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Abstract

Let f1 and f2 be two functions on some complex n-manifold and let ϕ be a test form of bide-
gree (n,n − 2). Assume that (f1, f2) defines a complete intersection. The integral of ϕ/(f1f2) on
{|f1|2 = ε1, |f2|2 = ε2} is the residue integral I

ϕ
f1,f2

(ε1, ε2). It is in general discontinuous at the origin.
Let χ1 and χ2 be smooth functions on [0,∞] such that χj (0) = 0 and χj (∞) = 1. We prove that the

regularized residue integral defined as the integral of ∂̄χ1 ∧ ∂̄χ2 ∧ ϕ/(f1f2), where χj = χj (|fj |2/εj ),
is Hölder continuous on the closed first quarter and that the value at zero is the Coleff–Herrera residue
current acting on ϕ. In fact, we prove that if ϕ is a test form of bidegree (n,n − 1) then the integral of
χ1∂̄χ2 ∧ ϕ/(f1f2) is Hölder continuous and tends to the ∂̄-potential [(1/f1) ∧ ∂̄(1/f2)] of the Coleff–
Herrera current, acting on ϕ. More generally, let f1 and f2 be sections of some vector bundles and assume
that f1 ⊕ f2 defines a complete intersection. There are associated principal value currents Uf and Ug and
residue currents Rf and Rg . The residue currents equal the Coleff–Herrera residue currents locally. One
can give meaning to formal expressions such as e.g. Uf ∧Rg in such a way that formal Leibnitz rules hold.
Our results generalize to products of these currents as well.
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1. Introduction

Consider a holomorphic function f defined on some complex n-manifold X and let Vf =
f −1(0). Schwartz found that there is a distribution, or current, U on X such that f U = 1, [19,20].
The existence of the principal value current [1/f ] defined by

Dn,n(X) � ϕ �→ lim
ε→0

∫
|f |2>ε

ϕ/f

was proved by Herrera and Lieberman in [9] using Hironaka’s desingularization theorem, [10],
and gives a realization of such a current U . The ∂̄-image of the principal value current is the
residue current associated to f . By Stokes’ theorem its action on a test form of bidegree (n,n−1)

is given by the limit as ε → 0 (along regular values for |f |2) of the residue integral

I
ϕ
f (ε) =

∫
|f |2=ε

ϕ/f. (1)

One main point discovered by Herrera and Lieberman is that if ϕ has bidegree (n− 1, n) then for
each k, I

ϕ

f k (ε) = O(εδk ) for some positive δk . Using this, one can then smoothen the integration

over |f |2 = ε and regularize the residue current by using smooth functions χ defined on [0,∞)

such that χ is 0 at zero and tends to 1 at infinity. In fact, we can make a Leray decomposition
and write any (n,n)-test form ϕ as φ ∧ ∂f/f k for some k, where φ is a test form of bidegree
(n − 1, n) whose restriction to |f |2 = t is unique, for each t > 0. Then writing the integral of
χ(|f |2/ε)ϕ/f as an integral over the level surfaces |f |2 = t and using Herrera’s and Lieberman’s
result one sees that χ(|f |2/ε)/f is a regularization of the principal value current [1/f ]. It follows
that the residue current can be obtained as the weak limit of the smooth form ∂̄χ(|f |2/ε)/f . This
is also a consequence of Corollary 5 below. A natural choice for χ is χ(t) = t/(t + 1) and we
see that we get the well-known result that the residue current can be obtained as the weak limit
of ∂̄(f̄ /(|f |2 + ε)). We also briefly mention the more general currents studied by Barlet, [2]. If
we instead integrate over the fiber f = s in (1) and let ϕ have bidegree (n − 1, n − 1) then the
integral has an asymptotic expansion in s with current coefficients. The constant term is Lelong’s
integration current on Vf and the residue current ∂̄[1/f ] can be obtained from the coefficient
of sn.

We turn to the main focus of this paper which is the codimension two case. Let f and g be
two holomorphic functions on X such that f and g define a complete intersection, that is, the
common zero set Vf ⊕g has codimension two. Consider the residue integral

I
ϕ
f,g(ε1, ε2) =

∫
|f |2=ε1
|g|2=ε2

ϕ

fg
. (2)

The unrestricted limit of the residue integral as ε1, ε2 → 0 does not exist in general. The first
example of this phenomenon was discovered by Passare and Tsikh in [15], and Björk later found
that this indeed is the typical case, [5]. See also [17]. After a localization, one may assume that the
hypersurface f · g = 0 has normal crossings thaks to Hironaka’s theorem. This means that there
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is a (finite) atlas of charts such that f (ζ ) = f̃ (ζ )ζ α and g(ζ ) = g̃(ζ )ζ β where α and β are multi-
indices (depending on the chart) and f̃ and g̃ are invertible holomorphic functions. It is actually
the invertible factors which cause problems. One can always dispose of one of the factors, but
in general not of both. However, if the matrix A, whose two rows are the integer vectors α

and β , respectively, has rank two there is a change of variables z = τ(ζ ) such that zα = f̃ (ζ )ζ α

and zβ = g̃(ζ )ζ β , see e.g. [12]. Hence, when α and β are not linearly dependent we can make
both the invertible factors disappear. Problems therefore arise in so-called charts of resonance
where α and β are linearly dependent. Coleff and Herrera realized that if one demands that ε1
and ε2 tend to zero in such a way that ε1/ε

k
2 → 0 for all k ∈ Z+, along a so-called admissible

path, then one will get no contributions from the charts of resonance because one cannot have
|f̃ (ζ )ζ α| 	 |g̃(ζ )ζ β | if α and β are linearly dependent. They proved in [7] that the limit, along
an admissible path, of the residue integral exists and defines the action of a (0,2)-current, the
Coleff–Herrera residue current [∂̄(1/f ) ∧ ∂̄(1/g)]. In [12] Passare smoothened the integration
over the set {|f |2 = ε1} ∩ {|g|2 = ε2} by introducing functions χ as described above, and he
studied possible weak limits of forms

∂̄χ1(|f |2/ε1)

f
∧ ∂̄χ2(|g|2/ε2)

g
(3)

along parabolic paths (ε1, ε2) = (εs1 , εs2) where s = (s1, s2) belongs to the simplex Σ2(2) =
{(x, y) ∈ R

2+; s1 + s2 = 2}. He found that it is enough to impose finitely many linear conditions
(nj , s) �= 0 to assure that (3) has a weak limit along the corresponding parabolic path. The linear
conditions partition Σ2(2) into finitely many open segments and the weak limit of (3) along a
parabolic path corresponding to an s in such a segment only depends on the segment. We say
that (ε1, ε2) tends to zero inside a Passare sector. Moreover, as we assume that f and g define a
complete intersection, the limit is even independent of the choice of segment. In this case it also
coincides with the Coleff–Herrera current. One can obtain a ∂̄-potential to the Coleff–Herrera
current e.g. by changing the integration set in (2) to {|f |2 > ε1} ∩ {|g|2 = ε2} and pass to the
limit along an admissible path or by removing the first ∂̄ in (3) and pass to the limit inside a
Passare sector. This ∂̄-potential is denoted [(1/f )∂̄(1/g)]. The main result in this paper implies
that if χj ∈ C∞([0,∞]) satisfy χj (0) = 0 and χj (∞) = 1 then, in the sense of currents,

lim
ε1,ε2→0

χ1(|f |2/ε1)

f

∂̄χ2(|g|2/ε2)

g
=

[
1

f
∂̄

1

g

]
, (4)

and the action of the smooth form on the left-hand side on a test form depends Hölder continu-
ously on (ε1, ε2) ∈ [0,∞)2. For the particular case when χj (t) = t/(t + 1) our result, apart from
the Hölder continuity, was announced in [18]. Actually, it is possible to relax the smoothness
assumption on one of the χj in (4). As mentioned above, one can always dispose of one of the
invertible factors. Say that we always arrange so that f̃ ≡ 1. Then, examining the proof, one finds
that one may take χ1 to be the characteristic function of [1,∞]. Hence,∫

|f |2>ε1

∂̄χ2(|g|2/ε2)

fg
∧ ϕ →

[
1

f
∂̄

1

g

]
.ϕ

with Hölder continuity. Note that if we let both χ1 and χ2 be the characteristic function of [1,∞]
then this result is no longer true in view of the examples of Passare–Tsikh and Björk.
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Our result also generalize to products of pairs of so-called Bochner–Martinelli blocks. Con-
sider a tuple f = (f1, . . . , fm) of holomorphic functions on X. The residue integral correspond-
ing to f , I

ϕ
f (ε1, . . . , εm), is defined analogously to (2). If we take the mean value of the residue

integral over ε = (ε1, . . . , εm) in the simplex Σm(δ) = {s ∈ R
m+; ∑

sj = δ} we obtain

cm

∫
|f |2=δ

∑m
j=1(−1)j+1f̄j

∧
i �=j ∂̄f̄i

|f |2m
∧ ϕ, (5)

where cm is a constant only depending on m. It turns out, see [16], that the limit as δ tends
to zero of (5) exists and defines the action of a (0,m)-current, which in the case f defines
a complete intersection, coincides with the Coleff–Herrera current and also with the currents
studied in [3,14]. Based on the work in [16], Andersson introduces more general currents of
the Cauchy–Fantappiè–Leray type in [1]. We will briefly discuss Andersson’s construction in
Section 3. In short, he defines a singular form uf = ∑

u
f

k,k−1, where the terms u
f

k,k−1 are similar

to the form in (5), and he shows that it is extendible to X as a current, Uf , either as principal
values or by analytic continuation. The residue current, Rf , is derived from the current Uf and
equals the Coleff–Herrera current locally if f defines a complete intersection. If g is also a tuple
of functions there is a natural way of defining the product of the Cauchy–Fantappiè–Leray type
currents corresponding to f and g so that formal Leibnitz rules hold, see [22]. If f ⊕ g defines a
complete intersection and χ1, χ2 ∈ C∞([0,∞]) vanish to high enough orders at zero and equals
1 at infinity then we prove that the smooth forms

χ1
(|f |2/ε1

)
uf ∧ ∂̄χ2

(|g|2/ε2
) ∧ ug and

∂̄χ1
(|f |2/ε1

) ∧ uf ∧ ∂̄χ2
(|g|2/ε2

) ∧ ug

are Hölder continuous as currents for (ε1, ε2) ∈ [0,∞)2 and tend to Uf ∧ Rg and Rf ∧ Rg ,
respectively, as ε1, ε2 → 0; see Theorem 21 and Corollary 23. If g is a function such that f ⊕ g

defines a complete intersection, our techniques can also be used to prove that ∂̄χ1(|f |2/ε1) ∧
uf χ2(|g|2/ε2) → Rf when χ2 equals the characteristic function of [1,∞]. We use this to con-
clude that Rf has the standard extension property in the complete intersection case, Corollary 24.
For more background we refer to the survey article [6] by Björk and the book [21] by Tsikh.

