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A b s t r a c t - - I n  this paper, we solve the disturbance-rejection and tracking problem for linear mul- 
tivariable discrete-time systems with time-delayed controlled inputs. A set of necessary and sufficient 
conditions under which the proposed problem is controllable is defined. Also, the nilpotency proper- 
ties of such systems is established and used as the basis of a comprehensive design procedure. This 
general procedure is illustrated by designing a time-optimal disturbance rejection tracking system for 
a stirred-tank with time-delayed control inputs. (~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper, the design of time-optimal disturbance-rejection tracking controllers for discrete- 
time systems with multiple delays is investigated. The problem of disturbance-rejection has 
been solved by Porter [1] with a polynomial command input vector in the absence of time-delay. 
Schmitendorf studied the robustness of tracking systems [2] and Wang and Daley [3] and Tao, 
Joshi and Ma [4] studied the tracking control of systems with actuator failures. The results of 
Porter are extended to establish controllability and nilpotency properties of disturbance-rejection 
tracking systems in the presence of time-delays. By employing the method of augmentation of the 
state vector and applying the results of Klein and Ramirez [5] and Modarres and Karbassi [6], an 
explicit expression for the feedback matrix for time-optimal control of such systems is obtained. 
For the sake of simplicity, only the tracking of step command vectors and the rejection of constant 
disturbances is considered. Clearly, the design technique can be readily extended to the tracking 
of a polynomial input vector in the manner of Porter. The well known problem of stirred-tank, 
presented by Kwakernaak and Sivan [7] is chosen as an illustrative example and time-optimal 
disturbance rejection of the stirred-tank with input time-delays is simulated for design purposes. 
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The problem of tracking is to design a controller such that the resulting closed-loop system is 
asymptotically stable and the controlled output tracks a given reference signal in the presence 
of any initial condition and external disturbances. The purpose of this paper is to present a 
comprehensive procedure for the design of time-optimal disturbance-rejection tracking systems 
for a class of linear multivariable discrete-time systems with time-delayed inputs. 

Such tracking systems consist of a controllable system governed in the discrete-time domain 
by state and output equations of the respective forms, 

x0 (k + 1) = Aoxo (k) + ~ Bju (k - j) + Eod (k) 
1=0 

( i) 

and 

(k) = C0x0 (k) ,  (2) 

together with a controller which is required to cause the output vector y(k) of the system to track 
the piecewise constant command input vector v(k) whilst simultaneously rejecting the piecewise 

constant disturbance vector d(k) in the sense that 

y (k) = V (k) (k > kmin) , (3) 

where kmin is to be as small as possible. 

In  equations (1)-(3), xo(k) e ~n is the state vector and u(k - j )  e ~m, j = O, 1,...  ,r, are 
the control input vectors delayed by j sampling intervals of duration T, y(k) E ~P is the output 
vector, d(k) E ~q is the disturbance vector and v(k) c ~P is a command input vector. The 
matrices A0, Bj (j = 0, 1 , . . . ,  r), E0 are known matrices of appropriate sizes which are functions 
of the sampling period T but Co is in general independent of T. 

2. T H E O R Y  

The first stage in the design of the controller involves the introduction of a vector comparator 
and a discrete-time vector integrator in order to generate the n × 1 vector z(k) defined by the 

equation, 

z (k + 1) = z (k) + T (v (k) - y (k)) .  (4) 

Then, it is evident from equations (1), (2), and (4) that the open-loop tracking system is 
governed by a state equation of the form, 

x (k + 1) = Ax (k) + Bu (k) + Dv (k) + Ed (k), (5) 

where 

x ( k )  = 

• o (k) 
u (k - ~) 

u ( k - r  + l) 

(k  - 2) 

u (k  - 1) 

z (k) 

(6) 
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is an (n + r m  4-p) x 1 augmented state vector [5] obtained by storing the r previous m x 1 control 
input vectors u(k  - j )  E ~m,  j = O, 1 , . . . ,  r, together with the p x 1 integrator state vector z(k), 

