′
3),

nT = (N, ñ′
4|n2, n3, ñ4,N

′, n′
2, n

′
3). In the new basis the metric GIJ and antisymmetric tensor

BIJ are:

GIJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 − 1

2 0 − 1
4 − 1

2 0 0
0 1

2 0 0 − 1
2 − 1

4 0 1
2

− 1
2 0 1 − 1

2 0 1
2 0 0

0 0 − 1
2 1 1

2 0 0 0
− 1

4 − 1
2 0 1

2 1 1
2 0 − 1

2
− 1

2 − 1
4

1
2 0 1

2 1 − 1
2 0

0 0 0 0 0 − 1
2 1 − 1

2
0 1

2 0 0 − 1
2 0 − 1

2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.12)

BIJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
2 0 − 1

4
1
2 0 0

0 0 0 0 1
2

1
4 0 − 1

2

1
2 0 0 − 1

2 0 1
2 0 0

0 0 1
2 0 1

2 0 0 0
1
4 − 1

2 0 − 1
2 0 − 1

2 0 − 1
2

− 1
2 − 1

4 − 1
2 0 1

2 0 − 1
2 0

0 0 0 0 0 1
2 0 − 1

2
0 1

2 0 0 1
2 0 1

2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.13)

with I = 1,2, . . . ,8.

Appendix B. Double Poisson resummation

A useful formula that takes a lattice direction to its dual representation is obtained by double
Poisson re-summation over both winding numbers m,n (defined in the Lagrangian representa-
tion):

R√
τ2

∑
e
− πR2

τ2
|m+ g

2 +τ(n+ h
2 )|2+iπ(mA+nB)
m,n∈Z



I. Florakis et al. / Nuclear Physics B 834 (2010) 273–315 309
= 1/R√
τ2

∑
m,n∈Z

e
− π(1/R)2

τ2
|n− B

2 −τ(m− A
2 )|2+iπ[h(n− B

2 )+g(m− A
2 )]

. (B.1)

It is a special case of the general duality transformations of the O(d,d;Z)-duality group.

Appendix C. Mass spectrum generalities

We briefly state the lattice contribution to the mass spectrum of the deformed vacua discussed
in the text. The (8,8)-lattices under consideration can be written in Lagrangian form as:

Γ(8,8) = detG

(
√

τ2 )8

∑
mi,ni∈Z

e
− π

τ2
(G+B)IJ (mI +τnI )(mJ +τ̄ nJ )+iπ T

, (C.1)

where T is a phase coupling that may, in general, break supersymmetry. We parametrize it as
follows:

T =
∑
I

CI (mInI + aImI + bInI ) + DImI + EInI . (C.2)

The form of this coupling is dictated by modular invariance. Here, aI and bI are generalized
spin structures that may break supersymmetry. The constants DI and EI can be seen as column
vectors in the space of (mI ,nI ), whereas CI can be taken to be diagonal matrices. In the latter
notation, the phase can be rewritten as:

T = mT (Cn + D + Ca) + bT Cn + ET n. (C.3)

The last two terms do not participate in the Poisson resummation with respect to mI . However,
they are important for the implementation of GGSO-projections.12 Let us define the vector:

S ≡ Cn + D + Ca, (C.4)

which shifts all momenta by half a unit. A standard Poisson re-summation on the momenta mI

will give us the usual mass formulae for toroidal compactifications shifted by S:

P 2
L = 1

2

(
m − 1

2
S + (B + G)n

)T

G−1
(

m − 1

2
S + (B + G)n

)
, (C.5)

P 2
R = 1

2

(
m − 1

2
S + (B − G)n

)T

G−1
(

m − 1

2
S + (B − G)n

)
(C.6)

where the lattice is now written in its Hamiltonian form:

Γ(8,8) =
∑

PL,PR∈Λ

q
1
2 P 2

L q̄
1
2 P 2

R . (C.7)

The level-matching contribution of the lattice then reads:

1

2

(
P 2

L − P 2
R

)= mT n − 1

2
ST n, (C.8)

and is, of course, independent of the deformation parameters.