The disposition of the paper is as follows. In Section 2 we outline a proof of (4) since the
proofs of the more general statements about Bochner–Martinelli or Cauchy–Fantappiè–Leray
blocks are only more difficult to prove in the technical sense and to make it clear that it is not
necessary to work through the constructions of Bochner–Martinelli or Cauchy–Fantappiè–Leray
type currents in order to prove (4). In Section 3 we recall Andersson’s construction and explain
some useful notation. Section 4 contains some fairly well-known regularization results about
Cauchy–Fantappiè–Leray type currents. As Andersson’s formalism makes the arguments a little
smoother we also supply the proofs. Section 5 contains the technical core of this paper. We study
regularizations of products of monomial currents which we then use in Section 6 to prove our
main results; Theorem 21 and its Corollaries 23, 25 and 26 and Theorem 27. In Section 7 we
see by explicit computations that Corollary 26 holds for the example by Passare and Tsikh. This
section is essentially self-contained.
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2. Sketch of proof in the case of two functions

Let f and g be two holomorphic functions on X defining a complete intersection. We sketch
how one can handle the difficulties arising in charts of resonance when proving (4). We study the
integral ∫

χ1(|f |2/ε1)

f

∂̄χ2(|g|2/ε2)

g
∧ ϕ, (6)

where ϕ is a test form of bidegree (n,n − 1). By Hironaka’s theorem we may assume that f =
ζ αf̃ and g = ζ βg̃ are monomials times non-vanishing functions. One of the non-zero factors
can be incorporated in a variable and so we assume that f̃ ≡ 1. We assume also that we are in a
chart of resonance, i.e. that α and β are linearly dependent. After resolving singularities, f and
g no longer define a complete intersection in general, but on the other hand a degree argument
shows that dζ̄j /ζ̄j ∧ ϕ becomes a test form for any ζj dividing both f and g. See the proof of
Theorem 21 for more details. Since α and β are linearly dependent, dζ̄j /ζ̄j ∧ ϕ is a test form for
all j such that αj �= 0, or equivalently, βj �= 0. Now, (6) equals

∑
j

βj

∫
χ1(|ζ α|2/ε1)

ζ α

χ ′
2(Ψ |ζ β |2/ε2)

ζ β

|ζ β |2
ε2

∧ dζ̄j

ζ̄j

∧ ϕ/f̃ ,

where Ψ = |g̃|2 is a strictly positive smooth function. It now follows from Corollary 15 that each
term in this sum tends to zero as ε1 and ε2 tend to zero. Hence the charts of resonance do not
give any contributions.

3. Preliminaries and notation

Assume that f is a section of the dual bundle E∗ of a holomorphic m-bundle E → X over
a complex n-manifold X. We will only deal with local problems and it is therefore no loss of
generality in assuming that E → X is trivial. However, the formalism will run smoother with
an invariant notation. As mentioned above, we will recall Andersson’s construction in [1] and
produce currents Uf and Rf and we emphasize that in the case E → X is the trivial line
bundle then Uf and Rf are the currents [1/f ] and ∂̄[1/f ] times some basis elements. On
the exterior algebra ΛE of E, the section f induces mappings δf :Λk+1E → ΛkE of inte-
rior multiplication and δ2

f = 0. We introduce the spaces E0,q (X,ΛkE) of the smooth sections of

the exterior algebra of E ⊕ T ∗
0,1X which are (0, q)-forms with values in ΛkE. We also intro-

duce the corresponding spaces of currents, D ′
0,q(X,ΛkE). The mappings δf extend to mappings

δf :D ′
0,q (X,Λk+1E) → D ′

0,q(X,ΛkE) with δ2
f = 0 and these mappings anti-commute with the

∂̄-operator. Hence, D ′
0,q (X,ΛkE) is a double complex and the associated total complex is

· · · ∇f→ Lr−1(X,E)
∇f→ Lr (X,E)

∇f→ ·· · ,
where Lr (X,E) = ⊕

q−k=r D ′
0,q(X,ΛkE) and ∇f = δf − ∂̄ . We will refer to the total complex

as the Andersson complex. The exterior product, ∧, induces mappings∧
:Lr (X,E) ×Ls(X,E) → Lr+s(X,E)
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when possible, and ∇f is an antiderivation, i.e. ∇f (τ ∧ σ) = ∇f τ ∧ σ + (−1)rτ ∧ ∇f σ if
τ ∈ Lr (X,E) and σ ∈ Ls(X,E). If τ ∈ Lr (X,E) we write τk,k+r for the component of τ be-
longing to D ′

0,k+r (X,ΛkE). Note that functions define elements of L0(X,E) of degree (0,0)

and sections of E define elements of L−1(X,E) of degree (1,0). In the spirit of the duality
theorem due, independently, to Dickenstein–Sessa, [8], and Passare, [13], one can show that if
X is Stein and the zeroth cohomology group of the Andersson complex vanishes then for any
holomorphic function h there is a holomorphic section ψ of E such that δf ψ = h [1]. This
means that if f = (f1, . . . , fm) in some local holomorphic frame for E∗ then the division prob-
lem

∑
fjψj = h has a holomorphic solution. This cannot hold for all h if f has zeros and the

Andersson complex can therefore not be exact in this case. Still, we try to look for an element
uf ∈ L−1(X,E) such that ∇f uf = 1. To this end we assume that E is equipped with some
Hermitian metric | · | and we let sf be the section of E with pointwise minimal norm such that
δf sf = |f |2. Outside Vf = f −1(0) we may put

uf = sf

∇f sf
= sf

δf sf − ∂̄sf
=

∑
k

sf ∧ (∂̄sf )k−1

|f |2k
.

Observe that ∇f sf has even degree so the expression sf /∇f sf has meaning outside Vf and it
follows immediately that ∇f uf = 1 there. The following theorem is proved in [1].

Theorem 1. Assume that f is locally nontrivial. The forms |f |2λuf and ∂̄|f |2λ ∧ uf are lo-
cally bounded if Reλ is sufficiently large and they have analytic continuations as currents to
Reλ > −ε. Let Uf and Rf denote the values at λ = 0. Then Uf is a current extension of uf ,
Rf has support on Vf and

∇f Uf = 1 − Rf .

Moreover, Rf = R
f
p,p + · · · + R

f
q,q where p = Codim(Vf ) and q = min(m,n).

Note that if Vf = ∅ then ∇f Uf = 1 on all of X, which implies that taking the exterior product
with Uf is a homotopy operator for the Andersson complex. The current Rf is the Bochner–
Martinelli, or more generally, the Cauchy–Fantappiè–Leray current associated to f , and if f =
(f1, . . . , fm) in some local holomorphic frame, e1, . . . , em, of E then

Rf =
[
∂̄

1

f1
∧ · · · ∧ ∂̄

1

fm

]
∧ e1 ∧ · · · ∧ em (7)

if f defines a complete intersection, see [1].
Now if fj , j = 1,2, are sections of the dual bundles E∗

j of holomorphic Hermitian mj -bundles
Ej → X we can apply the above construction to the section f = f1 ⊕ f2 of the bundle E∗

1 ⊕ E∗
2

and obtain the currents Uf and Rf . We could also try to combine the individual currents Ufj

and Rfj . It is shown in [22] that the forms

|f1|2λuf1 ∧ |f2|2λuf2 , |f1|2λuf1 ∧ ∂̄|f2|2λ ∧ uf2 and ∂̄|f1|2λ ∧ uf1 ∧ ∂̄|f2|2λ ∧ uf2 ,

which are locally bounded if Reλ is large enough, have current extensions to Reλ > −ε. The
values at λ = 0 are denoted Uf1 ∧ Uf2 , Uf1 ∧ Rf2 , and Rf1 ∧ Rf2 , respectively, and formal
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computation rules such as e.g. ∇f (Uf1 ∧ Rf2) = (1 − Rf1) ∧ Rf2 = Rf2 − Rf1 ∧ Rf2 hold. It is
also shown in [22] that if f defines a complete intersection then Rf = Rf1 ∧ Rf2 .

We will use the names f and g, rather then f1 and f2, for the sections of the two bundles and
the symbol ∇ , without subscript, always denotes ∇f ⊕g . We will use multi-indices extensively
in the sequel. Multi-indices will be denoted α and β or I and J and sometimes also r and ρ.
The number of variables will always be n but it will be convenient to define multi-indices by
expressions like α = (αj )j∈K for K ⊆ {1, . . . , n}. By this we mean that α = (a1, . . . , an), where
aj = 0 if j /∈ K and aj = αj if j ∈ K . Hence, if z = (z1, . . . , zn) then zα = ∏

j∈K z
αj

j and
similarly for ∂α/∂zα . Multi-indices are added and multiplied by numbers as elements in Z

n and
α ± 1 = (α1 ± 1, . . . , αn ± 1). Also, |α| denotes the length of α as a vector in Euclidean space
and #α is the cardinality of the support of α.

Integration over domains in C
n will always be with respect to the volume form (i/2)n dz1 ∧

dz̄1 ∧ · · · ∧ dzn ∧ dz̄n := (i/2)n dz ∧ dz̄ if nothing else is said. If Δ is a Reinhardt domain in C
n

and ϕ is a function which only depends on the moduli of the variables and such that zαϕ(z) is
integrable on Δ then ∫

Δ

zαϕ(z) = 0

if α is a non-zero multi-index. This simple fact will play a fundamental role to us in what follows
and we will refer to it as anti-symmetry.

Unless otherwise stated, the symbol χ with various subscripts will always denote a smooth
function on [0,∞] which is zero to some order at 0 and such that χ(∞) = 1. By smooth at
infinity we mean that t �→ χ(1/t) is smooth at zero.

4. Regularizations of Cauchy–Fantappiè–Leray type currents

Consider a function χ as above and let χ̃ (s) = χ(1/s). Then χ̃ is differentiable at s = 0
and χ̃ ′(s) = −χ ′(1/s)/s2. Letting t = 1/s we see that χ ′(t) = O(1/t2) as t → ∞. This simple
observation will be frequently used in the sequel. It follows that for any continuous function ϕ

with compact support in [0,∞) we have |ϕ(εt)χ ′(t)| � C(t + 1)−2 for a constant independent
of ε. Hence, by the dominated convergence theorem we see that

∞∫
0

d

dt
χ(t/ε)ϕ(t) dt =

∞∫
0

d

dτ
χ(τ)ϕ(ετ) dτ → ϕ(0)

∞∫
0

d

dτ
χ(τ) dτ = ϕ(0),

and we have proved

Lemma 2. Let χ ∈ C1([0,∞]) satisfy χ(0) = 0 and χ(∞) = 1. Then (d/dt)χ(t/ε) → δ0 as
measures on [0,∞).

