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Planning is designing the behavior of some entity that acts, either an individual, a 
group, or an organization. The output is some kind of blueprint for behavior, which 
we call a plan. People make a lot of plans, sometimes for themselves, sometimes for 
other people, sometimes for machines. The question that defines the topic of this issue 
is: How can we automate planning? The question is interesting for the usual reasons. 
First, automating planning might shed light on how people and other animals design 
their behavior. Second, complex planning problems might be solved better with the aid 
of computers. 

There are a wide variety of planning problems, differentiated by the types of their 
inputs and outputs. Typically, planning problems get more and more difficult as more 
flexible inputs are allowed and fewer constraints on the output are required. Typically, 
these problems get very difficult very quickly, as some of the papers in this issue will 
attest. The classical approach to planning problems is to start from specifications of the 
effects of actions, then try to infer a string of actions that bring about a particular state 
of affairs. In recent years many variations on this theme have been explored. 

One important special case of planning is scheduling, for which the input to the 
behavior designer is a set of actions that must be carried out, and the output is an 
order in which to carry them out. Some orderings are better than others, because each 
of the given tasks will require a set of resources with a finite capacity. For example, 
in a transportation scheduling problem, we might be given a set of objects to move to 
various places, and a set of trucks to carry them in, and the desired output might be a 
schedule of movements that allows every truck to be as full as possible and idle as little 
as possible. 
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In this introduction, our main purpose is to survey the field of planning and scheduling, 
place our collection of papers in that context, and then to point out the field’s weak and 

strong spots and some directions for the future. We’ll start with a historical overview. 

Throughout this introduction, we use this type face when referring to papers in this 

special issue of Artijicial Intelligence. 

1. Development of the field: classical AI planning 

When planning research started in the 1960s it was mainly seen as an application of 

two standard AI techniques: search and theorem proving. In fact, at the outset there was 
little distinction made between search and planning, and confusion about the relation 
between the two persists to this day. 

Search was seen as crucial to AI from the beginning, and is seen as crucial today. 

Many problems can be solved by applying a sequence of transformations starting from 
an initial null solution. At each step, there is usually a choice of which transformation 
to apply, most of which won’t eventually lead to a complete solution, so it’s necessary 
to keep track of partial solution states and return-or backtrack-to them when previous 
choices don’t work out. 

The “transformations” we have referred to are usually called operators. Our descrip- 

tion of a search problem has been quite abstract; there is no commitment that operators 
correspond to actions an agent might take. For example, the problem of map coloring 
can be expressed as: 

Initial state: A coloring that assigns no color to any country on the map. 

Operators: Assign one more country a color that is not assigned to any adjacent country 

in the coloring so far. 
Goal-state description: A coloring that colors every country. 

However, if you think of operators as agent actions, then you get search problems 
such as this: 

Initial state: An initial situation, e.g., “There are three blocks on a table, one red, one 

white, and one blue”. 
Operators: Actions a robot might take, e.g., “Move a block from the table to the top 

of another block”. 
Goal-state description: A desired situation, e.g., “There is a blue block on a white 

block and under a red block”. 

The very first planning system can be considered to be GPS, the General Problem 
Solver [ 16,371, because it could in principle solve any search problem, and some of 
the problems it solved looked like planning problems. An example (from 1431) is this: 
You are given a four-gallen jug and a three-gallon jug, and an unlimited supply of water. 
Find a sequence of fillings and pourings that get two gallons into the big jug. 

Unfortunately, the possibility of expressing simple planning problems this way has 
led to the idea that this is the only way to think about planning problems, when in 
reality this approach to planning is applicable to only a small subset of these problems. 
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If we adopt this approach, then we: 
0 assume plans are sequences of actions, 
l take the purpose of a plan to bring about a situation satisfying a description, 

l treat the outcome of every action as perfectly predictable. 

