On H ochschild Cohomology of Preprojective A Igebras, II

Karin Erdmann
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, United Kingdom

metadata, citation and similar papers at core.ac.uk

Nicole Snashall
Department of Mathematics, University of Leicester, Leicester, LE1 7RH, United Kingdom
Communicated by Kent R. Fuller

R eceived A ugust 27, 1996

Abstract

We study the Hochschild cohomology of a finite-dimensional preprojective algebra; this is periodic by a result of A. Schofield. We determine the ring structure of the Hochschild cohomology ring given by the Y oneda product. As a result we obtain an explicit presentation by generators and relations. © 1998 A cademic Press

Let Λ be a preprojective algebra of type A_{n} over a field K. In [ES] bases and dimensions of the Hochschild cohomology groups $H H^{i}(\Lambda)$ were obtained. In this second paper we determine the ring structure of $H H^{*}$ given by the Y oneda product for type A_{n}. By [GS, Sect. 13], this ring structure is the same as that given by the cup product.
We use the notation and the results of the first part; a summary of the main facts needed here is given in Subsection 1.1 below. As far as the results of this paper are concerned, Table I at the end describes the multiplication of homogeneous elements. M oreover, we obtain a presentation of $H H^{e v}(\Lambda)$ (the part of even degree) and of $H H^{*}(\Lambda)$ by generators and relations (Section 5). In particular, the ring is commutative. We note that the space $H H^{1}(\Lambda) \times H H^{2}(\Lambda)$ depends on the characteristic of the field. Namely, those fields whose characteristic divides $n+1$ are different.

U sing the isomorphism $H H^{i}(\Lambda) \cong \operatorname{Hom}\left(\Omega^{i} \Lambda, \Lambda\right)$, we may consider an element of $H H^{i}(\Lambda)$ as the class of a map $\Omega^{i}(\Lambda) \rightarrow \Lambda$. For $[f] \in H H^{i}(\Lambda)$ and $[g] \in H H^{j}(\Lambda)$ the product $[f][g]:=\left[f \circ \Omega^{i} g\right]$ in $H H^{i+j}(\Lambda)$. We usually omit [-]; this should not cause confusion. For $1 \leq i \leq j \leq 5$, we compute the products of $H H^{i}(\Lambda)$ with $H H^{j}(\Lambda)$. The remaining products then follow since the projective resolution is periodic, and since the multiplication is graded-commutative.

1. SOME PRODUCTS $H H^{i} \times H H^{j}$ WITH i OR j ODD

1.1. Let Λ be a preprojective algebra of type A_{n} over a field K. Then Λ is given by quiver and relations in Sections I.1.1 and I.3.3. (We reference [ES] by I throughout.) First we will summarize results needed. The $\Lambda-\Lambda$ bimodule Λ is periodic of period 6 (or 2 if $n=2$); in [S] a minimal projective resolution of Λ was determined which we will now describe.

Let $\tilde{\nu}$ be the automorphism of Λ of order two as defined in Section 1.3.3. Define projective $\Lambda-\Lambda$ bimodules $P_{0}=P_{2}=\oplus_{i} \Lambda\left(e_{i} \otimes e_{i}\right) \Lambda$ and $P_{1}=\oplus_{\alpha} \Lambda\left(e_{i \alpha} \otimes e_{t \alpha}\right) \Lambda$, and define homomorphisms $\delta: P_{1} \rightarrow P_{0}$ and $R: P_{2} \rightarrow P_{1}$ by

$$
\begin{gathered}
\delta\left(e_{i \alpha} \otimes e_{t \alpha}\right)=\alpha \otimes e_{t \alpha}-e_{i \alpha} \otimes \alpha=: x_{\alpha} \\
R\left(e_{i} \otimes e_{i}\right)=\sum_{i \alpha=i} e_{i \alpha} \otimes \bar{\alpha}+\alpha \otimes e_{t \bar{\alpha}}=: \sigma_{i} .
\end{gathered}
$$

M oreover, let $u: P_{0} \rightarrow \Lambda$ be the multiplication map.
Theorem [S]. We have an exact sequence of $\Lambda-\Lambda$ bimodules

$$
0 \rightarrow{ }_{1} \Lambda_{\tilde{\nu}} \rightarrow P_{2} \xrightarrow{R} P_{1} \xrightarrow{\delta} P_{0} \xrightarrow{u} \Lambda \rightarrow 0,
$$

where ${ }_{1} \Lambda_{\tilde{\nu}}$ is the bimodule structure on Λ where the action on the right is twisted by the automorphism $\tilde{\nu}$ of Λ, of order 2 .

Now one observes that ${ }_{1} \Lambda_{\tilde{\nu}} \otimes_{\Lambda}\left({ }_{1} \Lambda_{\tilde{\nu}}\right) \cong \Lambda$ and hence if one tensors the above exact sequence with ${ }_{1} \Lambda_{\tilde{\nu}}$ one obtains the other half of a projective resolution of Λ and it has length 6 .
As in Section 1.2.2, we define elements $\zeta_{i} \in \oplus \Lambda\left(e_{i} \otimes e_{i}\right) \Lambda$ by the formula

$$
\zeta_{i}:=\sum_{x \in e_{i} B}(-1)^{\operatorname{deg}(x)} x \otimes x^{*},
$$

where B is a basis of Λ as described in Section I.4. We have fixed generators ω_{i} of the socle of $e_{i} \Lambda$ and then $*$ satisfies $v v^{*}=\omega_{i}$. M oreover, $N:={ }_{1} \Lambda_{\tilde{\nu}}$ is generated by the ζ_{i} as a bimodule.
We shall use further notation. Define

$$
\begin{gathered}
w=\sum_{i} e_{i} \otimes e_{i+1} \in P_{1}, \quad \bar{\omega}=\sum_{i} e_{e+1} \otimes e_{i} \in P_{1}, \\
\eta=\sum_{i} a_{i} \in \Lambda, \quad \bar{\eta}=\sum_{i} \bar{a}_{i} \in \Lambda .
\end{gathered}
$$

Let also $m=(n-1) / 2$ if n is odd and $m=(n-2) / 2$ otherwise.
1.1.1. In [ES] the following bases of the spaces $H H^{k}(\Lambda)$ were obtained.
(0) (I.5.2) $H H^{0}(\Lambda)$ has basis $\left\{z_{i}: 0 \leq i \leq m\right\}$ with $z_{0}=1$ and z_{j} of degree $2 j$. M oreover, $H H^{6}(\Lambda) \cong H H^{0}(\Lambda)$ if n is even. For n odd we have $H H^{6}(\Lambda) \cong H H^{0}(\Lambda) /\left\langle z_{m}\right\rangle$.
(1) (I.6.3) $H H^{1}(\Lambda)$ has basis $\left\{g_{i}: 0 \leq i \leq n-m-2\right\}$ where g_{i} is identified with the map $g_{i}(w)=0, g_{i}(\bar{w})=z_{i} \bar{\eta}$.
(2) (I.7.2) $H H^{2}(\Lambda)$ has basis $\left\{f_{i}: 0 \leq i \leq n-m-2\right\}$ where

$$
f_{i}\left(\sigma_{j}\right)= \begin{cases}e_{i}, & j=i \\ (-1)^{n} e_{\nu(i)}, & j=\nu(i) \\ 0, & \text { otherwise }\end{cases}
$$

(3) (I.7.5) $H H^{3}(\Lambda)$ is a quotient of (N, Λ). A basis of (N, Λ) is given by elements $h_{i}, 0 \leq i \leq n-1$, where $h_{i}\left(\zeta_{j}\right)=\delta_{i j} \omega_{j}$. Then a basis of $H H^{3}(\Lambda)$ is given by the classes of h_{0}, \ldots, h_{n-m-2}. Moreover, we have [h_{i}] $=(-1)^{n}\left[h_{\nu(i)}\right]$ in $H H^{3}(\Lambda)$ and if n is odd then $\left[h_{m}\right]=0$.
(4) (I.9.4) $H H^{4}(\Lambda)$ has basis $\left\{\psi_{0}, \ldots, \psi_{n-m-2}\right\}$ where for n odd

$$
\psi_{i}\left(x_{a} \otimes \zeta_{t a}\right)= \begin{cases}z_{i} \bar{a}_{m-1}, & a=a_{m} \\ -z_{i} \bar{a}_{m}, & a=\bar{a}_{m} \\ 0, & \text { otherwise }\end{cases}
$$

and for n even

$$
\psi_{i}\left(x_{a} \otimes \zeta_{t a}\right)= \begin{cases}z_{i} e_{m}, & a=a_{m} \\ z_{i} e_{m+1}, & a=\bar{a}_{m} \\ 0, & \text { otherwise }\end{cases}
$$