Proposition 3. Assume χ ∈ C∞([0,∞]) vanishes to order � at 0 and satisfies χ(∞) = 1. Then

lim
ε→0+

∫
χ

(|f |2/ε)uf

�,�−1 ∧ ϕ = U
f

�,�−1.ϕ

for any test form ϕ.
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Proof. On the set Ω = {(z, t) ∈ C
n × (0,∞); |f (z)|2 > t} we have, for all fixed ε > 0, that∣∣∣∣uf

�,�−1
d

dt
χ(t/ε) ∧ ϕ

∣∣∣∣ � C
1

|f |2�−1

∣∣∣∣ d

dt
χ(t/ε)

∣∣∣∣ � C
t1/2

t�

∣∣∣∣ d

dt
χ(t/ε)

∣∣∣∣ � C
1

t1/2

since d
dt

χ(t/ε) = O(t�−1). Hence we have an integrable singularity on Ω and by Fubini’s theo-
rem we get

∞∫
0

d

dt
χ(t/ε)

∫
|f |2>t

u
f

�,�−1 ∧ ϕ dt =
∫

u
f

�,�−1 ∧ ϕ

|f |2∫
0

d

dt
χ(t/ε) dt

=
∫

u
f

�,�−1χ
(|f |2/ε) ∧ ϕ. (8)

But J (t) = ∫
|f |2>t

u
f

�,�−1 ∧ ϕ is a continuous function with compact support in [0,∞) with

J (0) = U
f

�,�−1.ϕ, see [16] or [1]. Hence, by Lemma 2 the left-hand side of (8) tends to U
f

�,�−1.ϕ

and the proof is complete. �
If we take χ(t) equal to appropriate powers of t/(t + 1) we obtain the following natural ways

to regularize the currents Uf and Rf .

Corollary 4. For any test form ϕ we have

lim
ε→0+

∫ ∑
��1

sf ∧ (∂̄sf )�−1

(|f |2 + ε)�
∧ ϕ = Uf .ϕ (9)

and

lim
ε→0+

∫ ∑
��1

ε
(∂̄sf )�

(|f |2 + ε)�+1
∧ ϕ = Rf .ϕ. (10)

Proof. Letting χ�(t) = t�/(t + 1)� we see that

u
f

�,�−1χ�

(|f |2/ε) = sf ∧ (∂̄sf )�−1

(|f |2 + ε)�

and so (9) follows from Proposition 3. To show that (10) holds we first note that

∑
��1

sf ∧ (∂̄sf )�−1

(|f |2 + ε)�
= sf

∇f sf + ε
.

Hence

∇f

∑ sf ∧ (∂̄sf )�−1

(|f |2 + ε)�
= ∇f

sf

∇f sf + ε
= ∇f sf

∇f sf + ε
= 1 −

∑
ε

(∂̄sf )�

(|f |2 + ε)�+1
.

��1 ��0
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Since differentiation is a continuous operation on distributions it follows from (9) that

lim
ε→0+ 1 −

∑
��0

ε
(∂̄sf )�

(|f |2 + ε)�+1
= ∇f lim

ε→0+

∑
��1

sf ∧ (∂̄sf )�−1

(|f |2 + ε)�
= ∇f Uf = 1 − Rf

in the sense of currents. The term with � = 0 in the sum on the left is easily seen to tend to zero
in the sense of currents and hence (10) follows. �

Note that it is the difference

∂̄
(
χ�u

f

�,�−1

) − δf

(
χ�+1u

f

�+1,�

) = ∂̄χ� ∧ u
f

�,�−1 + (χ� − χ�+1)δf u
f

�+1,� (11)

which converges to the term of Rf of bidegree (�, �). It is only for the term of top degree, the
last term in (11) is not present. This explains why the regularization result in [16, Theorem 2.1],
coincides with our result for the top degree term but not for the terms of lower degree.

We can also take one χ which vanishes to high enough order at zero to regularize all terms
of Uf and Rf .

Corollary 5. Assume that χ ∈ C∞([0,∞]), vanishes to order min(m,n)+ 1 at zero and satisfies
χ(∞) = 1. Then for any test form ϕ we have

lim
ε→0+

∫
χ

(|f |2/ε)uf ∧ ϕ = Uf .ϕ, (12)

lim
ε→0+

∫
∂̄χ

(|f |2/ε) ∧ uf ∧ ϕ = Rf .ϕ. (13)

Proof. The first statement follows immediately from Proposition 3. For the second one we note
that

∇χuf = ∇χ ∧ uf + χ∇uf = −∂̄χ ∧ uf + χ∇uf ,

and since χ vanishes to high enough order at zero all terms are smooth. Outside {f = 0} we
have ∇uf = 1 and hence χ∇uf = χ everywhere. Moreover, χ(|f |2/ε) tends to 1 in the sense
of currents and hence

∂̄χ ∧ uf = χ∇uf − ∇χuf → 1 − (
1 − Rf

) = Rf

in the sense of currents. �
5. Regularizations of products of monomial currents

This section contains the technical result about the normal crossings case needed to prove
our main theorems in the next section. Of particular importance is Proposition 11. First we need
a generalization of Taylor’s formula. Lemma 6 enables us to approximate a smooth function
defined on C

n in a neighborhood of the union of the coordinate hyperplanes instead of in a
neighborhood of their intersection as in the usual Taylor’s formula. The approximating functions
are in our case not polynomials in general but have enough similarities for our purposes. For
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tensor products of one-variable functions this corresponds to multiplying the individual Taylor
expansions. Lemma 6 appears as Lemma 2.3 in [18] but the formulation there is unfortunately
not completely correct. We also remark that Lemma 6 is very similar to Lemma 2.4 in [7] and
that very general Taylor expansions are considered in [11, Chapter 1]. Define the linear operator
M

rj
j on C∞(Cn) to be the operator that maps ϕ to the Taylor polynomial of degree rj of the

function ζj �→ ϕ(ζ ) (centered at ζj = 0). We note that M
rj
j and M

ri
i commute. To see this we

only need to observe that

∂

∂ζ̃i

(
∂ϕ

∂ζ̃j

∣∣∣∣
ζj =0

)∣∣∣∣
ζi=0

= ∂2ϕ

∂ζ̃i∂ζ̃j

∣∣∣∣
ζi=ζj =0

= ∂

∂ζ̃j

(
∂ϕ

∂ζ̃i

∣∣∣∣
ζi=0

)∣∣∣∣
ζj =0

,

where ∂/∂ζ̃j means that we do not specify whether we differentiate with respect to ζj or ζ̄j .

Lemma 6. Let K ⊆ {1, . . . , n} have cardinality κ and let r = (rj )j∈K . Define the linear operator
Mr

K on C∞(Cn) by

Mr
K =

∑
j∈K

M
rj
j −

∑
i,j∈K
i<j

M
ri
i M

rj
j + · · · + (−1)κ+1M

rj1
j1

· · ·Mrjκ
jκ

.

Then for any ϕ ∈ C∞(Cn) we have

ϕ(ζ ) = Mr
Kϕ(ζ ) +

∫
[0,1]κ

(1 − t)r

r!
∂r+1

∂tr+1
ϕ(tζ ) dt, (14)

where tζ should be interpreted as (ξ1, . . . , ξn), ξj = tj ζj if j ∈ K and ξj = ζj if j /∈ K . In
particular ϕ − Mr

Kϕ = O(|ζ r+1|). Moreover, Mr
Kϕ can be written as a finite sum of terms,

ϕIJ (ζ )ζ I ζ̄ J , with the following properties:

(a) ϕIJ (ζ ) is independent of some variable and in particular of variable ζj if Ij + Jj > 0;
(b) Ij + Jj � rj for j ∈ K ;
(c) if L is the set of indices j ∈ K such that ζj �→ ϕIJ (ζ ) is non-constant then ϕIJ (ζ ) =

O(
∏

j∈L |ζj |rj +1).

Proof. It is enough to prove the lemma when K = {1, . . . , n}. In case n = 1, (14) is Taylor’s
formula. For n � 2, we write the integral in (14) as an iterated integral. Formula (14) then follows
by induction. One can also show (14) by repeated integrations by parts. The difference ϕ −Mr

Kϕ

is seen to be of the desired size after performing the differentiations of ϕ(tζ ) with respect to
t inside the integral. To see that Mr

Kϕ can be written as a sum of terms ϕIJ (ζ )ζ I ζ̄ J with the
properties (a), (b), and (c), we let r

K̃
, for any K̃ ⊆ K , denote the multi-index (rj1 , . . . , rj|K̃|),

rji
∈ K̃ . A straightforward computation now shows that

Mr
Kϕ =

∑
j∈K

M
rj
j

(
ϕ − M

rK\{j }
K\{j}ϕ

)
+

∑
i,j∈K

M
ri
i M

rj
j

(
ϕ − M

rK\{i,j }
K\{i,j}ϕ

) + · · · + M
rj1
j1

· · ·Mrjκ
jκ

ϕ.
i<j
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From the first part of the proof (and the definition of M
rj
j ) it follows that every term on the

right-hand side is a finite sum of terms with the stated properties. �
Lemma 7. Let α be a multi-index and let M = Mr

K be the operator defined in Lemma 6 with K

the set of indices j such that αj � 2 and rj = αj − 2, j ∈ K . Then for any ϕ ∈ D(Cn) we have∫
Δ

1

ζ α
(ϕ − Mϕ) =

[
1

ζ α

]
.ϕ(i/2)n dζ ∧ dζ̄

if Δ is a polydisc containing the support of ϕ.

Proof. Note that by Lemma 6 we have ϕ − Mϕ = O(|ζ α−1|) and so (ϕ − Mϕ)/ζα is integrable
on Δ. Hence if we let Δδ = Δ ∩ ⋂

j {|ζj | > δ} we get∫
Δ

1

ζ α
(ϕ − Mϕ) = lim

δ→0

∫
Δδ

1

ζ α
(ϕ − Mϕ) = lim

δ→0

∫
Δδ

1

ζ α
ϕ − lim

δ→0

∫
Δδ

1

ζ α
Mϕ.