A = 

Ao B,. B,.-1 . . .  B1 0 

o o . . .  o o 

0 0 0 . . .  0 0 

o o o . . . 1 t o o  

0 0 0 . . .  0 0 

- T C o  0 0 . . .  0 Iv 

(7) 

is an (n + r m  4- p) x (n + r m  4- p) augmented open-loop system matrix, 

B = [ B o  o o . . .  o Im 0] s (S) 

is an (n 4- r m  4- p) x m augmented input matrix, 

D - - [ O  0 0 . . .  0 0 Tip]  T (9) 

is an (n + r m  + p) x p augmented command input matrix, and 

E = [ E o  0 0 . . .  0 0 O] T (10) 

is an (n + r m  + p) x q augmented disturbance matrix. 
The second stage in the design of the controller involves the introduction of a feedback controller 

in order to generate the present m x 1 control input vector u(k)  according to the control-law 
equation, 

u ( k ) = K o x o ( k ) + K r u ( k - r ) 4 - . " 4 - K 2 u ( k - 2 ) + K l u ( k - 1 ) 4 - K z ( k ) = F x ( k ) ,  (11) 

where/Co is a m x n matrix, the Kj  (j = 0 ,1 , . . . ,  r) are m x m matrices, and K is a m x p matrix. 
It is evident from equations (5) and (11) that the closed-loop tracking system is governed by a 
state equation of the form, 

x (k + 1) = (A + B F )  x (k) + D V  (k) + E d  (k ) ,  (i2) 

and therefore, that the closed-loop system will behave so that (3) is satisfied with 

kmin ~- ft. (13) 

In case the feedback controller is designed so that the closed-loop system matrix (A 4- B F )  is 
nilpotent with minimal index o. 

However, it is obviously possible to synthesize a controller of this kind if and only if the open- 
loop tracking system governed by equation (5) is controllable. The controllability and nilpotency 
properties of this system are accordingly established in the following sequence of theorems. 

THEOREM 1. In the case of sys tems  for which 

j=O 

(i4) 
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is a controllable pair, then the pair ( A, B) is controllabIe if and only if 

rank -- 

A o - ~  B~ Br -1  "'" B1 Bo- 

O - I r a  Im . . .  0 0 

0 0 - I r a  . . .  0 0 

: : : : : : 

0 0 0 . - .  I ~  0 

0 0 0 .. - I ~  I ~  

- T ~  0 0 . . .  0 0 

= n + r m  + p. (15) 

PROOF. I t  is evident that ,  in the case of systems for which ( .4~, /~)  is a controllable pair, the 
pair 

0 

is controllable if and only if 

rank [ "~  - In+~m 
[ - ¢ r  

where 
'Ao B~ 

0 0 

0 0 
2 ~  r = : : 

0 0 

0 0 

is an (n + rm) x (n + rm) matrix,  

/~r = [Bo 0 

is an (n + rm) x m matrix,  and 

~=[TCo o 

BO ~] = n  + rm +p,  (17) 

Br -1  "'" B I "  

Im . . .  0 

0 . . .  0 
: : : 

0 . . .  Im 

0 . . .  0 

08)  

0 . . .  o 0] T (20) 

is a p x (n+rm)  matrix.  However, (-4r,/~r) is a controllable pair if and only if (14) is a controllable 
pair since clearly~ 

r - - J  
r a n k [ s I , ~ + ~ m - i i ~ ,  / ~ ] = r a n k  s I ,~ -Ao ,  ~ A o  B~ + r m .  (21) 

.~=0 .1 

Thus, the theorem is established in view of the obvious equivalence of conditions (15) and (17). 

THEOREM 2. In the case o£ systems for which (A, B) is a controlIable pair, then {~1 + r, ~2 + 
r , . . . ,  g,~ + r} is the set o£ controllability indices associated with the pair, 

PROOF. Clearly, there are at most (gj + r)  linearly independent  vectors in the chain, 

by, Abj, A % j ,  A 3 b j ,  . . . ,  (23) 

o . . .  o I ,~ ]  T (19) 



Time-Optimal Control 1419 

generated by the j t h  column bj of the (n + rm + p) x m matrix B. But, there axe exactly 
(n + r m  + p) linearly independent vectors in the entire set formed from the m chains of the 
form (23) associated with the m columns of B because the pair (A, B) is controllable [1]. Thus, 
the theorem is established since, therefore, it follows that there are exactly (a s + r) linearly 
independent vectors generated by bj (j -- 1, 2 , . . . ,  m) in the entire set of (n + r m  + p) vectors: 
for only then, is it the case that 

m m 

j = l  j = l  
(24)  

where 
m 

Z ~J = n + p, (25) 
j = l  

in view of the controllability of the pair (22). 