These assumptions essentially define what is now called classical planning. The as- 

sumptions have been questioned a lot recently, but actually they are quite reasonable in 

various applications. For example, planning a route through a city can be thought of 
as finding a series of blocks to traverse. It is not in fact perfectly predictable that the 

attempt to traverse a block will get you from one intersection to the next, but in most 

cases it is reasonable to treat it as predictable and worry about untraversable blocks 

when they are encountered. 
The other strand that led through classical planning was the reduction of planning 

to theorem proving. In 1960, John McCarthy proposed the use of predicate-calculus 

reasoning to guide intelligent behavior, and the first big realization of this idea was 
Green’s [23] program QA3, which solved a variety of simple problems expressed in 

predicate calculus. Among them was a set of planning problems, expressed in terms of 

McCarthy’s situation calculus in which axioms about what actions led to what situations 
were used to deduce action sequences. These axioms embodied assumptions equivalent 
to those above. Unfortunately, just turning a theorem prover loose on the axioms led to 

a search problem that was hard to solve. Theorem provers look for chains of inferences 

that lead to conclusions, and these chains are only indirectly related to the chains of 
action we are interested in. 

This problem with theorem proving was balanced by the advantage that expressing 
problems in terms of situation-calculus axioms was simple and clean. By contrast, GPS 

had the flaw that in expressing a new class of problems, it required the represention 

of not just the legal operators, but also of domain-dependent procedures for matching 
search states, and an “operator-difference table” that recorded which operators were 

relevant to reducing the differences found by the matcher. Creating all these procedures 
and tables was tedious, and often seemed to amount to giving the program too many 
hints. 

In 1969, the AI group at Stanford Research Institute in Palo Alto, California, found 

a way to get the best of both approaches while avoiding many of the weaknesses. This 
group [ 191 devised a version of GPS that worked directly from action definitions stated 
in a form similar to that of the situation calculus. Each action was defined in terms of 

its preconditions and effects, stated as predicate-calculus atomic formulas. The action 

definition was used to edit descriptions of situation instead of deducing properties of 
situations. An action’s effects were of two varieties, additions and deletions. Generating 
a new situation description from an old one was a matter of deleting all the atomic 
formulas in the delete list and adding all the ones in the add list. All other formulas in 
the old situation description were carried over. 

This problem solver was called STRIPS (“STanford Research Institute Problem 
Solver”). It was able to solve bigger problems than previous approaches, and was 
used as the planner for the Shakey robot [ 181. STRIPS remains influential, especially 
for the ideas it embodies about representation and temporal change. 

STRIPS retains GPS’s idea of keeping the search space close to situation space. Start- 
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ing in the mid-seventies, the field of planning shifted away from that idea, initially for the 
purpose of improving search control, and later to allow for the solution of nonclassical 
planning problems. Although several programs tried variations on the STRIPS approach 
and/or on the details of how the space could be searched (see, for example the work 
of [ 46,51,541), the first major break came with the programs NOAH [47] and Nonlin 
[ 55 I. These programs explored a search space of partial plans, collections of plan steps 
that achieved some of the goals in the problem statement. Each plan step referred to 
a single action that would be part of the final plan. Actions have preconditions, which 
would become new subgoals to be achieved. Taking a step in the search space meant 
committing to achieving a subgoal with a new or existing plan step. 

In these planners, the plan steps did not have to be kept in a linear order, and thus 
they have often been referred to as “nonlinear”. More recently, it became clear that the 
term was somewhat misleading, and thus nowadays they are more likely to be called 
partial-order planners. In retrospect, the key idea in NOAH and Nonlin is not the partial 
order, but the idea of searching through a space of partial plans. (Recently, a number of 
papers have been published that attempt to formalize the search through partial plans, 
including [ 4,17,60] .> 

One important research strand in all this was the idea of goal regression. Given a 
goal that must be achieved at a point in a partial plan, what must be true before a 
previous action for it to become true at the right point? For example, suppose a partial 
plan contains the steps Drive truck 3 to Smithville, and Put load I5 into warehouse A 
in Smithville, and suppose that a precondition of the latter step is that load 15 be in 
Smithville. Regressing the precondition across the truck-driving step yields the new goal: 
Either load 15 is on truck 3 or it is already in Smithville, which must be true before the 
truck is driven to Smithville if that step is to result in load 15 being in the right place 
at the right time. This idea was first articulated in the field of program analysis and 
synthesis [ 141. It was applied to planning by Waldinger [ 571 and Warren [ 581 in the 
mid-seventies, and formalized by Pednault in the eighties [ 381. Their systems searched 
a space of partial plans that are totally ordered throughout. However, total ordering does 
not prevent the insertion of new steps (e.g., Put load 15 onto truck 3) between existing 
steps. 