The first limit on the right-hand side is the tensor product of the principal value currents [1/ζ
αj

j ]
(acting on ϕ (i/2)n dζ ∧ dζ̄ ) and hence it equals [1/ζα].ϕ (i/2)n dζ ∧ dζ̄ . It follows by anti-
symmetry that actually ∫

Δδ

1

ζ α
Mϕ = 0

for all δ > 0. In fact, Mϕ is a sum of terms ϕIJ (ζ )ζ I ζ̄ J where Ij + Jj � αj − 2 for all j and the
coefficient ϕIJ (ζ ) is at least independent of some variable. �
Lemma 8. Let χ1, χ2 ∈ C∞([0,∞]) and let Φ and Ψ be smooth strictly positive functions on C

n.
Let also Mr

K be the operator defined in Lemma 6 with K and r arbitrary. Then

χ1(t1Φ)χ2(t2Ψ ) = Mr
K

(
χ1(t1Φ)χ2(t2Ψ )

) + ∣∣ζ r+1
∣∣B(t1, t2, ζ ),

where B is bounded on (0,∞)2 × D if D � C
n.

Proof. If D � C
n both Φ and Ψ have strictly positive infima and finite suprema on D

and so there is a neighborhood U of [0,∞]2 in R̂ × R̂ such that the function (t1, t2, ζ ) �→
χ1(t1Φ)χ2(t2Ψ ) is smooth on U × D. From Lemma 6 it follows that

χ1(t1Φ)χ2(t2Ψ ) = Mr
K

(
χ1(t1Φ)χ2(t2Ψ )

) +
∑

I,J⊆K
Ij +Jj =rj +1

GIJ (t1, t2, ζ )ζ I ζ̄ J

for some functions GIJ which are smooth on U × D, and the lemma readily follows. �
To prove Proposition 11 we will need the estimates of the following two elementary lemmas.
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Lemma 9. Let Δ be the unit polydisc in C
n and put Δα

ε = {ζ ∈ Δ; |ζ α|2 � ε} and Δ
α,β
ε1,ε2 =

{ζ ∈ Δ; |ζ α|2 � ε1, |ζ β |2 � ε2}. Then for all ε, εj � 1 we have∫
Δ\Δα

ε

1

|ζ1| · · · |ζn| � ε1/(2|α|)|log ε|n−1

and ∫
Δ\Δα,β

ε1,ε2

1

|ζ1| · · · |ζn| �
∣∣(ε1, ε2)

∣∣ω, 2ω < min
{|α|−1, |β|−1}.

Proof. On the set Δ \ Δ
α,β
ε1,ε2 , either |ζ α|2 < ε1 or |ζ β |2 < ε2 and so it follows from the first

inequality that the integral in the second inequality is less then or equal to (a constant times)

ε
1/(2|α|)
1 |log ε1|n−1 + ε

1/(2|β|)
2 |log ε2|n−1 � ε

1/(2|α|)−ν

1 + ε
1/(2|β|)−ν

2

�
∣∣(ε1, ε2)

∣∣ων ,

for any ν > 0 and ων � min{|α|−1, |β|−1}/2 − ν. Hence the second inequality follows from the
first one. To prove the first inequality we first integrate with respect to the angular variables and
then we make the change of variables xj = log |ζj | to see that the integral in question equals

(4π)n
∫
Qε

e
∑

xj dx, (15)

where

Qε =
{
x ∈ (−∞,0]n; 2

∑
αjxj < log ε

}
.

Since all xj � 0 on Qε we have exp(
∑

xj ) � exp(−|x|) here, and choosing R = |log ε|/(2|α|)
we see that (15) is less then or equal to

∫
{|x|>R} exp(−|x|) dx. In polar coordinates this is easily

seen to be of order ε1/(2|α|)|log ε|n−1. �
Lemma 10. Let Δ be the unit polydisc in C

n and put Δα
ε = {ζ ∈ Δ; |ζ α|2 � ε} and Δ

α,β
ε1,ε2 =

{ζ ∈ Δ; |ζ α|2 � ε1, |ζ β |2 � ε2}. Then, for ε, εj � 1, we have

∫
Δα

ε

ε

|ζ α|2
1

|ζ1| · · · |ζn| � ε1/(2|α|)|log ε|n−1,

∫
Δ

α,β
ε ,ε

(
ε1

|ζ α|2 + ε2

|ζ β |2
)

1

|ζ1| · · · |ζn| �
∣∣(ε1, ε2)

∣∣ω

1 2
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and ∫
Δ

α,β
ε1,ε2

ε1ε2

|ζ α|2|ζ β |2
1

|ζ1| · · · |ζn| �
∣∣(ε1, ε2)

∣∣ω,

where 2ω < min{|α|−1, |β|−1}.

Proof. The second and third inequalities follow from the first one since it implies that the integral
in the second one is of the size

ε
τ+1/(2|α|)
1 + ε

τ+1/(2|β|)
2 �

∣∣(ε1, ε2)
∣∣τ+ω for any τ > 0

and that the integral in the third is of the size

min
{
ε

1/(2|α|)
1 |log ε1|n−1, ε

1/(2|β|)
2 |log ε2|n−1}.

To prove the first inequality we proceed as in the previous lemma and we see that the integral in
question equals

(4π)nε

∫
Qε

e
∑

xj

e2
∑

αj xj
dx = (4π)nε

∫
Qε∩{|x|�R}

e
∑

xj

e2
∑

αj xj
dx

+ (4π)nε

∫
Qε∩{|x|�R}

e
∑

xj

e2
∑

αj xj
dx, (16)

where Qε = {x ∈ (−∞,0]n; 2
∑

αjxj � log ε}. We choose 2R = |log ε|/|α|, and then
Qε ∩ {|x| � R} = {x ∈ (−∞,0]n; |x| � R}. If all xj � 0 we have

∑
xj � −|x| and by the

Cauchy–Schwarz inequality we also have −∑
αjxj � |α||x|. Hence we may estimate the inte-

grand in the second to last integral in (16) by exp((2|α| − 1)|x|). In the last integral we integrate
where ε/ exp(2

∑
αjxj ) � 1 and so we see that the right-hand side of (16) is less then or equal

to

(4π)nε

∫
{|x|�R}

e(2|α|−1)|x| dx + (4π)n
∫

{|x|�R}
e−|x| dx.

By changing to polar coordinates this is seen to be of the size ε1/(2|α|)|log ε|n−1. �
The proof of the following proposition contains the technical core of this paper.

Proposition 11. Assume that χ1, χ2 ∈ C∞([0,∞]) vanish to orders k � 0 and � � 0 at 0, re-
spectively, and that χ1(∞) = 1. Then for any test form ϕ ∈ Dn,n(C

n) we have

∫
1

ζ kα+�β
χ1

(
Φ

∣∣ζ α
∣∣2

/ε1
)
χ2

(
Ψ

∣∣ζ β
∣∣2

/ε2
)
ϕ →

{
[ 1
ζ kα+�β ].ϕ, χ2(∞) = 1,

0, χ (∞) = 0
2
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as ε1, ε2 → 0+. Moreover, as a function of ε = (ε1, ε2) ∈ [0,∞)2, the integral belongs to all
ω-Hölder classes with 2ω < min{|α|−1, |β|−1}.

Remark 12. The values of the integral at points (ε1,0) and (0, ε2), εj �= 0, are

χ2(∞)
χ1(Φ|ζ α|2/ε1)

ζ kα

[
1

ζ �β

]
.ϕ and

χ2(Φ|ζ β |2/ε2)

ζ �β

[
1

ζ kα

]
.ϕ,

respectively.

Remark 13. The modulus of continuity can be improved by sharpening the estimates in the
Lemmas 9 and 10 but we will not bother about this. This is because the multi-indices α and β

will be implicitly given by Hironaka’s theorem and so we can only be sure of the existence of
some positive Hölder exponent when we prove our main theorems anyway.

Proof. We prove Hölder continuity for a path (ε1, ε2) → 0, εj �= 0. For a general path (inside
[0,∞)2) to an arbitrary point in [0,∞)2 one proceeds in a similar way. Let K be the set of
indices j such that kαj + �βj � 2 and let M = Mr

K be the operator defined in Lemma 6 with
rj = kαj + �βj − 2 for j ∈ K . Let also Δ be a polydisc containing the support of ϕ. In this proof
we will identify ϕ with its coefficient function with respect to the volume form in C

n. We make
a preliminary decomposition∫

1

ζ kα+�β
χ1χ2ϕ =

∫
Δ

1

ζ kα+�β
χ1χ2(ϕ − Mϕ) +

∫
Δ

1

ζ kα+�β
χ1χ2Mϕ. (17)

Denote by Δε the set {ζ ∈ Δ; |ζ α|2 � ε1, |ζ β |2 � ε2}. Since ϕ − Mϕ = O(|ζ r+1|), according to
Lemma 6, and χ1(∞) = 1 we get

∣∣∣∣∫
Δ

1

ζ kα+�β
χ1χ2(ϕ − Mϕ) − χ2(∞)

∫
Δ

1

ζ kα+�β
(ϕ − Mϕ)

∣∣∣∣
�

∫
Δ

1

|ζ1| · · · |ζn|
∣∣χ1χ2 − χ2(∞)

∣∣
�

∫
Δε

1

|ζ1| · · · |ζn|
∣∣χ1χ2 − χ2(∞)

∣∣ +
∫

Δ\Δε

1

|ζ1| · · · |ζn| . (18)

It follows from Lemma 9 that the last integral is of order |ε|ω as ε1, ε2 → 0+. On the other hand,
for ζ ∈ Δε both |ζ α|2/ε1 � 1 and |ζ β |2/ε2 � 1 and by Taylor expanding at infinity we see that

χ1
(
Φ

∣∣ζ α
∣∣2

/ε1
) = χ1(∞) + ε1

|ζ α|2 B1
(
ε1

/∣∣ζ α
∣∣2

, ζ
)
,

χ2
(
Ψ

∣∣ζ β
∣∣2

/ε2
) = χ2(∞) + ε2

β 2
B2

(
ε2

/∣∣ζ β
∣∣2

, ζ
)
,
|ζ |
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where B1 and B2 are bounded. Using that χ1(∞) = 1 we thus get that |χ1χ2 − χ2(∞)| is of the
size ε1/|ζ α|2 + ε2/|ζ β |2. Hence, by Lemma 10, the second to last integral in (18) is also of order
|ε|ω as ε1, ε2 → 0+. In view of Lemma 7, we have thus showed that the first integral on the right-
hand side of (17) tends to [1/ζ kα+�β ].ϕ if χ2(∞) = 1 and to zero if χ2(∞) = 0 and, moreover,
belongs to the stated Hölder classes. We will be done if we can show that the last integral in
(17) is of order |ε|ω . We know that Mϕ = ∑

IJ ϕIJ ζ I ζ̄ J where each ϕIJ is independent of at
least one variable and Ij + Jj � kαj + �βj − 2 for j ∈ K . Hence, if Φ and Ψ are constants (or
only depend on the modulus of the ζj ) then the last integral in (17) is zero for all ε1, ε2 > 0 by
anti-symmetry. For the general case, consider one term,∫