(5) (I.8.5) and (I.1.2) $H H^{5}(\Lambda)$, as a quotient of ($\mathrm{Im} R \otimes N, \Lambda$), has basis $\left\{\theta_{i}: 0 \leq i \leq n-m-2\right\}$ where $\theta_{i}\left(\sigma_{j} \otimes \zeta_{j}\right)=\delta_{j m} a_{m} z_{i}$ if n is even, and for n odd $\theta_{i}\left(\sigma_{j} \otimes \zeta_{j}\right)=\delta_{j m} a_{m} \bar{a}_{m} z_{i}$.
1.1.2. The ring $H H^{0}(\Lambda)$ is local, with radical generated by z_{1}. We have $z_{j} z_{k}=(-1)^{j k} z_{j+k}$ if $j+k \leq m$ and 0 otherwise. The $Z(\Lambda)$-modules $H H^{i}(\Lambda)$ are cyclic for $i=1,4,5$ generated by $g_{0}, \psi_{0}, \theta_{0}$, respectively. The $Z(\Lambda)$-modules $H H^{i}(\Lambda)$ for $i=2,3$ are annihilated by the radical of $Z(\Lambda)$. We shall use these facts tacitly for simplifying calculations.

Now we shall determine products of homogeneous elements where one factor has odd degree; these are very often zero and they are relatively easy to find.

1.2. $H H^{1}(\Lambda) \times H H^{1}(\Lambda)=0$.

Let $f, g \in H H^{1}(\Lambda)$. Then there are elements $z_{f}, z_{g} \in Z(\Lambda)$ such that $f(w)=0=g(w)$ and $f(\bar{w})=z_{f} \bar{\eta}, g(\bar{w})=z_{g} \bar{\eta}$. Then f may be lifted to the map $\hat{f}: P_{1} \rightarrow P_{0}$ where $w \mapsto 0, \bar{w} \mapsto z_{f}\left(\sum_{i=0}^{n-1} e_{i} \otimes e_{i}\right) \bar{\eta}$. Now $\hat{f}\left(\sigma_{i}\right)=$ $a_{i} z_{f}\left(e_{i+1} \otimes e_{i+1}\right) \bar{a}_{i}+z_{f}\left(e_{i} \otimes e_{i}\right) \bar{a}_{i-1} a_{i-1}=z_{f}\left(a_{i} \otimes e_{i+1}-e_{i} \otimes a_{i}\right) \bar{a}_{i}=$ $z_{f} x_{a_{i}} \bar{a}_{i}$. Thus $\Omega f: \operatorname{Ker} \delta \rightarrow \operatorname{Ker} u$ is given by $\sigma_{i} \mapsto f\left(\sigma_{i}\right)=z_{f} x_{a_{i}} \bar{a}_{i}$ for $i=0, \ldots, n-2$. So $g \cdot f=[g \circ \Omega f]=0$.

1.3. $H H^{1}(\Lambda) \times H H^{3}(\Lambda)=0$.

Let $h_{i} \in H H^{3}(\Lambda)$ be one of the basis elements as given in Subsection 1.1. The map $\hat{h}_{i}: P_{0} \otimes N \rightarrow P_{0}$ given by

$$
\hat{h}_{i}:\left(e_{j} \otimes e_{j}\right) \otimes \zeta_{j} \mapsto \begin{cases}e_{i} \otimes \omega_{i} & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

is a lifting of h_{i}. Then Ωh_{i} is the restriction of \hat{h}_{i} to $\operatorname{Ker} u \otimes N$. One finds that

$$
\Omega h_{i}\left(x_{a} \otimes \zeta_{t a}\right)= \begin{cases}x_{a} \omega_{i} & \text { if } t a=i \\ 0 & \text { otherwise }\end{cases}
$$

To compute $H H^{1}(\Lambda) \times H H^{3}(\Lambda)$, let $g \in H H^{1}(\Lambda)$; then $\left(g \circ \Omega h_{i}\right)\left(x_{\bar{a}_{i}} \otimes\right.$ $\left.\zeta_{i}\right) \in g\left(x_{\bar{a}_{i}}\right) \operatorname{soc} \Lambda$ and this lies in $Z(\Lambda) J$ soc Λ which is zero.
1.4. $H H^{2}(\Lambda) \times H H^{3}(\Lambda)$ is 1-dimensional. We have $f_{i} \cdot h_{j}=0$ for $i \neq j$ and, for $0 \leq i \leq n-m-2, f_{i} \cdot h_{i}=\theta_{n-m-2}$.

Proof. Suppose $h_{i} \in H H^{3}(\Lambda)$ is as in Subsection 1.1; we take Ωh_{i} as in Subsection 1.3. The first step is to find $\Omega^{2} h_{i}$. The map $\tilde{h}_{i}: P_{1} \otimes N \rightarrow P_{1}$ where

$$
\tilde{h}_{i}:\left(e_{i a} \otimes e_{t a}\right) \otimes \zeta_{t a} \mapsto \begin{cases}e_{i a} \otimes \omega_{i} & \text { if } t a=i \\ 0 & \text { otherwise }\end{cases}
$$

provides a lifting of Ωh_{i}. It is then easy to verify that the restriction of \tilde{h}_{i} to Ker $\delta \otimes N$ is given by

$$
\Omega^{2} h_{i}: \sigma_{j} \otimes \zeta_{j} \mapsto \begin{cases}a_{i} \otimes \omega_{i}+\bar{a}_{i-1} \otimes \omega_{i}=\sigma_{i} \omega_{i} & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

Now we may compute $H H^{2}(\Lambda) \times H H^{3}(\Lambda)$. Let $f_{l} \in H H^{2}(\Lambda)$ be a basis element as given in Subsection 1.1. Then $f_{l} \circ \Omega^{2} h_{i}=0$ if $l \neq i$ and, if $l=i$, then

$$
f_{i} \circ \Omega^{2} h_{i}: \sigma_{j} \otimes \zeta_{j} \mapsto \begin{cases}\omega_{i} & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

For $0 \leq k \leq m$, define $\beta_{k} \in\left(P_{0}, N\right)$ by $\beta_{k}\left(e_{k} \otimes e_{k}\right)=\omega_{k} \zeta_{\nu(k)}$ and $\beta_{k}\left(e_{j}\right.$ $\left.\otimes e_{j}\right)=0$ for $j \neq k$. Then for $i \leq n-m-2$ the map $\beta_{i} \circ R$ is identified with $f_{i} \circ \Omega^{2} h_{i}$, and moreover $\beta_{m}=\theta_{n-m-2}$, a basis element in $H H^{5}(\Lambda)$. So we are done if we show that the class of $\beta_{i}-\beta_{i+1}$ in $H H^{5}(\Lambda)$ is zero.

For $i<m$, let $\mu_{i}=a_{i}^{*} \zeta_{\nu(i)} \in e_{i+1} N e_{i}$; then $\omega_{i} \zeta_{\nu(i)}=a_{i} \mu_{i}$. With the notation of Section I.8.3, the Λ^{3}-homomorphism with

$$
\phi_{\bar{a}_{i}} \circ R: e_{k} \otimes e_{k} \mapsto \begin{cases}a_{i} \mu_{i} & \text { if } k=i \\ \mu_{i} a_{i} & \text { if } k=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

is in the image of the map $\iota^{*}:\left(P_{1}, N\right) \rightarrow(\operatorname{Im} R, N)$. We have, using Section I.3.3, that

$$
\mu_{i} a_{i}=a_{i}^{*} \zeta_{\nu(i)} a_{i}=a_{i}^{*}\left(-\bar{a}_{\nu(i)-1} \zeta_{\nu(i)-1}\right)=-\omega_{i+1} \zeta_{\nu(i)-1}=-a_{i+1} \mu_{i+1} .
$$

Hence $\beta_{i}-\beta_{i+1}=\phi_{\bar{a}_{i}} \circ R$.

1.5. $H H^{3}(\Lambda) \times H H^{3}(\Lambda)=0$.