By coincidence, systems that made regression explicit were treated with more theoret- 
ical rigor than the “nonlinear” systems. As often happens in AI, theoretical rigor seemed 
inversely proportional to practical applicability. Descendants of Nonlin and NOAH, es- 
pecially Wilkins’ SIPE system [ 591, were attempts to build software systems that could 
be applied to real problems. So they included lots of tools for handling user interaction, 
knowledge representation, inference, and so on. It’s usually not possible to say anything 
formal about a system with this degree of “programmability”. Meanwhile, the work 
in regression produced a series of theorems about search techniques, such as proofs 
that these techniques are complete, that is, capable in principle of solving all classical- 
planning problems [ 30,35,44]. However, these theorems did not seem to have much 
bearing on the behavior of practical systems. 

The disillusionment with the gap between theory and practice led to the exploration of 
a wide variety of new approaches that were aimed at extending the classical framework. 
In addition, an influential paper by Chapman [9] was published that attempted to 
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synthesize a number of existing approaches, and to show that classical planning problems 
could be undecidable in many situations. These factors led to the exploration of a number 
of new approaches that attempted to go beyond the classical framework. Techniques 

included the use of memory-based approaches [ 3,251, parallel searches [26], time 

maps [ 121, simulation and debugging [ 501, localization [ 311 and plan reuse [ 291. 
Other work attempted to repudiate the classical approach, and to work without explicit 
goal-based planning (see Section 2). People in the field talked about the “death of the 

classical planning framework”, and the planning community flourished as exciting new 

approaches were debated. 
In the late nineteen-eighties, while these hundred flowers were blooming, there was 

a sudden resurgence of interest in classical planning when McAllester and Rosenblitt 

published their paper [34] proving the completeness of a partial-order planning algo- 
rithm. (They gave no name to their algorithm, but it is now called SNLP.) The paper 

had a big impact because it was unusually elegant. It can be viewed as the extraction of 

the essence of partial-order planners like SIPE and Nonlin, or at least the part of those 

systems that manages the partial orders. McAllester and Rosenblitt’s algorithm uses only 

a basic STRIPS-style representation of actions. The output of the algorithm is a totally 
ordered sequence of actions, but it produces them by working through a search space 
of partial plans, each represented as a collection of four things: 

l a partially ordered set of steps; 

l a set of precondition goals associated with each step, which were conditions to be 

made true before that step in every totally ordered completion of the partial plan; 
l a set of causal links that commit one step to achieving a precondition of another; 

l a set of separation Eink-s that commit a step to be ordered so that it cannot interfere 
with a causal link. 

The operators in this search space add steps and links until a plan is reached that has 

no unachieved preconditions. 

The algorithm is clear, and it’s provably complete. It’s even “systematic”, which means 
that the same partial plan is not encountered in two different parts of the search space, ’ 
although there has been controversy over whether that makes any difference in practice. 

(See Kambhampati, Knoblock and Yang.) But the tremendous influence of the paper 
has been due mainly to its clarity, which enabled other researchers to build on it in 

a way that hadn’t happened with earlier, more complex systems. The SNLP algorithm 
could be implemented easily, and it was simple (if not easy) to extend it in various 

directions, relaxing the assumption that actions’ effects were context-independent [ 401 

or the assumption that effects are instantaneous [ 391; or allowing the choice of action 
to depend on run-time tests [ 411, allowing the planner to start from a nonempty base 
plan, and adding actions with probabilistic effects (Kushmerick, Hanks and Weld). 

Unfortunately, there is as yet little evidence that all these theoretical results will have 
practical impact. Even the basic SNLP algorithm is exponential in practice. This is not 
surprising, given the results of Erol, Nau and Subrahmanian that almost all variants 

of the classical planning problem are NP-complete or worse. The result stems from the 
ease with which arbitrary deductive problems can be mapped into planning problems. 