Δ

1

ζ kα+�β
χ1χ2ϕIJ ζ I ζ̄ J , (19)

and let L be the set of indices j ∈ K such that ζj �→ ϕIJ (ζ ) is constant. Let also M = M
ρ
L be

the operator defined in Lemma 6 with ρj = kαj + �βj − Ij − Jj − 2 for j ∈ L. We introduce the
independent (real) variables, or “smoothing parameters,” t1 = |ζ α|2/ε1 and t2 = |ζ β |2/ε2. Below,
M (χ1χ2) denotes the function we obtain by letting M operate on ζ �→ χ1(t1Φ(ζ))χ2(t2Ψ (ζ ))

and then substituting |ζ α|2/ε1 and |ζ β |2/ε2 for t1 and t2, respectively. We rewrite the integral
(19) as ∫

Δε

ϕIJ ζ I ζ̄ J

ζ kα+�β

(
χ1χ2 − M (χ1χ2)

) +
∫

Δ\Δε

ϕIJ ζ I ζ̄ J

ζ kα+�β

(
χ1χ2 − M (χ1χ2)

)

+
∫
Δ

ϕIJ ζ I ζ̄ J

ζ kα+�β
M (χ1χ2). (20)

Now, M (χ1χ2) is a sum of terms which, at least for some j ∈ L, are monomials in ζj and ζ̄j

times coefficient functions depending on |ζj | and the other variables. The degrees of these mono-
mials do not exceed ρj = kαj + �βj − Ij − Jj − 2 and since ζj �→ ϕIJ (ζ ) is constant for j ∈ L

we see, by counting exponents, that the last integral in (20) vanishes by anti-symmetry for all
ε1, ε2 > 0. By Lemma 8 we have

χ1(t1Φ)χ2(t2Ψ ) − M
(
χ1(t1Φ)χ2(t2Ψ )

) = ∣∣ζ ρ+1
∣∣B(t1, t2, ζ ), (21)

where B is bounded on (0,∞)2 × Δ. We note also that by Lemma 6, ϕIJ (ζ ) =
O(

∏
j∈L\K |ζj |rj +1). From (21) we thus see that the modulus of the second integral in (20)

can be estimated by

C

∫
Δ\Δε

1

|ζ1| · · · |ζn| ,

which is of order |ε|ω by Lemma 9. It remains to consider the first integral in (20). On the set
Δε we have that Φ|ζ α|2/ε1 and Ψ |ζ β |2/ε2 are larger then some positive constant and so by
multiplying the Taylor expansions of the functions t1 �→ χ1(t1Φ) and t2 �→ χ2(t2Ψ ) at infinity
we get
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χ1
(
Φ

∣∣ζ α
∣∣2

/ε1
)
χ2

(
Ψ

∣∣ζ β
∣∣2

/ε2
) = χ2(∞) + ε2

|ζ β |2 χ̃2
(∣∣ζ β

∣∣2
/ε2, ζ

)
+ χ2(∞)

ε1

|ζ α|2 χ̃1
(∣∣ζ α

∣∣2
/ε1, ζ

)
+ ε1ε2

|ζ α|2|ζ β |2 χ̃1
(∣∣ζ α

∣∣2
/ε1, ζ

)
χ̃2

(∣∣ζ β
∣∣2

/ε2, ζ
)
,

where χ̃j are smooth on [1,∞]×Δ. Now since |ζ α|2/ε1 = t1 and |ζ β |2/ε2 = t2 are independent
variables we conclude that

χ1χ2 − M (χ1χ2) = ε2

|ζ β |2 (χ̃2 − M χ̃2) + ε1

|ζ α|2 χ2(∞)(χ̃1 − M χ̃1)

+ ε1ε2

|ζ α|2|ζ β |2
(
χ̃1χ̃2 − M (χ̃1χ̃2)

)
for ζ ∈ Δε . By Lemmas 6 and 10 we see that the first integral in (20) also is of order |ε|ω as
ε1, ε2 → 0+ and the proof is complete. �
Remark 14. Let us assume that the function Φ is identically 1 in the previous proposition. Then,
instead of adding and subtracting M (χ1χ2) in (20), it is enough to add and subtract χ1M (χ2).
This suggests that one can relax the smoothness assumption on χ1. It is actually possible to take
χ1 to be the characteristic function of [1,∞]. If we define the value of the integral in Proposi-
tion 11 at a point (ε1,0) to be ∫

Δ

1

ζ kα+�β
χ1

(∣∣ζ α
∣∣2

/ε1
)
(ϕ − Mϕ), (22)

where Δ and M are as in the proof above, then the conclusions of Proposition 11 hold for this
choice of χ1. Only minor changes in the proof are needed to see this. One can also check that
(22) is a way of computing

χ1
(|ζ α|2/ε1

)[ 1

ζ kα+�β

]
.ϕ.

The product χ1(|ζ α|2/ε1)[1/ζ kα+�β ] is well defined because the wave front sets of the two cur-
rents behave in the right way, at least for almost all ε1, see [6].

We make another useful observation. Since the function χ̃ (s) = χ(1/s) is smooth at zero and
χ̃ ′(s) := − 1

s2 χ ′(1/s), it follows that s �→ χ ′(1/s)/s is smooth at zero and vanishes for s = 0.
Hence, t �→ χ ′(t)t is smooth on [0,∞], vanishes to the same order at zero as χ , and maps ∞
to 0. From Proposition 11 we thus see that we have

Corollary 15. Assume that χ1, χ2 ∈ C∞([0,∞]) vanish to orders k and � at zero, respectively,
and satisfy χj (∞) = 1. For any smooth and strictly positive functions Φ and Ψ on C

n and any
test form ϕ ∈ Dn,n(C

n) we have

lim +

∫
1

kα+�β
χ1

(
Φ

∣∣ζ α
∣∣2

/ε1
)
χ ′

2

(
Ψ

∣∣ζ β
∣∣2

/ε2
) |ζ β |2

ϕ = 0, (23)

ε1,ε2→0 ζ ε2
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and, moreover, as a function of ε = (ε1, ε2) ∈ [0,∞)2, the integral belongs to all ω-Hölder
classes with 2ω < min{|α|−1, |β|−1}.

6. Regularizations of products of Cauchy–Fantappiè–Leray type currents

We are now in a position to prove our main results. We start with a regularization of the
product Uf ∧ Ug . Recall that if f is function then Uf = [1/f ] times some basis element.

Theorem 16. Let f and g be holomorphic sections (locally non-trivial) of the holomorphic mj -
bundles E∗

j → X, j = 1,2, respectively. Let χ1, χ2 ∈ C∞([0,∞]) be any functions vanishing to
orders m1 and m2 at zero, respectively, and satisfying χj (∞) = 1. Then, for any test form ϕ we
have ∫

χ1
(|f |2/ε1

)
uf ∧ χ2

(|g|2/ε2
)
ug ∧ ϕ → Uf ∧ Ug.ϕ,

as ε1, ε2 → 0+. Moreover, as a function of ε = (ε1, ε2) ∈ [0,∞)2 the integral on the left-hand
side belongs to some Hölder class independently of ϕ.

Proof. Recall that Uf ∧ Ug.ϕ is defined as the value at zero of the meromorphic function

λ �→
∫

|f |2λuf ∧ |g|2λug ∧ ϕ.

Assuming only that χ1 and χ2 vanish to orders k � m1 and � � m2 at zero, respectively, we will
show that ∫

χ1u
f

k,k−1 ∧ χ2u
g

�,�−1 ∧ ϕ →
∫

|f |2λu
f

k,k−1 ∧ |g|2λu
g

�,�−1 ∧ ϕ

∣∣∣
λ=0

(24)

and that the left-hand side belongs to some Hölder class. This will clearly imply the theorem.
We may assume that ϕ has arbitrarily small support after a partition of unity. If ϕ has support
outside f −1(0) ∪ g−1(0) it is easy to check that (24) holds and hence we can restrict to the case
that ϕ has support in a small neighborhood U of a point p ∈ f −1(0) ∪ g−1(0). We may also
assume that U is contained in a coordinate neighborhood and that all bundles are trivial over U .
We let (f1, . . . , fm1) and (g1, . . . , gm2) denote the components of f and g, respectively, with
respect to some holomorphic frames. It follows from Hironaka’s theorem, possibly after another
localization, that there is an n-dimensional complex manifold Ũ and a proper holomorphic map
Π : Ũ → U such that Π is biholomorphic outside the nullset Π∗{f1 · · ·fm1 · g1 · · ·gm2 = 0} and
that this hypersurface has normal crossings in Ũ . Hence we can cover Ũ by local charts, each cen-
tered at the origin, such that Π∗fj and Π∗gj are monomials times non-vanishing functions. The
support of Π∗ϕ is compact because Π is proper and hence, we can cover the support of Π∗ϕ by
finitely many of these charts. We let ρk be a partition of unity on supp(Π∗ϕ) subordinate to this
cover. Now, following [4,16], given monomials μ1, . . . ,μν , one can construct an n-dimensional
toric manifold X and a proper holomorphic map Π̃ :X → C

n
t which is monoidal when expressed

in local coordinates in each chart. Moreover, Π̃ is biholomorphic outside Π̃∗{t1 · · · tn = 0} and
in each chart one of the monomials Π̃∗μ1, . . . , Π̃

∗μν divides all the others. By repeating this
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process, if necessary, and localizing with partitions of unity at each step, we may actually as-
sume that fj = μf,j f̃j and gj = μg,j g̃j where f̃j and g̃j are non-vanishing and μf,j and
μg,j are monomials with the property that μf,ν1 divides all μf,j and μg,ν2 divides all μg,j

for some indices ν1 and ν2. Denote μf,ν1 by ζ α and μg,ν2 by ζ β . It follows that |f |2 = |ζ α|2Φ
and |g|2 = |ζ β |2Ψ where Φ and Ψ are strictly positive functions. Moreover, sf = ζ̄ α s̃f and

u
f

k,k−1 = sf ∧ (∂̄sf )k−1

|f |2k
= 1

ζ kα

s̃f ∧ (∂̄ s̃f )k−1

Φk
= 1

ζ kα
ũ

f

k,k−1,

where ũ
f

k,k−1 is a smooth form and similarly for u
g

�,�−1. In order to prove (24) it thus suffices to
prove ∫

χ1(Φ|ζ α|2/ε1)

ζ kα
ũ

f

k,k−1 ∧ χ2(Ψ |ζ β |2/ε2)

ζ �β
ũ

g

�,�−1 ∧ ϕ̃

→
∫ |ζ α|2λ

ζ kα
Φλũ

f

k,k−1 ∧ |ζ β |2λ

ζ �β
Ψ λũ

g

�,�−1 ∧ ϕ̃

∣∣∣
λ=0

, (25)

where ϕ̃ = ρkj
Π∗

j · · ·ρk1Π
∗
1 ϕ and that the integral on the left-hand side belongs to some Hölder

class. But by Proposition 11 it does belong to some Hölder class and tends to [1/ζ kα+�β ].ũf

k,k−1 ∧
ũ

g

�,�−1 ∧ ϕ̃. One can verify that this indeed is equal to the right-hand side of (25) by integrations
by parts as in e.g. [1]. �
Remark 17. This theorem can actually be generalized to any number of factors Uf . One first
checks that the analogue of Proposition 11 holds for any number of functions χj and then reduces
to this case just as in the proof above. In particular, if fj , j = 1, . . . , p, are holomorphic functions
and χj vanish at 0, we have∫

χ1(|f1|2/ε1)

f1
· · · χp(|fp|2/εp)

fp

ϕ →
[

1

f1
· · · 1

fp

]
.ϕ

unrestrictedly as all εj → 0+. However, we focus on the two factor case since we do not know
how to handle more than two residue factors.