Let $h, h^{\prime} \in H H^{3}(\Lambda)$, then $h, h^{\prime}: N \rightarrow \Lambda$. The image is contained in $\operatorname{soc} \Lambda$ (I.7.3). We have that $\Omega^{3} h^{\prime}: N \otimes N \rightarrow N$ can be identified with a map $h^{\prime \prime} \otimes 1$ for some $h^{\prime \prime} \in(N, \Lambda)$. Then the image of $h^{\prime \prime}$ is contained in the socle of Λ, hence in J, and we deduce that the image of $\Omega^{3} h^{\prime}$ is contained in $J N$ and then $h \circ \Omega^{3} h^{\prime}=0$.
1.6. $H H^{3}(\Lambda) \times H H^{4}(\Lambda)=0$ for n odd. If n is even then

$$
h_{i} \cdot \psi_{0}= \begin{cases}g_{m} \cdot 1 & \text { if } i=m \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $\psi_{0} \in H H^{*}(\Lambda)$ as defined in Subsection 1.1; recall that it is a map from Ker $u \otimes N$ to Λ. We consider first $\Omega^{3} h_{i} \circ \psi_{0}$. If n is odd then this is zero. Namely, the image of ψ_{0} is contained in J. By the argument of Subsection 1.5, $h \circ \psi_{0}=0$ for any homomorphism $h: \Lambda \rightarrow N$.

A ssume now that n is even. In Subsection 1.6.1 below we give a formula for a lifting $\Omega^{3} h_{i}$. We see for $i<m$, that $\Omega^{3} h_{i} \circ \psi_{0}=0$, since the image of ψ_{0} is generated by elements in $\left(e_{m}+e_{m+1}\right) \Lambda\left(e_{m}+e_{m+1}\right) \subseteq \operatorname{Ker}\left(\Omega^{3} h_{i}\right)$.
Suppose now that $i=m$. Then $\Omega^{3} h_{m}$ takes $\zeta_{m+1} \otimes \zeta_{m}$ (i.e., e_{m+1}) to $\zeta_{m+1} \omega_{m}$ and all other e_{i} are mapped to zero. So the composition with ψ_{0} takes $x_{\bar{a}_{m}} \otimes \zeta_{m}$ to $\zeta_{m+1} \omega_{m}$ and all other generators to zero. This is now a map from Ker $u \otimes N$ to N. Let $\beta=\Omega^{3} h_{m} \circ \psi_{0}$; we need $\Omega^{-3} \beta$.

Define $\beta_{1}: P_{0} \otimes N \rightarrow P_{0}$ by $\beta_{i}\left(e_{i} \otimes e_{i} \otimes \zeta_{i}\right)=\delta_{i m}\left(-\left(\bar{a}_{m}\right)^{*}\left(e_{m} \otimes\right.\right.$ $\left.e_{m}\right) \omega_{m}$). Then β_{1} is a lifting of $\Omega^{-1} \beta$ and hence $\Omega^{-1} \beta\left(\zeta_{i}\right)=$ $\delta_{i m}\left(-\left(\bar{a}_{m}\right)^{*} a_{m} \otimes \omega_{m}\right)$.

Define $\beta_{2}: P_{0} \rightarrow P_{1}$ by $\beta_{2}\left(e_{i} \otimes e_{i}\right)=\delta_{i m}\left(-\left(\bar{a}_{m}\right) * a_{m} \otimes e_{m}\right)$. Then β_{2} is a lifting of $\Omega^{-2} \beta$ and so we have $\Omega^{-2} \beta\left(\sigma_{i}\right)=\delta_{i m}\left(\left(\bar{a}_{m}\right)^{*} a_{m} \otimes \bar{a}_{m}\right)$.

Define $\beta_{3}: P_{1} \rightarrow P_{0}$ by

$$
e_{i a} \otimes e_{t a} \mapsto \begin{cases}\left(\bar{a}_{m}\right)^{*} a_{m}\left(e_{m+1} \otimes e_{m+1}\right) & \text { if } a=a_{m} \\ 0 & \text { otherwise }\end{cases}
$$

Then β_{3} is a lifting of $\Omega^{-3} \beta$ and hence $\Omega^{-3} \beta$ takes x_{a} to $\left(\bar{a}_{m}\right)^{*} a_{m}$ if $a=a_{m}$ and to zero otherwise. One finds that $\left(\bar{a}_{m}\right)^{*} a_{m}=\omega_{m}$. So this is the map which takes $w \mapsto \omega_{m}$ and $\bar{w} \mapsto 0$. Now consider the basis element $g_{m} \in H H^{1}(\Lambda)$. It takes $w \mapsto 0$ and $\bar{w} \mapsto z_{m} \bar{\eta}=\omega_{m+1}$. Let $\gamma:=\Omega^{-3} \beta-g_{m}$. By Subsection I.6.1 we see that the class of γ is zero in $H H^{1}(\Lambda)$. This completes the proof.
1.6.1. Let $h_{i}: N \rightarrow \Lambda$. Then $\Omega^{3} h_{i}$ can be taken as the map $N \otimes N \rightarrow N$ which takes $\zeta_{j} \otimes \zeta_{\nu(j)}$ to $\zeta_{\nu(i)} \omega_{i}$ if $j=\nu(i)$ and to zero otherwise.

Proof. In Subsection 1.4 we found $\Omega^{2} h_{i}$. Define $\gamma: P_{0} \otimes N \rightarrow P_{0}$ by $\gamma\left(e_{j} \otimes e_{j} \otimes \zeta_{j}\right)=\delta_{i j}\left(e_{i} \otimes \omega_{i}\right)$. This is a lifting of $\Omega^{2} h_{i}$. The statement follows, using $\omega_{\nu(i)} \otimes \omega_{i}=(-1)^{n-1} \zeta_{\nu(i)} \omega_{i}$ which is easy to check (with Section I.2.2).
1.7. $H H^{1}(\Lambda) \times H H^{4}(\Lambda)=H H^{5}(\Lambda)$. If $g_{0} \in H H^{1}(\Lambda)$ and $\psi_{0} \in$ $H H^{4}(\Lambda)$ then

$$
g_{0} \cdot \psi_{0}=(-1)^{n} \theta_{0} .
$$

Proof. It suffices to prove the formula for the product since the elements generate the corresponding Hochschild cohomology groups. Let $\psi=\psi_{0}$; then the homomorphism $\hat{\psi}: P_{1} \otimes N \rightarrow P_{0}$ given by

$$
\hat{\psi}:\left(e_{i a} \otimes e_{t a}\right) \otimes \zeta_{t a} \mapsto \begin{cases}e_{i a} \otimes e_{i a} \psi\left(x_{a} \otimes \zeta_{t a}\right) & \text { if } a=a_{m} \text { or } \bar{a}_{m} \\ 0 & \text { otherwise }\end{cases}
$$

is a lifting for ψ. Thus $\Omega \psi:$ Ker $\delta \otimes N \rightarrow \mathrm{Ker} u$ can be taken as

$$
\Omega \psi: \sigma_{i} \otimes \zeta_{i} \mapsto \begin{cases}x_{a_{m}} \psi\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right) & \text { if } i=m \\ x_{\bar{a}_{m}} \psi\left(x_{a_{m}} \otimes \zeta_{m+1}\right) & \text { if } i=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

Now let $g_{0} \in H H^{1}(\Lambda)$. Then the composition $g_{0} \circ \Omega \psi$ is the map

$$
\sigma_{i} \otimes \zeta_{i} \mapsto \begin{cases}\bar{a}_{m} F & \text { if } i=m+1 \\ 0 & \text { otherwise; }\end{cases}
$$

here we write $F=\psi\left(x_{a_{m}} \otimes \zeta_{m+1}\right)$. In order to identify the class of this map as an element of $H H^{5}(\Lambda)$, we consider the Λ^{e}-homomorphism $\beta: \operatorname{Im} R \rightarrow N$ such that $\beta\left(\sigma_{m+1}\right)=\bar{a}_{m} F \zeta_{\nu(m+1)}$ and $\beta\left(\sigma_{j}\right)=0$ otherwise.
$H H^{5}(\Lambda)$ is a quotient of (Im $\left.R, N\right)$. Noting that $F \zeta_{\nu(m+1)} \in e_{m} N e_{m+1}$, we get from Section I.8.3 that there is a map $\phi \in(I \mathrm{~m} R, N)$ whose class in $H H^{5}(\Lambda)$ is zero which is given by

$$
\phi\left(\sigma_{i}\right)= \begin{cases}\left(F \zeta_{\nu(m+1)}\right) \bar{a}_{m} & \text { if } i=m \\ \bar{a}_{m}\left(F \zeta_{\nu(m+1)}\right) & \text { if } i=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\beta-\phi$ is zero except at σ_{m}, and it takes σ_{m} to $-F \zeta_{\nu(m+1)} \bar{a}_{m}$. If n is odd then $F=\bar{a}_{m-1}$ and one finds that this value is equal to $-a_{m} \bar{a}_{m} \zeta_{m}$. If n is even then $F=e_{m}$ and the value is $a_{m} \zeta_{m+1}$. This gives the statement.