12 In general, DI and EI may depend on the spin structures aI , bI .
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Appendix D. Conditions for tachyon finiteness: A technical point

In this appendix we demonstrate that the conditions for tachyon finiteness derived in Sec-
tion 3.4 are equivalent to the factorization of a Γ(1,1)-lattice coupled chirally to the left- (or
right-) moving R-symmetry charges. This result, in turn, implies that the only13 tachyon-free
thermal vacua are the ones where the temperature cycle S1 is completely factorized from the com-
pact manifold. This is essentially equivalent to showing that, by a discrete O(8,Z)×O(8,Z) ∈
O(8,8;Z)-rotation, the stability conditions (3.41) can always be brought to the form Ĝ1

0 =
2B̂01 = ±1 and Ĝk

0 = B̂0k = 0, for k = 2, . . . ,7.

We begin by parametrizing the d-dimensional dual vielbein (e∗,a)μ ≡ (E
T,−1
(d)

)aμ in the (dual)

lattice frame in terms of a unique14 upper-triangular (d × d)-square matrix:

(
E

T,−1
(d)

)
μν

=
(

R−1
0 −R−1

0 ĜI
0

0 (E
−1,T
(d−1))IJ

)
, (D.1)

where the greek indices μ = 0,1, . . . , d − 1 run over the entire d-dimensional space, while the
latin indices span the (d − 1)-dimensional subspace I = 1, . . . , d − 1. We also used the (d − 1)-
dimensional dual upper-triangular vielbein matrix (E

T,−1
(d−1))IJ , parametrizing the lattice metric

of the (d − 1)-dimensional subspace spanned by XI , I = 1, . . . , d − 1.
Note that the first μ = 0 row of this matrix contains the ĜI

0-quantities, identified as chemical
potentials in the case of the (8,8)-lattice (Section 3.4):(

e∗,a=0)I = −R0Ĝ
I
0.

In the Lagrangian representation of the lattice, the exponent can be expressed in terms of the
lower-triangular vielbein matrix (ea)μ ≡ (E(d))aμ as:

− π

τ2
Gμν

(
m̃μ + τnμ

)(
m̃ν + τ̄ nν

)= − π

τ2

d−1∑
μ=0

∣∣∣∣∣
μ∑

ν=0

(E(d))μνv
ν

∣∣∣∣∣
2

, (D.2)

where we use the notation vμ ≡ m̃μ +τnμ, introduced in Appendix A. Using standard blockwise
inversion, one may express the vielbein matrix as:

(E(d))μν =
(

R0 0

(E(d−1))IKĜK
0 (E(d−1))IJ

)
, (D.3)

so that the lattice exponent has the simple decomposition:

− π

τ2

(
R2

0

∣∣v0
∣∣2 +

d−1∑
I=1

∣∣∣∣∣
I∑

J=1

(E(d−1))IJ

(
vJ + ĜJ

0 v0)∣∣∣∣∣
2)

. (D.4)

Now, the condition ĜI
0 ∈ Z permits the change of lattice basis (discrete gauge transformation):

13 Again, as in the main body of the paper, we implicitly assume that all moduli are propagating fields, except for the
ones associated to the Euclidean time direction, which acquire a thermodynamical interpretation. In the case where some
of the moduli are twisted by orbifolds, as in Section 5, these conditions are no longer applicable in this simplified form.
14 The uniqueness of the decomposition of a symmetric, positive-definite matrix into the product of an upper- and
lower-triangular matrix is known in linear algebra as the Cholesky theorem.
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vI → v′I = vI + ĜI
0v

0, (D.5)

after which, the exponent of the lattice takes a factorized form:

− π

τ2

(
R2

0

∣∣v0
∣∣2 +

d−1∑
I=1

∣∣∣∣∣
I∑

J=1

(E(d−1))IJ v′J
∣∣∣∣∣
2)

. (D.6)