To prove our regularization results for the currents Uf ∧Rg and Rf ∧Rg we have to structure
the information obtained from an application of Hironaka’s theorem more carefully and then use
Proposition 11 and Corollary 15 in the right way. The technical part of this is contained in the
following proposition.

Proposition 18. Assume that χ1, χ2 ∈ C∞([0,∞]) vanish to orders k and � at zero, respectively,
and satisfy χj (∞) = 1. Let α′, α′′, β ′ and β ′′ be multi-indices such that α′, α′′ and β ′ have
pairwise disjoint supports, and α′′

j = 0 if and only if β ′′
j = 0. Assume also that ϕ ∈ Dn,n−1(C

n)

has the property that dζ̄j /ζ̄j ∧ ϕ ∈ Dn,n(C
n) for all j such that α′′

j �= 0. Then for any smooth
and strictly positive functions Φ and Ψ on C

n we have

lim
ε ,ε →0+

∫
1

μkμ�
χ1

(
Φ|μ1|2/ε1

)
∂̄χ2

(
Ψ |μ2|2/ε2

) ∧ ϕ =
[

1

μkζ �β ′′

]
⊗ ∂̄

[
1

ζ �β ′

]
.ϕ,
1 2 1 2 1
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where μ1 = ζ α′+α′′
and μ2 = ζ β ′+β ′′

. Moreover, as a function of ε = (ε1, ε2) ∈ [0,∞)2, the
integral belongs to all ω-Hölder classes with 2ω < min{|α′ + α′′|−1, |β ′ + β ′′|−1}.
Remark 19. Note that the hypotheses on the multi-indices imply that a factor ζj divides both
the monomials μ1 and μ2 if and only if α′′

j �= 0 (or equivalently β ′′
j �= 0). In particular, the tensor

product of the currents is well defined.

Remark 20. We may let k or � or both of them be equal to zero and the conclusions of the
proposition still hold. In case � = 0 one should interpret ∂̄[1/ζ �β ′ ] as zero.

Proof. Let K , L and Kc be the set of indices j such that β ′
j �= 0, β ′′

j �= 0 and β ′
j = 0, respectively.

Clearly L ⊆ Kc . We write ∂̄ = ∂̄K + ∂̄Kc and integrate by parts with respect to ∂̄K to see that∫
1

μk
1μ

�
2

χ1(∂̄K + ∂̄Kc )χ2 ∧ ϕ

= −
∫

1

μk
1μ

�
2

χ ′
1
|μ1|2
ε1

χ2∂̄KΦ ∧ ϕ −
∫

1

μk
1μ

�
2

χ1χ2∂̄Kϕ

+
∫

1

μk
1μ

�
2

χ1χ
′
2
|μ2|2
ε2

(
Ψ

∑
j∈L

β ′′
j

dζ̄j

ζ̄j

+ ∂̄KcΨ

)
∧ ϕ. (26)

Note that ∂̄K does not fall on |μ1|2 because of the hypotheses on the multi-indices. By assump-
tion, dζ̄j /ζ̄j ∧ ϕ ∈ Dn,n(C

n) for j ∈ L and so the first and the last integral on the right-hand
side of (26) tend to zero and has the right modulus of continuity by Corollary 15. The second to
last integral in (26) tends to −[1/(μk

1μ
�
2)].∂̄Kϕ = [1/(μk

1ζ
�β ′′

)] ⊗ ∂̄[1/ζ �β ′ ].ϕ and has the right
modulus of continuity by Proposition 11. �
Theorem 21. Let f and g be holomorphic sections (locally non-trivial) of the holomorphic mj -
bundles E∗

j → X, j = 1,2, respectively. Assume that the section f ⊕g of E∗
1 ⊕E∗

2 → X defines a
complete intersection. Let χ1, χ2 ∈ C∞([0,∞]) be any functions vanishing to orders m1 and m2
at zero, respectively, and satisfying χj (∞) = 1. Then, for any test form ϕ we have∫

χ1
(|f |2/ε1

)
uf ∧ ∂̄χ2

(|g|2/ε2
) ∧ ug ∧ ϕ → Uf ∧ Rg.ϕ (27)

as ε1, ε2 → 0+. Moreover, as a function of ε = (ε1, ε2) ∈ [0,∞)2 the integral on the left-hand
side belongs to some Hölder class independently of ϕ.

Proof. We will assume that χ1 and χ2 only vanish to orders k � m1 and � � m2, respectively,
and show that∫

χ1u
f

k,k−1 ∧ ∂̄χ2 ∧ u
g

�,�−1 ∧ ϕ →
∫

|f |2λu
f

k,k−1 ∧ ∂̄|g|2λ ∧ u
g

�,�−1 ∧ ϕ

∣∣∣
λ=0

. (28)

By arguing as in the proof of Theorem 16 we may assume that |f |2 = |ζ α|2Φ and |g|2 = |ζ β |2Ψ ,
where Φ and Ψ are strictly positive functions and, moreover, that u

f

k,k−1 = ũ
f

k,k−1/ζ
kα for a

smooth form ũ
f and similarly for u

g . What we have to prove is thus
k,k−1 �,�−1
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∫
χ1(Φ|ζ α|2/ε1)

ζ kα
ũ

f

k,k−1 ∧ ∂̄χ2(Ψ |ζ β |2/ε2)

ζ �β
ũ

g

�,�−1 ∧ ϕ̃

→
∫ |ζ α|2λ

ζ kα
Φλũ

f

k,k−1 ∧ ∂̄(|ζ β |2λΨ λ)

ζ �β
ũ

g

�,�−1 ∧ ϕ̃

∣∣∣
λ=0

, (29)

where ϕ̃ = ρkj
Π∗

j · · ·ρk1Π
∗
1 ϕ. After the resolutions of singularities we can in general no longer

say that the pull-back of f ⊕ g defines a complete intersection. On the other hand, we claim that
if ζj divides both ζ α and ζ β then dζ̄j /ζ̄j ∧ ϕ̃ is smooth. In fact, let z be local coordinates on our
original manifold. In order that the integrals in (28) should be non-zero, ϕ has to have degree
n − k − � + 1 in dz̄ and so we can assume that

ϕ =
∑

#J=n−k−�+1

ϕJ ∧ dz̄J .

Since the variety Vf ⊕g = f −1(0) ∩ g−1(0) has dimension n − m1 − m2 < n − k − � + 1 we see
that dz̄J vanishes on Vf ⊕g . The pull-back of dz̄J through all the resolutions Πj can be written∑

I CI (ζ ) dζ̄I and it must vanish on the pull-back of Vf ⊕g . In particular it has to vanish on
{ζj = 0} if ζj divides both ζ α and ζ β . If dζ̄j does not occur in dζ̄I it must be that the coefficient
function CI (ζ ) vanishes on {ζj = 0}. But these functions are anti-holomorphic and so ζ̄j must
divide CI (ζ ). The claim is established. We now write ζ α = ζ α′+α′′

and ζ β = ζ β ′+β ′′
where α′,

α′′ and β ′ have pairwise disjoint supports and α′′ = 0 if and only if β ′′ = 0. Thus, ζj divides
both ζ α and ζ β if and only if α′′

j �= 0, or equivalently, β ′′
j �= 0. According to Proposition 18 the

left-hand side of (29) belongs to some Hölder class and tends to

−
[

1

ζ kα+�β ′′

]
⊗ ∂̄

[
1

ζ �β ′

]
.ũ

f

k,k−1 ∧ ũ
g

�,�−1 ∧ ϕ̃.

One can compute the right-hand side of (29) by integrations by parts as in e.g. [1] to see that it
equals the same thing. �
Remark 22. The form ∂̄χ2(|g|2/ε2) ∧ ug is actually smooth even if χ2 only vanishes to order
m2 at 0. The only possible problem is with the top degree term ∂̄χ2(|g|2/ε2)∧u

g

m2,m2−1. But we
have

C∞(X) � ∂̄
(
χ2

(|g|2/ε2
)
u

g

m2,m2−1

) = ∂̄χ2
(|g|2/ε2

) ∧ u
g

m2,m2−1 + χ2
(|g|2/ε2

)
∂̄u

g

m2,m2−1,

and since u
g

m2,m2−1 is ∂̄-closed (outside Vg) it follows that ∂̄χ2(|g|2/ε2)∧u
g

m2,m2−1 is smooth as
well.

Corollary 23. With the same hypotheses as in Theorem 21 we have∫
∂̄χ1

(|f |2/ε1
) ∧ uf ∧ ∂̄χ2

(|g|2/ε2
) ∧ ug ∧ ϕ → Rf ∧ Rg.ϕ,∫

∂̄χ1
(|f |2/ε1

) ∧ uf χ2
(|g|2/ε2

) ∧ ϕ → Rf .ϕ, (30)
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and ∫
χ1

(|f |2/ε1
) ∧ uf ∧ ∂̄χ2

(|g|2/ε2
) ∧ ϕ → 0 (31)

as ε1, ε2 → 0+, and as functions of ε = (ε1, ε2) ∈ [0,∞)2 the integrals on the left-hand sides
belong to some Hölder classes independently of ϕ.

Proof. We have the following equality of smooth forms:

∇(
∂̄χ1 ∧ uf ∧ χ2u

g
) = −∂̄χ1 ∧ χ2u

g − ∂̄χ1 ∧ uf ∧ ∂̄χ2 ∧ ug + ∂̄χ1 ∧ uf χ2. (32)

The computation rules established in [22], and Theorem 21 now imply that, for any test form ϕ

(of complementary total degree), we have

Rf .ϕ − Rf ∧ Rg.ϕ = ∇(
Rf ∧ Ug

)
.ϕ = −Rf ∧ Ug.∇ϕ

= lim−
∫

∂̄χ1 ∧ uf ∧ χ2u
g ∧ ∇ϕ

= lim
∫

∇(
∂̄χ1 ∧ uf ∧ χ2u

g
) ∧ ϕ.