1.8. If i is odd then $H H^{i}(\Lambda) \times H H^{5}(\Lambda)=0$.

From Subsection 1.7 and using associativity, $H H^{1}(\Lambda) \times H H^{5}(\Lambda)=$ $\left(H H^{1}(\Lambda) \times H H^{1}(\Lambda)\right) \times H H^{4}(\Lambda)$. Thus, from Subsection 1.2, $H H^{1}(\Lambda) \times$ $H H^{5}(\Lambda)=0$. Similarly one proves the other parts.

$$
\text { 2. } \mathrm{ON} H H^{1} \times H H^{2}
$$

2.1. We start with some technical preparation; this will be used in the following two sections. The first part is a tool to calculate images under maps Ker $u \rightarrow \Lambda$. Such maps are defined on elements of the form $x_{b}=b$ $\otimes e_{t b}-e_{i b} \otimes b$ for b an arrow. Suppose $p \in K \mathscr{Q}$ is a monomial of degree k, say $p=b_{1} b_{2} \cdots b_{k}$; then we set

$$
x_{p}=x_{b_{1}} b_{2} \cdots b_{k}+b_{1} x_{b_{2}} b_{3} \cdots b_{k}+\cdots+b_{1} b_{2} \cdots b_{k-1} x_{b_{k}} .
$$

Then $x_{p} \in \operatorname{Ker} u$. Note that this depends on the monomial.

Corollary. Suppose $g \in H H^{1}(\Lambda)$, where $g(w)=0$ and $g(\bar{w})=z_{g} \bar{\eta}$ with $z_{g} \in Z(\Lambda)$. Then $g\left(x_{p}\right)=t z_{g} p$ where t is the number of bar letters of the monomial p.
2.2. We will choose pre-images under δ and also identify elements of Ker δ in terms of the generators of Im R. Given x_{p} as in Subsection 2.1, we fix a canonical pre-image under δ as

$$
\delta^{-1}\left(x_{p}\right)=\sum_{i=1}^{k} b_{1} \cdots b_{i-1} \tilde{w} b_{i+1} \cdots b_{k},
$$

where $\tilde{w}=w$ if b_{i} is a non-bar letter and $=\bar{w}$ otherwise. Then for β, γ monomials such that $\beta \gamma$ is defined we have $\delta^{-1}\left(x_{\beta \gamma}\right)=\beta \delta^{-1}\left(x_{\gamma}\right)+$ $\delta^{-1}\left(x_{\beta}\right) \gamma$. M oreover, if $\sigma_{i}=R\left(e_{i} \otimes e_{i}\right)$ then $\sigma_{i}=\delta^{-1}\left(x_{\bar{a}_{i-1} a_{i-1}}\right)+$ $\delta^{-1}\left(x_{a_{i} \bar{a}_{i}}\right)$. M ore generally:

Lemma. Suppose ρ_{1}, ρ_{2} are monomials such that $\rho_{1} \bar{a}_{i-1} a_{i-1} \rho_{2}$ is defined. Then

$$
\delta^{-1}\left(x_{\rho_{1} \bar{a}_{i-1} a_{i-1} \rho_{2}}\right)+\delta^{-1}\left(x_{\rho_{1} a_{i} \overline{\bar{i}}_{i} \rho_{2}}\right)=\rho_{1} \sigma_{i} \rho_{2} .
$$

2.2.1. Suppose $p=b_{1} \cdots b_{u}$ is a monomial. Define

$$
y(p):=\sum_{k=0}^{u}(-1)^{k}\left(b_{1} \cdots b_{k}\right) \sigma_{t b_{k}}\left(b_{k+1} \cdots b_{u}\right)
$$

(where $t b_{0}:=i b_{1}$). By applying the above Lemma repeatedly one obtains
Lemma. Let $\rho=\left(a_{i} a_{i+1} \cdots a_{i+u-1}\right)$ of degree u. Then we have

$$
\delta^{-1}\left(x_{\bar{a}_{i-1} a_{i-1} \rho}\right)+(-1)^{u} \delta^{-1}\left(x_{\rho a_{i+u} \bar{a}_{i+u}}\right)=y(\rho) .
$$

Similarly, if $\bar{\rho}=\bar{a}_{i+u-1} \cdots \bar{a}_{i}$ has degree u with only bar letters then

$$
\delta^{-1}\left(x_{a_{i+u} \bar{a}_{i+u} \bar{\rho}}\right)+(-1)^{u} \delta^{-1}\left(x_{\bar{\rho} \bar{a}_{i-1} a_{i-1}}\right)=y(\bar{\rho}) .
$$

2.3. We shall now determine Ωf for $f \in H H^{2}(\Lambda)$.
(1) We work with the basis for $H H^{2}(\Lambda)$ as given in Subsection 1.1. Fix i with $0 \leq i \leq n-m-2$. The homomorphism $\hat{f}_{i}: P_{0} \rightarrow P_{0}$ defined by

$$
\hat{f}_{i}\left(e_{k} \otimes e_{k}\right)= \begin{cases}e_{k} \otimes e_{k}, & k=i \\ (-1)^{n}\left(e_{k} \otimes e_{k}\right), & k=\nu(i) \\ 0, & \text { otherwise }\end{cases}
$$

is a lifting of f_{i}, and we take for Ωf_{i} the restriction of \hat{f}_{i} to N.
(2) Fix j with $0 \leq j \leq n-1$; then one finds
$\left(\Omega f_{i}\right)\left(\zeta_{j}\right)=\hat{f_{i}}\left(\zeta_{j}\right)=(-1)^{i-j}\left(\sum_{v \in e_{j} B e_{i}} v \otimes v^{*}-\sum_{v \in e_{j} B e_{\nu(i)}} v \otimes v^{*}\right)$.
(3) Suppose M is a $\Lambda-\Lambda$ bimodule and $x \in e_{j} M e_{\nu(j)}$ where $j \leq$ $\nu(j)$, and let $0 \leq s \leq j$. Define a "trace" by the following formula.

$$
\operatorname{Tr}^{s}(x):=\sum_{u=0}^{s}(-1)^{u \nu(s)} L_{u} x R_{s-u},
$$

where L_{u} is the left-normalized monomial of degree $2 u$ in $e_{j} \Lambda e_{j}$, and R_{s-u} is the right-normalized monomial of degree $2(s-u)$ in $e_{\nu(j)} \Lambda e_{\nu(j)}$. The starting vertex and ending vertex of L_{u}, R_{i-u} will always be clear from the context.
2.4. We fix now the following notation for monomials ($0 \leq i \leq n-$ $m-2$).
(a) Suppose $0 \leq j<i$; then $\nu(i)<\nu(j)$. Let $p \in e_{j} \Lambda e_{i}, b \in e_{i} \Lambda e_{\nu(i)}$, and $q \in e_{\nu(i)} \Lambda e_{\nu(j)}$ be the monomials of smallest degree. Then p, b, q have no bar letters.
(b) Suppose now $i \leq j \leq \nu(i)$; then $\nu(j) \leq \nu(i)$ and $i \leq \nu(j)$. Let $q \in e_{j} \Lambda e_{\nu(i)}, p \in e_{i} \Lambda e_{\nu(j)}$ and $\bar{p}_{1} \in e_{j} \Lambda e_{i}, \bar{q}_{1} \in e_{\nu(i)} \Lambda e_{\nu(j)}$ be the monomials of smallest degree. Then p, q have no bar letters, and \bar{p}_{1}, \bar{q}_{1} have only bar letters.
(c) The remaining case occurs when $\nu(i)<j$. Then let $\bar{p} \in e_{j} \Lambda e_{\nu(i)}$, $\bar{b} \in e_{\nu(i)} \Lambda e_{i}$, and $\bar{q} \in e_{i} \Lambda e_{\nu(j)}$ be the monomials of smallest degree. Then $\bar{p}, \bar{b}, \bar{q}$ have only bar letters.