’ “SNLP” stands for “Systematic NonLinear Planner”. 
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The initial hopes that a general-purpose planner might yet be more specialized, and 
hence more efficient, than a general-purpose theorem prover now seem naive. 

2. Dynamic world planning 

As mentioned earlier, during the mid nineteen-eighties, many researchers were becom- 
ing dissatisfied with the classical assumptions about planning. One often-cited argument 
was that the field had originated in attempts to find plans for robots, but, in fact, robots 

do not satisfy the classical assumptions at all well. Because robots must survive in 

environments that are changing and imperfectly known, they must constantly sense their 
surroundings and react to what they perceive. In these conditions, it doesn’t seem rea- 

sonable to model behavior as a predictable sequence of actions. In fact, a whole new 

breed of robots that repudiated the notion of symbolic planning were being developed 

at MIT [ 81. In the mid-1980s, a number of approaches to planning in dynamically 

changing worlds were explored, and papers by Agre and Chapman [ 11, Georgeff and 
Lansky [ 221, Rosenschein and Kaelbling [ 281, Sanborn and Hendler [ 481, Schoppers 
[ 491, Firby [ 201 and others developed models of planning agents that could function 

in dynamically changing environments. Oversimplifying somewhat, one can look at all 

these approaches as attempting to create agents that could react by direct coupling of 
sensing (stimulus) to effecting (response). In most of this work the design was carried 
out by humans. The more complex the behaviors got, the harder it became to design 
them automatically. 

Around the same time, another aspect of dynamicity was also being explored. Clas- 

sically it had been assumed that a planner had as much time as it required to find a 
plan. There are circumstances in which taking too much time to plan will reduce the 
value of whatever plan is found. For example, if an industrial robot must make a plan 
to manipulate some objects that have just appeared on a moving conveyor belt, then the 
best plan in the world will be worthless if the objects have moved out of reach by the 

time it is constructed. Hence the problem arises of trying to find the optimal amount 

of time t to plan, before adopting the best plan found. This problem makes sense only 
if the planning algorithm can be stopped after any time interval and asked for the best 
plan it has discovered so far; and if its best plan changes fairly often. An algorithm 
with these properties is called an anytime algorithm [ 111. If these circumstances obtain, 

then the optimal planning time is the t that maximizes V(t) - C(t), where V(t) is the 
expected value of the plan generated after t and C(t) is the cost of delaying execution 
by t [ 7,451. The study of planning under such temporal constraints is sometimes called 

deliberation scheduling. 
A trend which has emerged more recently is the need to couple the strengths of 

classical planning (the ability to project into the future) with those of reacting (the 

ability to handle dynamicity and unexpected events). This has led to a variety of 
“multi-level” planning approaches, several of which have been shown to be useful 
with simulated and/or real robots [ 21,33,53]. This is an important avenue of current 

research, and we return to it in Section 5. 
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3. Special-purpose planners 

Another tack which has been proposed for dealing with the complexity of general- 

purpose planning is to specialize the domain still further, and to try to exploit restrictions 

that may arise. This can be taken to an extreme in “domain-specific” planning systems, 

which attempt in expert-systems-like fashion to solve particular planning problems in 
very particular domains. Such approaches may be extremely efficient, and even com- 
mercially useful, but tend to be somewhat brittle with respect to transitioning to other 

planning applications. However, several limited domain areas have been shown to cut 

across a number of important applications, and have thus become the focus of much 

recent planning work. 

One such special case is that of motion planning, the problem of finding a path 
from one point to another through a complex region in a metric space, typically of 

2 to 10 dimensions [32]. This problem may sound esoteric, but such high-dimension 

spaces occur routinely in robot planning, where there is one dimension per degree of 
freedom of the robot. It’s interesting to think about the relationship of this problem 

to classical planning. It obeys the classical assumptions (e.g., the assumption that the 
world is passive and perfectly known), but would be tricky to translate into STRIPS-style 

addlists and deletelists. The translation would be messy, and would probably entail an 

exponential blowup in the number of action-definition rules. There’s no reason to think 

that a classical planner would get far in solving the resulting problem. And, in fact, 

research on this problem has proceeded entirely independent of research on classical 
planning. 