THEOREM 3. In the case of  systems for which (A, B) is a controllable pair, there exists a feedback 

control law such that tracking occurs in the sense that 

y ( k ) = v ( k )  (k > ~max+r),  (26) 

in the presence of the piecewise constant disturbance d(k) where I~ma x iS the largest member of 
the set of controllability indices ( ~1, ~2 . . . .  , ~,,~} associated with the controllable pair, 

['00]) • 

PROOF. It follows from Theorem 2 that the vector companion form [1] of the pair (A, B) is such 
that the largest block matrix in the canonical form of A is of dimension (nm~× + r) X (nm~× + r) 
which is, therefore, the minimal achievable index of nilpotency of the closed-loop matrix (A+BF) .  

Thus, the theorem is established since the algorithm of Kaxbassi and Tehrani [8] can clearly be 
used to synthesize a control law of the form (11), such that 

(A + B F )  ~ = 0, (28) 

where 
a = ~max + r, (29) 

thus, establishing the tracking condition (26). 

REMARKS. It is evident that Theorem 1 establishes the conditions under which the pair (A, B) 
in the state equation (5) of the open-loop tracking system is controllable. In the case of systems 
for which the pair (A, B) is controllable, Theorem 2 indicates that  each member of the set 
of controllability indices {n l , a2 , . . . ,  am} associated with the nondelayed system is increased 
by r because of the presence of the time-delayed control inputs. Thus, it is finally evident that 
Theorem 3 establishes that tracking is achievable in the case of controllable time-delayed systems 
in a minimum time of (area× + r) sampling intervals where ~max is the largest member of the set 

. . ,  

3. I L L U S T R A T I V E  E X A M P L E  

These general results can be conveniently illustrated by designing a time-optimal disturbance- 
rejection tracking system for a stirred-tank with time-delayed control inputs under computer 
control. The stirred-tank [7] is fed with two incoming flows whose incremental flow rates #l(t) 
and #2(t) are controlled by valves commanded by a process control computer but is subject 
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to an unmeasurable disturbance because of fluid loss due to evaporation which is equivalent to 
an incremental flow rate u(t) of the outgoing flow. The desired values of the incremental flow 
rate r h (t) and the incremental concentration ~2 (t) of the outgoing flow from the stirred-tank are 
the command inputs to the tracking system. The two feeds are mixed before flowing through a 
single inlet pipe into the stirred-tank thus introducing a transport delay r. The deviations (1 (t) 
and ~2(t) of the volume and the concentration of fluid from the steady-state tank conditions are 
convenient state variables for a linearised representation of the plant. It is assumed that the tank 
is well stirred so that ~2(t) = ~72(t). 

In case the steady state conditions correspond to incoming flow rates of Flo and F20, incoming 
feed concentrations of c10 and c20, a tank fluid volume of vo, a tank fluid concentration of Co, 
and an outgoing flow rate of Fo, then the stirred-tank is governed by linearised continuous-time 
state and output equations of the respective forms [7], 

and 

So(t)  = 

where 

 o0] i 0101 E0 0 2vo u(t) '1- Cl0 - co ¢20 co 
o Fo Xo(t) + 

- -  ~j'-'0- V0 V0 

y(t) = 2 0 xo(t) ,  
1 

u(t -  ~-) + [ o1] d(t) (30) 

(31) 

xo(t) = [~l(t) ~2(t)]7-, (32) 

y(t) = [r/l(t) r/2(t)] -r , (33) 

u(t)-=[#l(t) #2(t)] T, (34) 

and 

d(t) --~(t). (35) 

The discrete-time state and output equations of the unaugmented computer-controlled plant 
corresponding to equations (1) and (2) in which the valve settings are constant on the intervals 
[kT, (k + 1)T] (k = 0 ,1 ,2 , . . .  ) accordingly assume the respective forms, 

x ° ( k + l ) = [  0"95120.90480 ] x o ( k ) + [ 4 . 8 0 7 0 4 " 8 7 7 0 ] u ( k )  

0 0 u(k - 1) + d(k) 
+ -1.1895 3.5890 

(36) 

and 

When the sampling interval T and the transport delay r are both 5, and [7] 

(37) 

Flo -- 0.015 m3/s, 

F2o -- 0.005 m3/s, 

c10 = i kmol/m a, 

(38a) 