Lemma. With the notation as above, we have

$$
\left(\Omega f_{i}\right)\left(\zeta_{j}\right)=\left\{\begin{array}{l}
(-1)^{i-j} \operatorname{Tr}^{j}(p \otimes b q-p b \otimes q), \\
\quad 0 \leq j<i \\
\epsilon_{j, n}(-1)^{\nu(i)(i-j)} \operatorname{Tr}^{i}\left(\bar{p}_{1} \otimes p-(-1)^{n(j-i)} q \otimes \bar{q}_{1}\right), \\
\quad i \leq j \leq \nu(i) \\
\epsilon_{j, n}(-1)^{\nu(j)(n-1)+i-j} \operatorname{Tr}^{\nu(j)}(\bar{p} \bar{b} \otimes \bar{q}-\bar{p} \otimes \bar{b} \bar{q}), \\
\nu(i)<j \leq n-1,
\end{array}\right.
$$

where $\epsilon_{j, n}=(-1)^{j-m}$ if n is odd and $j \geq m$; otherwise $\epsilon_{j, n}=1$.

Proof. Let $\tilde{\omega}_{j}$ be the right-normalized monomial in $\operatorname{soc}\left(e_{j} \Lambda\right)$; then we have for v in the basis that

$$
\omega_{j}=v v^{*}= \begin{cases}(-1)^{j-m} \tilde{\omega}_{j}, & n \text { odd, } j \geq m \\ \tilde{\omega}_{j}, & \text { otherwise } .\end{cases}
$$

This accounts for the factor $\epsilon_{j, n}$. For the case $0 \leq j<i$, it suffices to show that $(-1)^{u \nu(j)} L_{u} p b q R_{j-u}=\tilde{\omega}_{j}$ and this is straightforward.

N ow consider the case when $i \leq j \leq \nu(i)$. First, $\bar{p}_{1} p=(-1)^{n(j-i)} q \bar{q}_{1}$. So we need

$$
(-1)^{\nu(i)(i-j)+u \nu(i)} L_{u} \bar{p}_{1} p R_{i-u}=(-1)^{i-j} \tilde{\omega}_{j} .
$$

One finds that $L_{u} \bar{p}_{1} p R_{i-u}=(-1)^{\alpha} \omega_{j}$ where

$$
a \equiv(j-i)(\nu(j)-u)+u \nu(j) \equiv u \nu(i)+\nu(j)(j-i)
$$

and we are done since $(\nu(i)+\nu(j))(i-j) \equiv i-j(\bmod 2)$. Similarly one deals with the last case.
2.5. Proposition. Let $g \in H H^{1}(\Lambda)$ with $g(w)=0$ and $g(\bar{w})=z_{g} \bar{\eta}$ for $z_{g} \in Z(\Lambda)$. Then
$\left(g \circ \Omega f_{i}\right)\left(\zeta_{i}\right)= \begin{cases}0, & 0 \leq j<i \\ (-1)^{j-i}(j-i)(i+1) z_{g} \omega_{j}, & i \leq j \leq \nu(i) \\ (-1)^{j-i}(\nu(i)-i)(\nu(j)+1) z_{g} \omega_{j}, & \nu(i)<j .\end{cases}$
In particular if $z_{g} \in J$ then $g \circ \Omega f_{i}=0$.
2.5.1. Hence in $H H^{3}(\Lambda)$ we have

$$
\begin{aligned}
g_{0} \cdot f_{i}=(-1)^{i+1} & {\left[(n-2 i-1)\left(\sum_{j=0}^{i-1}(-1)^{j}(j+1)\left[h_{j}\right]\right)\right.} \\
& \left.+(i+1)\left(\sum_{j=i}^{n-m-2}(-1)^{j}(n-2 j-1)\left[h_{j}\right]\right)\right] .
\end{aligned}
$$

Proof of 2.5. Since q is a homomorphism, it commutes with the trace.
(1) A ssume $0 \leq j<i$; then we get from Subsections 2.4 and 2.1 that $g \circ \Omega f_{i}\left(\zeta_{j}\right)=0$ since $p \otimes b q-p b \otimes q=-p x_{b} q$.
(2) Now let $i \leq j<\nu(i)$; then $\bar{p}_{1} \otimes p-(-1)^{n(j-i)}\left(q \otimes \bar{q}_{1}\right)=$ $-\bar{p}_{1} x_{p}+(-1)^{n(j-i)} q x_{\bar{q}_{1}}$. It follows that

$$
\left(g \circ \Omega f_{i}\right)\left(\zeta_{j}\right)=\epsilon_{n, j}(-1)^{\nu(i)(j-i)}(-1)^{n(j-i)} \operatorname{Tr}^{i}\left(g\left(q x_{\bar{q}_{1}}\right)\right)
$$

From Subsection 2.1 we know that $g\left(q x_{\bar{q}_{1}}\right)=(j-i) q \bar{q}_{1} z_{g}$ where $j-i$ is the length of \bar{q}_{1}; and one finds $\operatorname{Tr}^{i}\left(q \bar{q}_{1}\right)=(-1)^{i(j-i)}(i+1) \tilde{\omega}_{j}$. This gives the stated formula.
(3) Let $\nu(i)<j \leq n-1$; then $g\left(\bar{p} x_{\bar{b}} \bar{q}\right)=(\nu(i)-i) \bar{p} \bar{b} \bar{q}$ and the claim follows from

$$
\operatorname{Tr}^{\nu(j)}(\bar{p} \bar{b} \bar{q})=(-1)^{\nu(j)(n-1)}(\nu(j)+1) \tilde{\omega}_{j} .
$$

2.6. Lemma. For $0 \leq i<n-m-2$, define

$$
\tilde{f}_{i}:= \begin{cases}f_{i}+(-1)^{m-i+1}(\nu(i)-i) f_{m}, & n \text { even } \\ f_{i}+(-1)^{m-i}(m-i) f_{m-1}, & n \text { odd } .\end{cases}
$$

 Moreover we have

$$
g_{0} \cdot f_{n-m-2}= \begin{cases}(-1)^{m+1} \sum_{j=0}^{m}(-1)^{j}(j+1)\left[h_{j}\right], & \text { n even } \\ (-1)^{m} 2 \sum_{j=0}^{m-1}(-1)^{j}(j+1)\left[h_{j}\right], & n \text { odd } .\end{cases}
$$

This follows from Subsection 2.5 .1 by a straightforward calculation.
2.6.1. Proposition. (a) Assume that char(K) does not divide $n+1$. Then $H H^{1} \times H H^{2}=H H^{3}$.
(b) Assume that $\operatorname{char}(K)$ divides $n+1$ and that $\operatorname{char}(K) \neq 2$ in case n is odd. Then $H H^{1} \times H H^{2}$ is 1-dimensional, spanned by $g_{0} \cdot f_{n-m-2}$.
(c) If $\operatorname{char}(K)=2$ and n is odd then $H H^{1} \times H H^{2}=0$.

Proof. The elements $\tilde{f}_{i}, 0 \leq i<n-m-2$, and f_{n-m-2} form a basis for $H H^{2}(\Lambda)$. Suppose first that $n+1$ is non-zero in K. Let n be even. Then $g_{0} \cdot f_{m-1}=-(n+1) h_{m}$ in $H H^{3}(\Lambda)$, so h_{m} belongs to the span of the products. For $1 \leq k$ we have

$$
g_{0} \cdot \tilde{f}_{m-k} \in-(n+1) h_{m-k+1}+\operatorname{sp}\left\{h_{m}, \ldots, h_{m-k+2}\right\}
$$

and by induction we get that the space spanned by the products contains h_{i} for $1 \leq i \leq m$. By considering $g_{0} \cdot f_{m}$ it follows that also h_{0} belongs to the space. Similarly the claim follows if n is odd.

Now assume that $n+1$ is zero in K. Then in $H H^{3}(\Lambda)$, we have $g_{0} \cdot \tilde{f}_{i}=0$ for $0 \leq i<n-m-2$, and $H H^{1} \times H H^{2}$ is spanned by g_{0}. f_{n-m-2}. This is non-zero except with n is odd and the characteristic of the field is 2.