A similar situation exists with respect to another research area that is of even more 
importance than robot planning, to wit, scheduling, which we defined at the beginning 
as finding a good order to perform a series of known tasks. Scheduling problems arise 

repeatedly in industry. Even slight improvements in the quality of schedules can save 
millions of dollars in wasted time. 

Scheduling problems come in many different forms. They differ in the ways that 

tasks seize or consume resources. For example, in job-shop problems a task will require 
a machine, which it releases at the end, while in transportation problems, fuel can be 
consumed at a rate independent of the rate at which it is replenished. Problems also 

differ in the kind of ordering constraints they allow for and they differ in how the free 
the scheduler is to permute steps (e.g., if each task must be executed in a different 
location, then permuting them changes the total travel time of the schedule). Because of 

all this variety, it is impossible to devise a single general-purpose scheduling algorithm 

that works well in all cases. Each problem must be approached on its own, and its 
solution almost always requires the use of heuristics. In short, it’s an excellent field for 
the application of tools from the AI toolkit. 

Scheduling and motion planning have one thing in common: they are intractable, but 

they are “less intractable” than the full planning problem. Motion planning is exponential 
in the dimensionality of the space being moved through [ 421. If you picture the space 

discretized into an n-dimensional grid of k cells in each dimension, then the intuition 
is that the number of grid cells to explore is k”. And, indeed, for even n = 3 the 
problem is computationally taxing. However, it is often reasonable to assume that IZ is 
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fixed, as it will be for a particular robot, and concentrate on finding ways of solving as 

many problems as possible as the shape of the traversable region is allowed to vary. In 

scheduling, the reasons for relative optimism are different. It is usually fairly easy to 

find a feasible schedule, that is, one that does not violate any ordering or resource-bound 
constraints. Then one can focus on ways to improve it. It is not necessary to get all the 

way to optimality in order for the effort to be worthwhile. 
As with motion planning, it would be a mistake to conclude anything about the 

relative importance of scheduling and planning from the ratio of the numbers of papers 
in this issue. Research has been going on in this area for decades, usually under the 

label “operations research”. Lamentably, this label has often kept the AI community 

from talking much to the OR community. The idea has grown up that there is an “AI 
approach” to problems that is different from the “OR approach”, or, for that matter, the 
“robot-motion-planning approach”. In practice, this kind of compartmentalization has 
ensured that people working in AI focus on problems defined at an unrealistic level of 

generality. 

4. What is in this issue 

This special issue of Art@ciaZ Zntelligence should make it clear how diverse the 

current field of AI planning is. Most current research directions are represented by at 
least one of the papers in this collection. In addition, we also see how each of the three 
main planning thrust areas discussed above are being explored in current work. 

Our definition of planning-as design of behavior-is intentionally broad. Even within 
the classical framework, there is room for disagreement about what a plan is. In this 

framework, the output of the planning process is a sequence of actions to perform, but 

the intermediate states of the process can be of many different sorts. In the partial-order- 
planning paradigm that we discussed in Section 1, planning is implemented as a search 
through a space of partially constrained plans. 

However, it has recently been realized that one of the biggest problems in planning 

is search control. As discussed in Section 1, planning researchers have developed some 
elegant theorems about the structure and completeness of search spaces. What we don’t 

have is ways of navigating through those spaces efficiently. It could be that researchers 
are discouraged by the mostly negative results that have come from complexity theory. 
The paper by EroI, Nau and Suhrahmanian shows that almost all classical planning 

problems are intractable. It is often argued that the inefficiency of planning can be con- 
trolled by making use of stored solutions to previous planning problems. This approach 
is called memory-based or case-based planning. But it’s hard to show formally that 
using old cases will help. In particular, the paper by Nehel and Koehler argues that 
memory-based planning is doomed because in the worst case a planner saves nothing 
by starting from a previous solution instead of from scratch. Additionally, the paper 
by Biickstriim proves that various planning action-definition formalisms are all equally 
expressive, and nothing is to be gained by using one instead of another. 

These results are all proven by finding polynomial-time reductions between problems. 
If you want a system that solves all planning problems of a certain class C, then you 
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have to come to grips with the fact that some IV-complete problem can be reduced to 
C, or engage in sustained denial. The latter seems to be the course that most researchers 
have chosen. It would be more interesting to try harder to find cases where C can be 
constrained to a subset that is empirically if not theoretically tractable. 