We must also ensure that the same factorization takes place in the phase. Working in the “tem-
perature representation” (3.8), the phase:

iπ

[
m̃0(a + ā) + n0(b + b̄) + m̃1n1 + m̃1ā + n1b̄ + 2

d∑
μ<ν

Bμν

(
m̃μnν − m̃νnμ

)]
, (D.7)

transforms under the change of basis (D.5). The antisymmetric tensor part transforms as:

2
d∑

μ<ν

Bμν

(
m̃μnν − m̃νnμ

)
= 2

d∑
J=1

B̂0J

(
m̃0n′J − m̃′J n0)+ 2

d∑
I<J

BIJ

(
m̃′ I n′J − m̃′J n′I ). (D.8)

The condition B̂0k ∈ Z for k = 2, . . . , d , eliminates the associated B̂0k-term from the phase
above, while the B̂01 ∈ Z + 1

2 -condition ensures that the B̂01-term cancels the extra phase contri-
bution of the right-moving R-symmetry coupling. As a result, the phase factorizes as well:

iπ

[(
m̃0n0 + m̃0a + n0b

)+ (
m̃′1n′1 + m̃′1ā + n′1b̄

)+ 2
d∑

I<J

BIJ

(
m̃′ I n′J − m̃′J n′I )].

(D.9)

The conditions (3.41), therefore, imply that the original (d, d)-lattice factors out a Γ(1,1)[ a
b ]-

lattice coupled only to FL:

Γ(d,d)

[ a,ā

b,b̄

]→ Γ(1,1)

[ a
b

]
(R0) · Γ(d−1,d−1)

[
ā

b̄

]
(GIJ ,BIJ ), (D.10)

which is, indeed, equivalent to the complete factorization of the temperature cycle S1 from the
remaining compact manifold.

Appendix E. Duality

It is important to note the presence of an R0 → 1/(2R0) duality as a consequence of the
properties of the Γ(1,1)[ab] shifted lattice. The duality can be seen as follows: changing m̃0, n0
variables into m̃0 = 2M + g, n0 = 2N + h, where M,N ∈ Z and h,g ∈ {0,1}, the lattice takes
the form of a (M + g

2 , n+ h
2 ) half-shifted lattice in the presence of a discrete Wilson line co-cycle

ag + bh + hg:

Γ
[ a

b

]
(R0) = R0√

τ2

∑
M,N∈Z

∑
h,g=0,1

e
− π(2R0)2

τ2
|(M+ g

2 )+τ(N+ h
2 )|2+iπ[ag+bh+hg]

. (E.1)

Next, perform a double-Poisson re-summation as in the appendix:
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1

22

∑
h,g=0,1

1/R0√
τ2

∑
M,N∈Z

e
− π

τ2
( 1

2R0
)2|N+τM|2+iπ[MN+Ma+Nb+(M+b+g)(N+h+a)]

(−)ab. (E.2)

Next, one performs another change of variables into N = 2K +G, M = 2L+H , where the sum-
mations are again over K,L ∈ Z and H,G = 0,1. The result looks very similar to the original
form:

1

2

∑
h,g,H,G=0,1

(2R0)
−1

√
τ2

×
∑

K,L∈Z

e
− π(1/R0)2

τ2
|(K+ G

2 )+τ(L+ H
2 )|2+iπ[aG+bH+HG+(G+b+g)(H+h+a)]

(−)ab. (E.3)

The summation over g acts as a projector:∑
h=0,1

1

2

∑
g=0,1

(−)g(H+h+a)(−)(G+b)(H+h+a).

The g-projection imposes H + h + a = even, whereas the h-summation resets H to be uncon-
strained H = 0,1. The result is:

R′
0√
τ2

∑
K,L∈Z

∑
H,G

e
− πR′

0
2

τ2
|(2K+G)+τ(2L+H)|2+iπ[(2K+G)a+(2L+H)b+(2K+G)(2L+H)+ab]

≡ (−)abΓ(1,1)

[ a
b

](
R′

0

)
,

which is exactly the original lattice at the dual radius R′
0 = (2R0)

−1 and (−)ab is the phase that
interchanges the S and C representations.
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