3. $\mathrm{ON} H H^{2} \times H H^{2}$

3.1. The following may be deduced directly from Section I.9.4.1.

Lemma. Suppose $f, f_{i} \in \operatorname{Hom}\left(\Omega^{2} \Lambda, \Lambda\right)$. Then the class $[f]\left[f_{i}\right]$ in $H H^{4}(\Lambda)$ is completely determined by the values $f \circ F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)$ and $f \circ F^{\prime}\left(x_{\bar{a}_{m}} \otimes\right.$ ζ_{m}) where $F_{i}, F_{i}^{\prime}: P_{0} \otimes N \rightarrow P_{1}$ satisfy $\delta \circ F_{1}=\delta \circ F_{i}^{\prime}=\Omega f_{i} \circ(u \otimes 1)$.
3.2. We shall now define the homomorphisms $F_{i}, F_{i}^{\prime}: P_{0} \otimes N \rightarrow P_{1}$ as in Subsection 3.1 which lift the maps Ωf_{i} as determined in Subsection 2.4. With the notation of Subsection 2.4, we have that in case $i \leq j \leq \nu(i)$

$$
\begin{aligned}
\bar{p}_{1} \otimes p-(-1)^{n(j-i)} q \otimes \bar{q}_{1} & =-\bar{p}_{1} x_{p}+(-1)^{n(j-i)} q x_{\bar{q}_{1}} \\
& =x_{\bar{p}_{1}} p-(-1)^{n(j-i)} x_{q} \bar{q}_{1} .
\end{aligned}
$$

In the first case, $p \otimes b q-p b \otimes q=-p x_{b} q$, and a similar formula holds in the last case, Now we define F_{i} by

$$
\begin{aligned}
& F_{i}\left(e_{j} \otimes e_{j} \otimes \zeta_{i}\right) \\
& \quad=\left\{\begin{array}{l}
(-1)^{i-j} \operatorname{Tr}^{j}\left(-p \delta^{-1}\left(x_{b}\right) q\right) \\
0 \leq j<i \\
\epsilon_{j, n}(-1)^{\nu(i)(i-j)} \operatorname{Tr}^{i}\left[-\bar{p}_{1} \delta^{-1}\left(x_{p}\right)+(-1)^{n(j-i)} q \delta^{-1}\left(x_{\bar{q}_{1}}\right)\right] \\
\quad i \leq j \leq \nu(i) \\
\epsilon_{j, n}(-1)^{\nu(j)(n-1)+i-j} \operatorname{Tr}^{\nu(j)}\left(\bar{p} \delta^{-1}\left(x_{b}\right) \bar{q}\right), \\
\text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where pre-images under δ are as in Subsection 2.2. M oreover, we define F_{i}^{\prime} similarly; namely

$$
\begin{aligned}
& F_{i}^{\prime}\left(e_{j} \otimes e_{j} \otimes \zeta_{j}\right) \\
& \quad=\left\{\begin{array}{c}
e_{j, n}(-1)^{\nu(i)(i-j)} \mathrm{Tr}^{i}\left[\delta^{-1}\left(x_{\bar{P}_{1}}\right) p-(-1)^{n(j-i)} \delta^{-1}\left(x_{q}\right) \bar{q}_{1}\right] \\
\quad i \leq j \leq \nu(i) \\
F_{i}\left(e_{j} \otimes e_{j} \otimes \zeta_{j}\right) \\
\text { otherwise. }
\end{array}\right.
\end{aligned}
$$

3.3. A ssume first that n is even, then $a_{m} \zeta_{m+1}=-\zeta_{m} \bar{a}_{m}$ and $\bar{a}_{m} \zeta_{m}=$ $-\zeta_{m+1} a_{m}$. We fix i with $0 \leq i \leq m$. Here $\epsilon_{j, n}=1$, so we ignore it. Then

$$
\begin{aligned}
& F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)=a_{m} F_{i}\left(e_{m+1} \otimes e_{m+1} \otimes \zeta_{m+1}\right)+F_{i}\left(e_{m} \otimes e_{m} \otimes \zeta_{m}\right) \bar{a}_{m} \\
& F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)=\bar{a}_{m} F_{i}^{\prime}\left(e_{m} \otimes e_{m} \otimes \zeta_{m}\right)+F_{i}^{\prime}\left(e_{m+1} \otimes e_{m+1} \otimes \zeta_{m+1}\right) a_{m}
\end{aligned}
$$

We need the monomials as in Subsection 2.4 for $j=m, m+1$ explicitly. First, we always have $i \leq j \leq \nu(i)$. Let $p \in e_{i} \Lambda e_{m+1}, q \in e_{m} \Lambda e_{\nu(i)}$ be the monomials of smallest degree. Then $\bar{p} \in e_{m+1} \Lambda e_{i}, \bar{q} \in e_{\nu(i)} \Lambda e_{m}$ are the monomials of smallest degree. M oreover, let $q_{1} \in e_{m+1} \Lambda e_{\nu(i)}, p_{1} \in e_{i} \Lambda e_{m}$ be the monomials of smallest degree; then $\bar{q}_{1} \in e_{\nu(i)} \Lambda e_{m+1}, \bar{p}_{1} \in e_{m} \Lambda e_{i}$ are the monomials of smallest degree. Then we get from Subsection 3.2

$$
\begin{align*}
& F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)=(-1)^{\nu(i)(i-m-1)} a_{m} \operatorname{Tr}^{i}\left[-\bar{p} \delta^{-1}\left(x_{p_{1}}\right)+q_{1} \delta^{-1}\left(x_{\bar{q}}\right)\right] \\
&+(-1)^{\nu(i)(i-m)} \operatorname{Tr}^{i}\left[-\bar{p}_{1} \delta^{-1}\left(x_{p}\right)+q \delta^{-1}\left(x_{\bar{q}_{1}}\right)\right] \bar{a}_{m} \tag{1}\\
& F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)=(-1)^{\nu(i)(i-m)}\left[\bar{a}_{m} \operatorname{Tr}^{i}\left[\delta^{-1}\left(x_{\bar{p}_{1}}\right) p-\delta^{-1}\left(x_{q}\right) \bar{q}_{1}\right]\right. \\
&\left.+(-1)^{\nu(i)} \operatorname{Tr}^{i}\left[\delta^{-1}\left(x_{\bar{p}}\right) p_{1}-\delta^{-1}\left(x_{q_{1}}\right) \bar{q}\right] a_{m}\right] . \tag{2}
\end{align*}
$$

3.4. Proposition. Assume n is even, and fix $0 \leq i \leq m$.
(a) For $0 \leq k \leq i$ define $\rho_{k}=a_{k} \cdots a_{m-1}$, of length $m-k$. Then

$$
F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)=(-1)^{i+1} \sum_{k=0}^{i}(-1)^{k(m+1)} \bar{\rho}_{k} y\left(\rho_{k}\right) R_{k} .
$$

(b) For $0 \leq k \leq i$ define $\rho_{k}^{\prime}=a_{m+1} \cdots a_{m+(m-k)}$, of length $m-k$. Then

$$
F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)=(-1)^{m+\nu(i)} \sum_{k=0}^{i}(-1)^{k m} L_{k} y\left(\rho_{k}^{\prime}\right) \bar{\rho}_{k}^{\prime}
$$

Proof. (a) This is a lengthy calculation whose main difficulty consists of keeping track of the signs. As the first step, we simplify the expressions from Subsection 3.3(1), (2).
(i) Let $\beta=\bar{p}_{1} \delta^{-1}\left(x_{p_{1}}\right)$. Then $F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)$ is equal to

$$
(-1)^{\nu(i)(i-m)}\left[-\beta a_{m} R_{i} \bar{a}_{m}-\operatorname{Tr}^{i}\left(\bar{p}_{1} p_{1} w\right) \bar{a}_{m}+(-1)^{\nu(i)} a_{m} \operatorname{Tr}^{i}\left(q_{1} \bar{q}_{1} \bar{w}\right)\right] .
$$

(ii) Let $\beta^{\prime}=\delta^{-1}\left(x_{q_{1}}\right) \bar{q}_{1}$. Then $F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)$ is equal to

$$
(-1)^{\nu(i)(i-m)}\left[-\bar{a}_{m} L_{i} a_{m} \beta^{\prime}-\bar{a}_{m} \operatorname{Tr}^{i}\left(w q_{1} \bar{q}_{1}\right)+(-1)^{\nu(i)} \operatorname{Tr}^{i}\left(\bar{w}_{1} p_{1}\right) a_{m}\right] .
$$

To prove (i), take out the factor of $(-1)^{\nu(i)(i-m)}$.
(I) We have $p=p_{1} a_{m}$, consequently $\delta^{-1}\left(x_{p}\right)=\delta^{-1}\left(x_{p_{1}}\right) a_{m}+p_{1} w$ and $\bar{p}=\bar{a}_{m} \bar{p}_{1}$. We combine the p-terms in Subsection 3.3(1) and get

$$
(-1)^{\nu(i)+1} a_{m} \operatorname{Tr}_{m+1}^{i}\left(\bar{a}_{m} \beta\right)-\operatorname{Tr}_{m}^{i}\left(\beta a_{m}\right) \bar{a}_{m}-\operatorname{Tr}^{i}\left(\bar{p}_{1} p_{1} w\right) \bar{a}_{m} . \quad(*)
$$