In order to judge whether progress is being made in this direction, we need to start 
measuring the performance of our planners more systematically. Two papers in our 
collection address this issue. The paper by Kambbampti, Knoblock and Yang takes 

an important step towards such an evaluation. They define a partial plan syntactically, 
as consisting of a graph of steps and other data structures. This allows them to carefully 

vary a family of partial-order planners along several dimensions, and to measure the 

impact on performance in various domains. This work ignores search control, and 

focuses instead on issues such as systematicity of the search space. The paper by Howe 
and Cohen presents the use of statistical analysis techniques for finding patterns in the 

behavior of failure-recovery modules that are called during plan execution. 
One problem with much work in formalizing partial-order planning is that it does not 

allow for a partial plan to be carried out; there are no execution semantics for any kind 

of plan but the kind that is produced in the end, a totally ordered set of steps. The only 
meaning given to a partial plan is the set of all total plans that could be derived from 
it by further planning decisions. The paper by Ginsberg begins to address that deficit, 

by proposing a new kind of partial plan, which is compatible with all action sequences 

that include it, except for a set of sequences that has “measure 0” in a sense that the 

paper defines formally. This may lead to a new kind of planner, and the paper makes a 
promising start in that direction. 

Yet another novel planning formalism is presented in the paper by Saffiotti, Konolige 
and Ruspini, which redefines the semantics of reactive plans in terms of a “fuzzy-style” 

multiple-valued logic. The semantics provides an alternative way of defining partial 

plans and their composition; a detailed study of the relationship between this approach 

and Ginsberg’s might be revealing. Saffiotti et al. provide a planning algorithm that 
uses classical backward-chaining techniques to build decidedly nonclassical plans. 

In the area of nonclassical planning, two papers are included that discuss issues 
involved in reactive behaviors and deliberation scheduling-Levinson and Dean, Kael- 

bling, Kirman and Nicholson. Both papers build on a behavior model due to Drummond 
and Bresina. [ 151 They start with a “default” plan executor that can make fast, local 
decisions about behavior based on the current world state. The planner improves the 

executor’s behavior by generating possible behavior traces in advance, in order to detect 

looming disasters and opportunities. This process of reasoning about future execution is 
called plan projection. The more time the planner has, the more traces it can project, thus 
contributing to the “anytime” property. Levinson presents a nondeterministic formalism 
for expressing behaviors, that can be used for both projection and execution. Dean et 
al. present an approach based on the theory of policy generation and evaluation. The 
term “policy” comes from the theory of Markov decision models, and refers to plans 
that consist of rules of the form world state-action, thereby specifying what action 
to take for each state an agent finds itself in. 

In the area of special-purpose planners, we present papers from two of the most 
important current areas: motion planning and scheduling. The paper by Lazanas and 
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Latombe studies the problem of moving a robot through a two-dimensional space with 
many known landmarks. As we said before, you may be tempted to conclude from the 
fact that this is the only paper in this issue on motion planning that it is a relatively 

unimportant and undeveloped branch of the field. In fact, it is a huge area, which has 

attracted considerably more attention than the general-purpose planning algorithms we 
have described above. The reason for the attention is that practical motion-planning 

algorithms exist, and further improvements are urgently needed for high-level robot 
control. But “AI people” don’t talk much to “motion-planning people”, and so they are 

underrepresented in this issue. 
Two papers in this issue are concerned with scheduling: Sadeb, Sycara and Xiong, 

which deals with finding feasible schedules, and Miyasbita and Sycara, which deals 
with improving schedules. Miyashita and Sycara use case-based learning techniques to 
improve performance in the search for optimal schedules. Sadeh, Sycara, and Xiong test 
backtracking heuristics that work particularly well for the sort of constraint-satisfaction 

problems that arise in finding feasible schedules. 