The integral on the second row is Hölder continuous by Theorem 21 and so, also the integral on
the third row is. By choosing ϕ of appropriate bidegrees the corollary now follows from (32). �

The statements (30) and (31) actually hold with no assumptions on the behavior of χ2 at zero.
This can be seen by using that we know this when χ2 ≡ 1 by Corollary 5, and when χ2 vanishes
to high enough order by the previous corollary.

Assume that f defines a complete intersection and pick a holomorphic function g such that
f ⊕ g also defines a complete intersection and such that g is zero on the singular part of Vf .
After resolving singularities in the proof of Theorem 21 we can find coordinates such that g is
a monomial times a non-vanishing holomorphic function g̃. But g̃ can be incorporated in some
coordinate and we can therefore assume that g̃ ≡ 1. Repeating the proof of Theorem 21 and using
Remark 14 one shows that (30) holds for χ2 equal to the characteristic function of [1,∞]. Then,
if we first let ε1 tend to zero, keeping ε2 fixed, and after that let ε2 tend to zero we get that

lim
ε2→0+ χ2

(|g|2/ε2
)
Rf = Rf .

We remark that the product χ2(|g|2/ε2)R
f is well defined since the wave front sets of

χ2(|g|2/ε2) and Rf behave properly, see e.g. [6]. Since χ2(|g|2/ε2) equals the characteristic
function of {|g|2 > ε2} we have

Corollary 24. If f defines a complete intersection then the Cauchy–Fantappiè–Leray current
Rf has the standard extension property.

This is a well-known result and follows from the fact that Rf equals the Coleff–Herrera
current in the sense of (7). It is even true that χρg(ε)R

f → Rf , ε → 0+, where ρ is a positive



H. Samuelsson / Journal of Functional Analysis 239 (2006) 566–593 587
smooth function and χρg(ε) is the characteristic function of {|ρg| > ε}. In fact, via Hironaka and
toric resolutions one reduces to the case of one function and then one can proceed as in [6].

We know from [22] that if f ⊕ g defines a complete intersection then Rf ∧ Rg consists of
one term of top degree. Hence, it is only the top degree term of ∂̄χ1 ∧ uf ∧ ∂̄χ2 ∧ ug which
gives a contribution in the limit. With the natural choices χ1(t) = tm1/(t + 1)m1 and χ2(t) =
tm2/(t + 1)m2 , Corollary 23 and Remark 22 thus give

Corollary 25. Let f and g be holomorphic sections (locally non-trivial) of the holomorphic mj -
bundles E∗

j → X, j = 1,2, respectively. Assume that the section f ⊕ g of E∗
1 ⊕ E∗

2 → X defines
a complete intersection. Then, for any test form ϕ we have

∫
∂̄
sf ∧ (∂̄sf )m1−1

(|f |2 + ε1)m1
∧ ∂̄

sg ∧ (∂̄sg)
m2−1

(|g|2 + ε2)m2
∧ ϕ → Rf ∧ Rg.ϕ

as ε1, ε2 → 0+, and the integral to the left belongs to some Hölder class independently of ϕ.

For sections f and g of the trivial line bundle we get the result announced in [18].

Corollary 26. Let f and g be holomorphic functions defining a complete intersection. Then for
any test form ϕ we have

∫
∂̄

f̄

|f |2 + ε1
∧ ∂̄

ḡ

|g|2 + ε2
∧ ϕ →

[
∂̄

1

f
∧ ∂̄

1

g

]
.ϕ

as ε1, ε2 → 0+, and the integral to the left belongs to some Hölder class independently of ϕ.

Proof. We consider f and g as sections of (different copies of) the trivial line bundle X×C → X

with the standard metric. Then, suppressing the natural global frame elements, we have sf = f̄

and sg = ḡ. By Corollary 25 we are done since Rf ∧ Rg is the Coleff–Herrera current. �
So far, in this section, we have used one function χ to regularize all terms of uf . One could try

to take different χ ’s for different terms. We recall the natural choices tk/(t +1)k from Corollary 4
and we let u

f
ε = sf /(∇sf + ε) = ∑

sf ∧ (∂̄sf )k−1/(|f |2 + ε)k . The next theorem says that, in
the complete intersection case, the product of two such regularized currents goes unrestrictedly
to the product, in the sense of [22], of the currents.

Theorem 27. Let f and g be holomorphic sections (locally non-trivial) of the holomorphic mj -
bundles E∗

j → X, j = 1,2, respectively. Assume that the section f ⊕ g of E∗
1 ⊕ E∗

2 → X defines
a complete intersection. Then, for any test form ϕ we have∫

uf
ε1

∧ ∇ug
ε2

∧ ϕ → (
Uf − Uf ∧ Rg

)
.ϕ

as ε1, ε2 → 0+, and the integral to the left belongs to some Hölder class independently of ϕ.
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Proof. We first note that

∇ug
ε2

= 1 − ε2

∑
��1

(∂̄sg)
�−1

(|g|2 + ε2)�
,

see the proof of Corollary 4. As Uf ∧ Rf is defined as the value at zero of the analytic continu-
ation (in the sense of currents) of |f |2λuf ∧ ∂̄|g|2λ ∧ ug , what we have to prove is that

∫
sf ∧ (∂̄sf )k−1

(|f |2 + ε1)k
∧ ε2

(∂̄sg)
�−1

(|g|2 + ε2)�
∧ ϕ

→
∫

|f |2λu
f

k,k−1 ∧ ∂̄|g|2λ ∧ u
g

�−1,�−2 ∧ ϕ

∣∣∣
λ=0

(33)

and that the integral on the left belongs to some Hölder class. We first consider the case � = 1.
The right-hand side of (33) should then be interpreted as zero. We write the integrand on the left-
hand side of (33) as χ1(|f |2/ε1)χ2(|g|2/ε2)u

f

k,k−1 ∧ ϕ where χ1(t) = tk/(t + 1)k and χ2(t) =
1/(t + 1). As in the proof of Theorem 16 we may assume that u

f

k,k−1 = ũ
f

k,k−1/ζ
kα , where

ũ
f

k,k−1 is a smooth form, that |f |2 = |ζ α|Φ and that |g|2 = |ζ β |2Ψ , where Φ and Ψ are strictly
positive smooth functions. Since χ2(∞) = 0 the left-hand side of (33) tends to zero and belongs
to some Hölder class by Proposition 11. For � � 2 we proceed as in the proof of Theorem 21 and
we see that we may assume that f = (f1, . . . , fm) and g = (g1, . . . , gm2) with fj = ζ αj

f ′
j and

gj = ζ βj
g′

j where all f ′
j and g′

j are non-vanishing and, moreover, that for some indices ν1 and

ν2 it holds that ζ α := ζ αν1 divides all ζ αj
and ζ β := ζ βν2 divides all ζ βj

. From the same proof
we also see that we may assume that dζ̄j /ζ̄j ∧ ϕ is smooth (and compactly supported) for all ζj

which divide both ζ α and ζ β , since f ⊕ g defines a complete intersection. We use the notation
from the proof of Theorem 21, e.g. |f |2 = |ζ α|2Φ = |ζ α′+α′′ |2Φ , u

f

k,k−1 = ũ
f

k,k−1/ζ
k(α′+α′′)

and |g|2 = |ζ β |2Ψ = |ζ β ′+β ′′ |2Ψ , etc. We also introduce the notation χj (t) for the function
tj /(t + 1)j , and so, in particular, we can write 1/(t + ε)j = χj (t/ε)/tj . For � � 2, one can
verify that

ε2
(∂̄sg)

�−1

(|g|2 + ε2)�
= 1

ζ (�−1)β
∂̄χ�−1

(∣∣ζ β
∣∣2

Ψ/ε2
) ∧ ũ

g

�−1,�−2

+ 1

ζ (�−1)β
χ ′

�−1

(∣∣ζ β
∣∣2

Ψ/ε2
) |ζ β |2

ε2

Ψ

� − 1
∂̄ ũ

g

�−1,�−2. (34)

Using this identity we see that the integral on the left-hand side of (33) splits into two integrals.
The integral corresponding to the last term in (34) tends to zero as ε1, ε2 → 0 and belongs to
some Hölder class according to Corollary 15. By Proposition 18, the integral corresponding to
the first term on the right-hand side of (34) also belongs to some Hölder class and tends to

−
[

1
kα+(�−1)β ′′

]
⊗ ∂̄

[
1

(�−1)β ′

]
.ũ

f

k,k−1 ∧ ũ
g

�−1,�−2 ∧ ϕ (35)

ζ ζ
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as ε1, ε2 → 0. This is seen to be equal to the right-hand side of (33) by using the methods
in [22]. �
7. The Passare–Tsikh example

Let f = z4
1, g = z2

1 + z2
2 + z3

1 and ϕ = ρz̄2g dz1 ∧ dz2 where ρ has compact support and is
identically 1 in a neighborhood of the origin. Since the common zero set of f and g is just the
origin, f and g define a complete intersection. In [15] Passare and Tsikh show that the residue
integral

(ε1, ε2) �→ I
ϕ
f,g(ε1, ε2) =

∫
|f |2=ε1
|g|2=ε2

ϕ

fg

is discontinuous at the origin. More precisely, they show that for any fixed positive number c �= 1
one has limε→0 I

ϕ
f,g(ε

4, cε2) = 0 but limε→0 I
ϕ
f,g(ε

4, ε2) �= 0. On the other hand, by Fubini’s
theorem we have∫

[0,∞)2

ε2ε2I
ϕ
f,g(t1, t2) dt1 dt2

(t1 + ε1)2(t2 + ε2)2
=

∫
ε1 d|f |2

(|f |2 + ε1)2
∧ ε2 d|g|2

(|g|2 + ε2)2
∧ ϕ

fg

=
∫

∂̄
f̄

|f |2 + ε1
∧ ∂̄

ḡ

|g|2 + ε2
∧ ϕ. (36)

Hence, this average of the residue integral is continuous at the origin by Corollary 26. In this
section we will examine the last integral in (36) as ε1, ε2 → 0 explicitly. We will see that it is
continuous at the origin with Hölder exponent at least 1/8 and that it tends to zero. Morally, the
value of I

ϕ
f,g(ε1, ε2) at 0 should be the Coleff–Herrera current associated to f and g multiplied

by z̄2g acting on ρ dz1 ∧ dz2. But both g and z̄2 annihilate the Coleff–Herrera current since g

belongs to the ideal generated by f and g, and z2 belongs to the radical of this ideal. We will
thus verify Corollary 26 explicitly in this special case.