(38b) 

(38c) 
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Figure 1. Rate of outgoing flow from tank. 
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Figure 3. Commanded rate of incoming flow to tank from feed 1. 
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Figure 4. Commanded rate of incoming flow to tank from feed 2. 
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c20 = 2 kmol/m 3, (38d) 

v0 = 1 m a, (38e) 

co = 1.25 kmol/m 3, (38f) 

and 

F0 = 0.020 m3/s. (38g) 

The discrete-time state equation corresponding to equation (4) for the 2 x 1 integrator state 
vector z(k) assumes the form, 

z (k + 1) = z (k) + 5 (v (k) - y (k)) ,  (39) 

and therefore, it is evident from Theorem 1 that the augmented plant is controllable and from 
Theorems 2 and 3 that tracking is achievable in three sampling intervals since { ~1 ~2 } = 
{ 2 2 } and r = 1. The algorithm of Karbassi and Bell [9] indicates that 

u ( k )  = 
"-0.3001 0.5724 ] [-0.47621.42871u(k_l  ) 
-0.1000 -0.5724 xo(k)+ [ 0.4762 -1.4287 

3.0757 -0.04201 

+ 1.0251 0.0420 z(k) 

(40) 

is an appropriate time-optimal control law of the form (11). 
Extensive simulation studies demonstrate that the resulting tracking system exhibits excellent 

finite settling-time characteristics as exemplified by the rejection of the step disturbance, 

d(t) = v(t) = 0.0001 (t > 0), (41) 

whilst simultaneously tracking the step command input, 

v(t) = [wl(t) w2(t)] T = [0.0002 0.0005] T (t > 0), (42) 

where the units of v(t) and wl(t) and of w2(t) are respectively m3/s and kmol/m 3. In this 
case, tracking is completely achieved in 15s as shown in Figures 1 and 2 and the largest value 
of #l(t) and #2(t) are only O.O022ma/s and O.O021m3/s, respectively, as shown in Figures 3 
and 4. Excellent tracking and disturbance-rejection behavior is also found to occur when the 
unmeasurable disturbances arise from fluctuations in the incoming feed concentrations or from 
fluctuations in the incoming flow rates due to pressure fluctuations before the valves. 

4. C O N C L U S I O N  

The design of time-optimal disturbance-rejection tracking systems for linear multivariable 
discrete-time plants with time-delayed control inputs has been considered. The controllabil- 
ity and nilpotency properties of such systems have been established and used as the basis of 
a comprehensive design procedure. The general procedure has been illustrated by designing a 
time-optimal disturbance-rejection tracking system for a stirred-tank with time-delayed control 
inputs under computer control. This design procedure can be readily extended so as to embrace 
plants with inaccessible states too. 



1424 S.M. KARBASSI 

R E F E R E N C E S  

1. B. Porter, Design of tunable set-point tracking controllers for linear multivariable plants, Int. J. Control 35, 
1107-1115, (1982). 

2. W.E. Schmitendorf, Methods for obtaining robust tracking control laws, Automatica 25, 675-677, (1987). 
3. H. Wang and S. Daley, Actuator fault diagnosis: an adaptive observer-based technique, IEEE Trans. Aut. 

Cont. AC-41, 1073-1078, (1996). 
4. G. Tao, S.M. Joshi and X. Ma, Adaptive state feedback and tracking control of systems with actuator failures, 

IEEE Trans. Aut. Cont. AC-46, 78-957 (2001). 
5. E.J. Klein and W.F. Ramirez~ State controllability and optimal regulator control of time-delayed systems, 

Int. J. Control 74, 281-289, (2001). 
6. S.M.S. Modarres and S.M. Karbassi, Design of time-optimal regulators for discrete-time systems with input 

time-delay, Maths. Cont. Signals and Systems (to appear). 
7. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, p. 449, Wiley, New York, (1972). 
8. S.M. Karbassi and H.A. Tehrani, Parameterizations of the state feedback controllers for linear multivariable 

systems, Computers Math. Applic. 44 (8/9), 1057-1065, (2002). 
9. S.M. Karbassi and D.J. Bell, Parametric time-optimal control of linear discrete-time systems by state feed- 

back~ Part 1: Regular Kronecker invariants, Int. J. Control 57, 817-830, (1993). 