Now, $a_{m} L_{u}\left(\bar{a}_{m} \beta\right) R_{i-u}=-L_{u+1} \beta a_{m} R_{i-u-1} \bar{a}_{m}$. M oreover if $u=i$ then $L_{i+1} \bar{p}_{1}=0$, by the relations, and we deduce that $a_{m} \operatorname{Tr}^{i}\left(\bar{a}_{m} \beta\right)$ is equal to

$$
\begin{aligned}
& -\left(\sum_{u=0}^{i-1}(-1)^{u \nu(i)} L_{u+1}\left(\beta a_{m}\right) R_{i-(u+1)}\right) \bar{a}_{m} \\
& \quad=(-1)^{\nu(i)+1}\left(\sum_{k=1}^{i}(-1)^{k \nu(i)} L_{k}\left(\beta a_{m}\right) R_{i-k}\right) \bar{a}_{m} .
\end{aligned}
$$

Hence this cancels against most of $\operatorname{Tr}^{i}\left(\beta a_{m}\right) \bar{a}_{m}$, leaving only the term with $k=0$. Therefore ($*$) is equal to $-\beta a_{m} R_{i} \bar{a}_{m}-\operatorname{Tr}^{i}\left(\bar{p}_{1} p_{1} w\right) \bar{a}_{m}$.
(II) Now we combine the remaining terms of the two traces in Subsection 3.3(1). We have $q=a_{m} q_{1}$, so $\bar{q}=\bar{q}_{1} \bar{a}_{m}$ and $\delta^{-1}\left(x_{\bar{q}}\right)=$ $\delta^{-1}\left(x_{\bar{q}_{1}}\right) \bar{a}_{m}+\bar{q}_{1} \bar{w}$. Set $\alpha=q_{1} \delta^{-1}\left(x_{\bar{q}_{1}}\right)$, then we get

$$
(-1)^{\nu(i)} a_{m} \operatorname{Tr}^{i}\left(\alpha \bar{a}_{m}\right)+(-1)^{\nu(i)} a_{m} \operatorname{Tr}^{i}\left(q_{1} \bar{q}_{1} \bar{w}\right)+\operatorname{Tr}^{i}\left(a_{m} \alpha\right) \bar{a}_{m} . \quad(* *)
$$

We claim that the first and the last trace cancel out. We rewrite the first trace. Since $a_{m} L_{u}=(-1)^{u} L_{u} a_{m}, \bar{a}_{m} R_{i-u}=(-1)^{i-u} R_{i-u} \bar{a}_{m}$ we have $a_{m} \operatorname{Tr}^{i}\left(\alpha \bar{a}_{m}\right)=(-1)^{i} \operatorname{Tr}^{i}\left(a_{m} \alpha\right) \bar{a}_{m}$ and also $i \equiv \nu(i)(\bmod 2)$ since n is even, and the claim follows. So (**) is equal to (-1$)^{\nu(i)} a_{m} \operatorname{Tr}^{i}\left(q_{1} \bar{q}_{1} \bar{w}\right)$ and we are done. The proof of part (ii) is similar; we omit details.

The second step is to show that the stated formula is the same as (i), (ii), respectively. Take out the factor $(-1)^{i+1}$. U sing Subsection 2.2.1 one sees that the stated formula can be written as

$$
\begin{aligned}
& \sum_{k=0}^{i}(-1)^{k(m+1)}\left[\bar{\rho}_{k-1} \delta^{-1}\left(x_{\rho_{k-1}}\right)+\bar{\rho}_{k} \bar{w} \rho_{k-1}\right. \\
& \left.\quad+(-1)^{m-k}\left[\bar{\rho}_{k} \delta^{-1}\left(x_{\rho_{k}}\right) a_{m} \bar{a}_{m}+\bar{\rho}_{k} \rho_{k} w \bar{a}_{m}+\bar{\rho}_{k} \rho_{k} a_{m} \bar{w}\right]\right] R_{k}
\end{aligned}
$$

We split the sum into three parts. Define Σ_{1} to be the sum of all terms where δ^{-1} occurs. M oreover, let Σ_{2} be the sum of all terms with w as a factor, and let Σ_{3} be the sum of all terms with \bar{w} as a factor.
(1) We claim that $\Sigma_{1}=(-1)^{m \nu(i)+i} \beta a_{m} R_{i} \bar{a}_{m}$ where $\beta=p_{1} \delta^{-1}\left(x_{p_{1}}\right)$. Since $a_{m} \bar{a}_{m} R_{k}=(-1)^{k} R_{k+1}$, one gets

$$
\Sigma_{1}=\sum_{k=0}^{i}(-1)^{k(m+1)}\left[\bar{\rho}_{k-1} \delta^{-1}\left(x_{\rho_{k-1}}\right) R_{k}+(-1)^{m} \bar{\rho}_{k} \delta^{-1}\left(x_{\rho_{k}}\right) R_{k+1}\right]
$$

Hence the second summand of the k th term cancels against the first summand of the $(k+1)$ st term. The first term for $k=0$ is zero, and this leaves us with the last term for $k=i$. Now note that $\rho_{i}=p_{1}$, and the statement follows.
(2) Next we claim that $\Sigma_{2}=(-1)^{m \nu(i)+i} \mathrm{Tr}^{i}\left(\bar{p}_{1} p_{1} w\right) \bar{a}_{m}$. By definition,

$$
\Sigma_{2}=\sum_{k=0}^{i}(-1)^{k(m+1)}(-1)^{m-k} \bar{\rho}_{k} \rho_{k} w \bar{a}_{m} R_{k}
$$

We have that $\bar{\rho}_{k} \rho_{k}=(-1)^{(i-k)(m-i)} L_{i-k} \bar{p}_{1} p_{1}$. Moreover $\bar{a}_{m} R_{k}=$ $(-1)^{k} R_{k} \bar{a}_{m}$; substituting everything gives

$$
\Sigma_{2}=\sum_{k=0}^{i}(-1)^{m(k+1)+(i-k)(m-i)+k} L_{i-k}\left(\bar{p}_{1} p_{1} w\right) R_{k} \bar{a}_{m} .
$$

Now set $u=i-k$; the statement follows.
(3) We claim that $\Sigma_{3}=(-1)^{m \nu(i)} a_{m} \operatorname{Tr}^{i}\left(q_{1} \bar{q}_{1} \bar{w}\right)$. First, observe that $\rho_{k-1} R_{k}=0$ since ρ_{k-1} starts at vertex $k-1$ and R_{k} has k bar letters. Therefore

$$
\Sigma_{3}=\sum_{k=0}^{i}(-1)^{m(k+1)} \bar{\rho}_{k} \rho_{k} a_{m} \bar{w} R_{k} .
$$

Next we claim that $\bar{\rho}_{k} \rho_{k} a_{m}=(-1)^{(m-k)(m-i+1)} a_{m} L_{i-k} q_{1} \bar{q}_{1}$. Both monomials start at m and end at $m+1$, so they differ only by a sign, and to get this make $a_{m} L_{i-k} q_{1} \bar{q}_{1}$ left-normalized. Substitute and change variables; the statement follows. Combining (1) to (3) gives the result (a).

Part (b) is similar; we omit details.
3.5. Now assume that n is odd; then $\nu(m)=m$ and moreover $a_{m} \zeta_{m+1}$ $=\zeta_{m} \bar{a}_{m-1}$ and $\bar{a}_{m} \zeta_{m}=-\zeta_{m+1} a_{m-1}$. Fix i with $0 \leq i \leq m-1$; then $F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)=a_{m} F_{i}\left(e_{m+1} \otimes e_{m+1} \otimes \zeta_{m+1}\right)-F_{i}\left(e_{m} \otimes e_{m} \otimes \zeta_{m}\right) \bar{a}_{m-1}$ $F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)=\bar{a}_{m} F_{i}^{\prime}\left(e_{m} \otimes e_{m} \otimes \zeta_{m}\right)+F_{i}^{\prime}\left(e_{m+1} \otimes e_{m+1} \otimes \zeta_{m+1}\right) a_{m-1}$.
We need the monomials as in Subsection 2.4 for $j=m, m+1$. First, we always have $i \leq j \leq \nu(i)$. Let $\rho \in e_{i} \Lambda e_{m}, q \in e_{m} \Lambda e_{\nu(i)}$ be the monomials of smallest degree; then $\bar{p} \in e_{m} \Lambda e_{i}$ and $\bar{q} \in e_{\nu(i)} \Lambda e_{m}$ are the monomials of smallest degree. M oreover, let $p_{1} \in e_{i} \Lambda e_{m-1}, q_{1} \in e_{m+1} \Lambda e_{\nu(i)}$ and \bar{p}_{2} $\in e_{m+1} \Lambda e_{i}, \bar{q}_{2} \in e_{\nu(i)} \Lambda e_{m-1}$ be the monomials of smallest degree. Then

$$
\begin{aligned}
F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)= & (-1)^{\nu(i)(i-m-1)+1} a_{m} \\
& \times \operatorname{Tr}^{i}\left[\left(-\bar{p}_{2} \delta^{-1}\left(x_{p_{1}}\right)+(-1)^{i-m-1} q_{1} \delta^{-1}\left(x_{\bar{q}_{2}}\right)\right)\right] \\
& -(-1)^{\nu(i)(i-m)} \\
& \times \operatorname{Tr}^{i}\left[\left(-\bar{p} \delta^{-1}\left(x_{p}\right)+(-1)^{i-m} q \delta^{-1}\left(x_{\bar{q}}\right)\right)\right] \bar{a}_{m-1} .
\end{aligned}
$$