Our first objective is to resolve singularities to obtain normal crossings. This is accomplished
by a blow-up of the origin. The map π :B0C

2 → C
2 looks like π(u, v) = (u,uv) and π(u′, v′) =

(u′v′, u′) in the two standard coordinate systems on B0C
2. The exceptional divisor, E, corre-

sponds to the sets {u = 0} and {u′ = 0} and π is a biholomorphism B0C
2 \ E → C

2 \ {0}. In the
(u, v)-coordinates we have π∗f = u4 and π∗g = u2(1 + v2 + u). The function 1 + v2 + u has
non-zero differential and its zero locus intersects E normally in the two points v = i and v = −i.
Moreover, in the (u′, v′)-coordinates we have π∗f = u′4v′4 and π∗g = u′2(v′2 + 1 + u′v′3). The
zero locus of v′2 + 1 + u′v′3 intersects E normally in the points v′ = −i and v′ = i, which
we already knew, and it does not intersect v′ = 0. Also, the differential of v′2 + 1 + u′v′3
is non-zero on the zero locus of v′2 + 1 + u′v′3. Hence, {π∗f · π∗g = 0} has normal cross-
ings. We assume that ϕ has support so close to the origin that supp(π∗ϕ) ∩ {1 + v2 + u = 0}
has two (compact) components, K1 and K2, and that these components together with the com-
pacts K3 = supp(π∗ϕ) ∩ {v = 0} and K4 = supp(π∗ϕ) ∩ {v =′ 0} are pairwise disjoint. We can
then choose a partition of unity {ρj }4

1 such that
∑

ρj ≡ 1 on the support of π∗ϕ and for each
j = 1,2,3,4, the support of ρj intersects only one of the compacts K1, K2, K3 and K4. We
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choose the numbering such that the support of ρj intersects Kj . The last integral in (36) now
equals

4∑
1

∫
∂̄

π∗f̄
|π∗f |2 + ε1

∧ ∂̄
π∗ḡ

|π∗g|2 + ε2
∧ ρjπ

∗ϕ := I1 + I2 + I3 + I4. (37)

In fact, it is only in I3 we have resonance and we start by considering the easier integrals I1, I2
and I4. The integrals I1 and I2 are similar and we only consider I1. The support of ρ1 is contained
in a neighborhood of p1 = (0, i) in the (u, v)-coordinates and ρ1π

∗ϕ = ρ1π
∗ρūv̄π∗gudu∧ dv.

Integrating by parts we thus see that

I1 = −
∫

∂̄
π∗f̄

|π∗f |2 + ε1

|π∗g|2
|π∗g|2 + ε2

∧ u∂̄(ūv̄ρ1π
∗ρ du ∧ dv).

Since π∗f = u4 depends on u only, the term of ∂̄(ūv̄ρ1π
∗ρ) involving dū does not give any

contribution to I1. Hence we can replace ∂̄(ūv̄ρ1π
∗ρ) by ūϕ1 where ϕ1 is smooth and supported

where ρ1 is. We put ζ1 = u and ζ2 = 1 + v2 + u, which defines a change of variables on the
support of ρ1. In these coordinates π∗f = ζ 4

1 and π∗g = ζ 2
1 ζ2 and so we get

I1 = −
∫

1

ζ 3
1

∂̄χ
(∣∣ζ 4

1

∣∣2
/ε1

)
χ

(∣∣ζ 2
1 ζ2

∣∣2
/ε2

) ∧ ζ̄1ϕ1,

where χ(t) = t/(t + 1). We also write ∂̄χ(|ζ 4
1 |2/ε1) = 4χ̃ (|ζ 4

1 |2/ε1) dζ̄1/ζ̄1, where χ̃ (t) =
t/(t + 1)2. To proceed we replace (the coefficient function of) dζ̄1/ζ̄1 ∧ ζ̄1ϕ1 by its Taylor ex-
pansion of order one, considered as a function of ζ1 only, plus a remainder term |ζ1|2B(ζ ), with
B bounded. The terms corresponding to the Taylor expansion do not give any contribution to I1
since we have anti-symmetry with respect to ζ1 for these terms. Hence, we obtain

|I1| �
∫
Δ

∣∣∣∣ |ζ1|2B(ζ )

ζ 3
1

χ̃
(∣∣ζ 4

1

∣∣2
/ε1

)
χ

(∣∣ζ 2
1 ζ2

∣∣2
/ε2

)∣∣∣∣, (38)

where Δ is a polydisc containing the support of ϕ1. We estimate |B(ζ )| and χ(|ζ 2
1 ζ2|2/ε2) by

constants, and on the sets Δε = {ζ ∈ Δ; |ζ 4
1 |2 � ε1} and Δ \ Δε we use that χ̃ (|ζ 4

1 |2/ε1) �
ε1/|ζ 4

1 |2 and χ̃ (|ζ 4
1 |2/ε1) � |ζ 4

1 |2/ε1, respectively, to see that the right-hand side of (38) is of the
size |ε|1/8.

To deal with I4 we proceed as follows. The support of ρ4 is contained in a neighborhood of
p4 = (0,0) in the (u′, v′)-coordinates and π∗f = u′4v′4 and π∗g = u′2(1 + v′2 + u′v′3) := u′2g̃.
On the support of ρ4 we have g̃ �= 0. The multi-indices (4,4) and (2,0) are linearly independent
and so we can make the factor g̃ disappear. Explicitly, choose a square root g̃1/2 of g̃ and put
ζ1 = u′g̃1/2 and ζ2 = v′g̃−1/2. In these coordinates π∗f = ζ 4

1 ζ 4
2 and π∗g = ζ 2

1 . One also checks
that ρ4π

∗ϕ = |ζ1|2π∗gϕ4 where ϕ4 is a test form of bidegree (2,0). After an integration by parts
we see that

I4 =
∫

π∗f̄
∗ 2

∂̄
|π∗g|2
∗ 2

∧ ∂̄
(|ζ1|2ϕ4

)
. (39)
|π f | + ε1 |π g| + ε2
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Since π∗g = ζ 2
1 only depends on ζ1 we may replace ∂̄(|ζ1|2ϕ4) by |ζ1|2∂̄ϕ4 in (39). Computing

∂̄(|π∗g|2/(|π∗g|2 + ε2)) we find that

I4 = 2
∫

1

ζ 3
1 ζ 4

2

χ
(∣∣ζ 4

1 ζ 4
2

∣∣2
/ε1

)
χ̃

(∣∣ζ 2
1

∣∣2
/ε2

)
dζ̄1 ∧ ∂̄ϕ4.

With abuse of notation we write the test form dζ̄1 ∧ ∂̄ϕ4 as ϕ4 dζ ∧ dζ̄ . Let M = M
1,2
1,2 be the

operator defined in Lemma 6. Explicitly, we have

Mϕ4 = M1
1ϕ4 + M2

2ϕ4 − M1
1M2

2ϕ4

= M1
1

(
ϕ4 − M2

2ϕ4
) + M2

2

(
ϕ4 − M1

1ϕ4
) + M1

1 M2
2ϕ4.

All of the following properties will not be important for this computation but to illustrate
Lemma 6 we note that the second expression of Mϕ reveals that Mϕ4 can be written as a sum
of terms φIJ (ζ )ζ I ζ̄ J with I1 + J1 � 1 and I2 + J2 � 2 and, moreover, that φIJ is independent
of at least one variable and is of the size O(|ζ1|2) if it depends on ζ1 and of the size O(|ζ2|3)
if it depends on ζ2. By Lemma 6 we also have ϕ4 = Mϕ4 + |ζ1|2|ζ2|3B(ζ ) for some bounded
function B and so

I4 =
∫
Δ

1

ζ 3
1 ζ 4

2

χχ̃Mϕ4 +
∫
Δ

1

ζ 3
1 ζ 4

2

χχ̃ |ζ1|2|ζ2|3B(ζ ) =: I4.1 + I4.2,

where Δ is a polydisc containing the support of ϕ4. By anti-symmetry I4.1 = 0. To esti-
mate I4.2 we use that |χB| is bounded by a constant and that χ̃ (Ψ |ζ 2

1 |2/ε2) � ε2/|ζ 2
1 |2 and

χ̃(Ψ |ζ 2
1 |2/ε2) � |ζ 2

1 |2/ε2 on the sets Δε = {ζ ∈ Δ; |ζ 2
1 |2 � ε2} and Δ \ Δε , respectively. Hence,

|I4.2| �
∫
Δε

ε2

|ζ 2
1 |2|ζ1||ζ2|

+
∫

Δ\Δε

|ζ 2
1 |2

ε2|ζ1||ζ2| , (40)

which is seen to be of the size |ε|1/4.
It remains to take care of I3. We are now working close to u = v = 0 and π∗f = u4 and

g = u2(1 + v2 + u) := u2g̃. The multi-indices are linearly dependent and we cannot dispose of
the non-zero factor g̃. We rename our variables (u, v) = (ζ1, ζ2) and proceed in precisely the
same way as we did when we were considering I1. We get

I3 = −4
∫

1

ζ 3
1

χ̃
(∣∣ζ 4

1

∣∣2
/ε1

)
χ

(
Φ

∣∣ζ 2
1

∣∣2
/ε2

)
ϕ3 dζ ∧ dζ̄ ,

where Φ = |g̃|2 is a strictly positive smooth function and ϕ3 is smooth with compact support. As
before, we replace ϕ3 by M1

ζ1
ϕ3 + |ζ1|2B(ζ ). The integral corresponding to |ζ1|2B(ζ ) satisfies

the same estimate as the one in (38) and hence is of the size |ε1|1/8. We cannot use anti-symmetry
directly to conclude that the integrals corresponding to the other terms in the Taylor expansion
tend to zero since the factor g̃ is present. We illustrate why this is true anyway by considering
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the integral corresponding to the term ϕ3(0, ζ2). Let Δ be a polydisc containing the support of ϕ3
and consider ∫

Δ

1

ζ 3
1

χ̃
(∣∣ζ 4

1

∣∣2
/ε1

)
χ

(
Φ

∣∣ζ 2
1

∣∣2
/ε2

)
ϕ3(0, ζ2). (41)

We introduce the smoothing parameter t = |ζ 2
1 |2/ε2 as an independent variable and write

χ(Φt) = χ(Φt) − M1
ζ1

χ(Φt) + M1
ζ1

χ(Φt) := |ζ1|2B(t, ζ ) + M1
ζ1

χ(Φt).

Here B is bounded on [0,∞] × Δ. Substituting into (41) we obtain one integral corresponding
to |ζ1|2B(|ζ 2

1 |2/ε2, ζ ), which satisfies an estimate like (38), while the integral corresponding to
M1

ζ1
χ(Φ|ζ 2

1 |2/ε2) is zero since we have anti-symmetry with respect to ζ1. Hence |I3| � |ε|1/8.
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