5. What is not in this issue: current and future directions 

One of the drawbacks of a special journal issue is that the papers, to be journal 

quality, don’t include the many experimental approaches to a field that are just starting 

to emerge-what’s in the journal will necessarily be several years behind what is being 
presented at workshops and conferences in the coming months. In this section, we want 

to briefly describe some of what we see as promising directions emerging from current 

work. (We apologize in advance for the fact that we cannot cite all relevant references 
in each of these areas) 

Transformational planning: Most theoretically elegant planning algorithms are based 
on the idea of plan rejnement, in which every step through the search space of 

candidate partial plans takes the planner from a more abstract partial plan to a more 
concrete one. That is, each step can add steps and constraints, but can’t remove or 

alter previous commitments. Of course, backtracking away from blind alleys in this 

space will require undoing past decisions, and it often takes a lot of backtracking to 
get from one plan in the space to another. It would seem that more general classes 

of plan transformations deserve some study. Practical planners such as SIPE [59] 
and O-Plan [lo] have allowed more general plan revisions, and there have been 
several other papers exploring the possibilities [ 6,25,50,61]. However, there is as 

yet nothing like the elegant theoretical framework of refinement planners. 
Planning analysis: Like many other parts of the field, planning research is further 

confused by the methodological muddle that haunts AI. Complexity analysis is giving 
way to empirical evaluation, but in a field as diverse as planning, it’s not clear where 
such research may go. The papers by Kambhampti, Knoblock and Yang and Howe 
and Cohen are promising first steps. The field is split as to what defines interesting 

planning problems, what approaches to them can be evaluated in what ways, and 
what analytic techniques (empirical and theoretical) are most appropriate for making 
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qualitative comparisons between planning approaches. Not only is this important 
for making scientific advances in this important field, but the external pressure for 
evaluation (from funding agents in particular) makes it clear that this area must be 

addressed. 
Case- and reuse-based approaches: Nebel and Koehler argue that case-based ap- 

proaches to planning have worse worst-case performance than planning from scratch. 
However, Miyasbita and Sycara present a case-based reasoner that works well for 

realistic scheduling problems. To add to the confusion, work in plan “reuse” (cf. 

[ 291) has been differentiated from work in case-based planning (cf. [ 241) and is 

evolving into a separate literature. This muddle over how to use memory is emerging 
in many parts of AI, but appears to be particularly critical in planning, where the 

need for greater efficiency in complex problems is particularly acute. Systems that 
integrate large case-bases and well-understood reuse strategies are clearly called for. 

Learning to plan: There has been much research recently into the use of automated 
learning techniques in the domain of planning-both classical [ 2,561 and dynamic 

[ 131. The influences of learning work can be seen in two papers in this issue where 

Dean, Kaelbling, Kirman and Nicholson and Levinson describe approaches which 
are influenced by techniques from reinforcement learning [ 51, but which are applied 

to making inferences about a search space the planner already knows about, not 

to acquiring new facts about the world. New work in this area needs to focus on 
integrating stronger learning models with more complex planning domains, and in 

bridging gaps between learning mechanisms and the case- and reuse-based planners 

described above. 
Real-time planning: A related area to deliberation scheduling is that of planning in 

real-time domains. In particular, planners must be able to function in domains where 

“hard’ real-time boundaries must be realized (that is, where being fast is not enough - 
the planner must be provably able to function within specifically bounded time limits). 

In such domains, planners must be able to continually function, without getting “out 
of sync” with the world around them. The growing need for models and theories 

of such systems is discussed in [36]. Simply speeding up existing systems, while 

itself an important area, is not adequate-as computers are being placed in more and 

more time critical domains (air-traffic control, nuclear plants, military systems, etc.) 
we must be able to demonstrate that the systems have provable properties in their 
decision making. 

Bridging from reaction to planning: As mentioned previously, a trend which has re- 
cently emerged is the use of multi-level planners to integrate the strengths of classical 

planning with those of reaction-based systems. The ability to both react to the present 
and predict the future is critical to many complex problems including realistic mobile 
robotic systems, intelligent information-filtering agents and controllers for complex 
physical systems. This work needs to provide a continuum from very low-level plan- 
ning (such as the motion planning work of Levinson) to the complex reasoning and 
projection described in Ginsberg. While there are many current systems being ex- 
plored across the planning continuum, surprisingly few are attempting to integrate the 
many planning results, or to propose new paradigms that span the realm of planning 
problems. 
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Real cognitive planning models: In addition to handling more complex applications, 
better planning models are needed if we are to be able to say anything interesting 

about human (and even animal) planning. Long-range planning, as has been pointed 

out by psychologists, philosophers, and others, is like language-it is one of the 
few human behaviors that seems to vary in kind, not just complexity, from that 

observed in most animal species. Recent work is attempting to explore the relation 
of current planning theories with modern psychology-for example, a recent paper 
by Grafman, a neuropsychologist, and Spector, an AI scientist [52] overviews some 

of the synergies that can result from investigating the strong relationship between 

these fields.2 However, much more needs to be done. Human planning appears to 

include significant components of memory and analogy use, fast future projections, 
“compilation” of planned behaviors into learned procedures, and mechanisms for 
rejecting inappropriate current actions in favor of other, often better, alternatives. 

6. Final words of wisdom 

We’ll wind up with a brief, and admittedly biased, assessment of the limitations of 
the planning field today and where it needs to go. In short, we feel that there is a lot 

of exciting work going on, and it is in a suitably diverse set of directions, but that it 
is not clear whether any useful goal is in sight. There are many areas that need more 

exploration and a number of breakthroughs must emerge before the tachnology becomes 
a serious one for large-scale problem solving. While we acknowledge that planning 
technology has had a modest impact on realistic applications, this has mainly because 

of the success of special-purpose algorithms, especially schedulers. 
One major problem is that the field is split between work on elegant, impractical 

algorithms, and complex, ad hoc, practical programs. In almost every area of AI, in- 

cluding vision, learning, and even natural language, there has been a progression from 
general-purpose approaches to approaches that actually do something useful on a nar- 
rowly defined set of problems. This progression is typically not a progression from 

theoretical elegance to untrammeled hacking, or from “neat” to “scruffy”, quite the con- 
trary; narrowing the scope of a field often allows the use of more sophisticated formal 

tools. (One thinks of Bayesian statistics in vision, learnability theory in learning, and 

hidden Markov models for language processing.) But in planning we have the opposite 
situation. When a planner actually solves an interesting class of problems, usually the 
most one can say is “we programmed it that way”, or, “we got lucky”. 

Part of the reason for this state of affairs is that work on general-purpose planners has 
primarily occurred at some distance from real problems, and it is not clear whether that 
work will ever produce algorithms that work well enough on problems of realistic size. 
While the purpose of planning should not be only to create applications, it is clear that 
realistic problems whether viewed from an industrial or a cognitive perspective require 

scaling planning approaches way beyond what they can do today. 

2 See also (271. 
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Unfortunately, specializing and/or scaling a planning domain usually yields a set of 
problems that involve a lot of reasoning techniques from other fields. Motion planning 
involves computational geometry. Transportation scheduling involves combinatorial opti- 
mization. If someone signed on to do general-purpose planning, he or she may feel it is 
conceding defeat to put planning techniques on the back burner and go learn something 
boring like operations research. 

One possible solution to this methodological conundrum is to view general-purpose 
planning as providing an architectural framework for combining results from more 
specialized systems. That is, the general-purpose system provides a common ground for 
talking about plans and transformations on plans, and thereby provides a protocol for 
specialized reasoning algorithms to plug into. Another possibility is that some other view 
of planning, one that encompasses more of the field, for example coupling real robotics 
work with AI approaches to anytime algorithms and dynamic planning, will prove to 
yield more powerful formalisms that span a wider range of planning-related problems. 
This would allow a recoupling of theory and practice, and could lead in exciting new 
directions. 

However, we’re pessimistically forced to conclude that another solution is somewhat 
more likely. It may be inevitable for the field of planning to split into even smaller 
subfields, each with its own domain of interest (manufacturing, deliberation scheduling, 
logistics planning, etc.). After all, there may not be much in common between designing 
the behavior of a robot and designing the behavior of a military logistics organization. 
It would be a pity to see this happen, but if what is gained is a set of elegant and 
powerful theories coupled with useful implementations replacing the current elegant but 
weak theories coupled with toy systems, then maybe it will be worth it. 
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