Similarly one gets the corresponding images under F_{i}^{\prime}, and

$$
\begin{aligned}
F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)= & (-1)^{\nu(i)(i-m)} \bar{a}_{m} \operatorname{Tr}^{i}\left[\left(\delta^{-1}\left(x_{\bar{p}}\right) p-(-1)^{i-m} \delta^{-1}\left(x_{q}\right) \bar{q}\right)\right] \\
& -(-1)^{\nu(i)(i-m-1)} \\
& \times \operatorname{Tr}^{i}\left[\left(\delta^{-1}\left(x_{\overline{\bar{p}_{2}}}\right) p_{1}-(-1)^{i-m-1} \delta^{-1} \bar{q}_{2}\right)\right] a_{m-1} .
\end{aligned}
$$

3.6. Proposition. Assume n is odd, and fix $0 \leq i \leq m-1$.
(a) For $0 \leq k \leq i$ define $\rho_{k}=a_{k} a_{k+1} \cdots a_{m-2}$, of length $m-k-1$. Then

$$
F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)=(-1)^{i+m+1} \sum_{k=0}^{i}(-1)^{m k} \bar{a}_{m-1} \bar{\rho}_{k} y\left(\rho_{k}\right) R_{k} .
$$

(b) For $0 \leq k \leq i$ define $\rho_{k}^{\prime}=a_{m+1} \cdots a_{m+(m-k-1)}$, of length $m-$ $k-1$. Then

$$
F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)=(-1)^{i+m+1} \sum_{k=0}^{i}(-1)^{k(m+1)} L_{k} y\left(\rho_{k}^{\prime}\right) \bar{\rho}_{k}^{\prime} \bar{a}_{m} .
$$

The proof is similar to that of Subsection 3.4. First, to simplify the expression in Subsection 3.5 one shows
(i) Let $\beta=\bar{p} \delta^{-1}\left(x_{p_{1}}\right)$; then $F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right)$ is equal to

$$
(-1)^{\nu(i)(i-m)}\left[\beta a_{m-1} R_{i} \bar{a}_{m-1}+\operatorname{Tr}^{i}\left(\bar{p} p_{1} w\right) \bar{a}_{m-1}+(-1)^{m} a_{m} \operatorname{Tr}^{i}\left(q_{1} \bar{q} \bar{w}\right)\right] .
$$

(ii) Let $\beta^{\prime}=\delta^{-1}\left(x_{q_{1}}\right) \bar{q}_{1}$; then $F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right)$ is equal to

$$
\begin{aligned}
(-1)^{\nu(i)(i-m)}\left[(-1)^{m-1} \bar{a}_{m} L_{i} a_{m}\left(\beta^{\prime} \bar{a}_{m}\right)\right. & +(-1)^{\nu(i)+1} \operatorname{Tr}^{i}\left(\bar{w} \bar{p} p_{1}\right) a_{m-1} \\
+ & \left.(-1)^{i-m+1} \bar{a}_{m} \operatorname{Tr}^{i}\left(w q_{1} \bar{q}_{1} \bar{a}_{m}\right)\right] .
\end{aligned}
$$

Then one shows that the stated formula is the same. We omit the details.
3.7. Proposition. Let $f_{i}, f_{t} \in H H^{2}(\Lambda)$.
(a) If n is even, let $\gamma \in e_{m} \Lambda e_{m}$ and $\gamma^{\prime} \in e_{m+1} \Lambda e_{m+1}$ be the right-normalized monomials of length $2 m$, then

$$
\begin{aligned}
f_{t} \circ F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right) & =(-1)^{i+t+1+m}[\min (i, t)+1] \gamma, \\
f_{t} \circ F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right) & =(-1)^{i+t+1}[\min (i, t)+1] \gamma^{\prime} .
\end{aligned}
$$

(b) If n is odd, let $\gamma \in e_{m} \Lambda e_{m-1}$ and $\gamma^{\prime} \in e_{m+1} \Lambda e_{m}$ be right-normalized monomials of length $2 m-1$, then

$$
\begin{aligned}
f_{t} \circ F_{i}\left(x_{a_{m}} \otimes \zeta_{m+1}\right) & =(-1)^{m+i+t+1}[\min (i, t)+1] \gamma, \\
f_{t} \circ F_{i}^{\prime}\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right) & =(-1)^{i+t+1}[\min (i, t)+1] \gamma^{\prime} .
\end{aligned}
$$

Proof. A ssume first that n is even and fix $0 \leq i \leq m$. Since f_{t} is a homomorphism it suffices to find $f_{t}\left(y\left(\rho_{k}\right)\right)$ and $f_{t}\left(y\left(\rho_{k}^{\prime}\right)\right)$. We get from Subsection 2.2.1 that

$$
f_{t}\left(y\left(\rho_{k}\right)\right)= \begin{cases}(-1)^{t-k} \rho_{k}, & k \leq t \leq m \\ 0, & \text { otherwise }\end{cases}
$$

Similarly, using the fac that ρ_{k}^{\prime} is a path from $m+1$ to $\nu(k)=n-k-1$ and recalling that $f_{t}\left(\sigma_{\nu(t)}\right)=e_{\nu(t)}$ we have

$$
f_{t}\left(y\left(\rho_{k}^{\prime}\right)\right)= \begin{cases}(-1)^{\nu(t)-m-1} \rho_{k}^{\prime}, & m+1 \leq \nu(t) \leq \nu(k) \\ 0, & \text { otherwise }\end{cases}
$$

It follows that $f_{t} \circ F_{i}$ takes $x_{a_{m}} \otimes \zeta_{m+1}$ to

$$
(-1)^{i+1} \sum_{k=0}^{\min (i, t)}(-1)^{k(m+1)} \bar{\rho}_{k} \rho_{k} R_{k}(-1)^{t-k} .
$$

Moreover, we have $\bar{\rho}_{k} \rho_{k} R_{k}=(-1)^{m(m-k)} \gamma$. Substituting this gives the first part of (a), and the second part is similar.

Part (b) is similar (but note that here $f_{t}\left(\sigma_{\nu(t)}\right)=-1$).
3.8. Corollary. For $0 \leq i, t \leq n-m-2$ we have

$$
f_{t} \cdot f_{t}=(-1)^{i+t+1}(-1)^{n m}(\min (i, t)+1) \psi_{n-m-2} .
$$

This is a direct translation of Subsection 3.7 into the terminology of Section I.9.

4. PRODUCTS INVOLVING $H H^{4}$

In this section we find $H H^{2}(\Lambda) \times H H^{4}(\Lambda)$ and $H H^{4}(\Lambda) \times H H^{4}(\Lambda)$. The remaining products in $H H^{*}(\Lambda)$, viz. $H H^{2}(\Lambda) \times H H^{5}(\Lambda)$ and $H H^{4}(\Lambda) \times H H^{4}(\Lambda)$, are then determined using Subsection 1.7. We start with $H H^{2}(\Lambda) \times H H^{4}(\Lambda)$.
4.1. Let $\psi_{\sim}=\psi_{0} \in H H^{4}(\Lambda)$; then $\Omega \psi$ is given in Subsection 1.7. Define the map $\psi: P_{0} \otimes N \rightarrow P_{1}$ by

$$
\tilde{\psi}:\left(e_{i} \otimes e_{i}\right) \otimes \zeta_{i} \leftrightarrow \begin{cases}e_{m} \otimes e_{m+1} \psi\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right) & \text { if } i=m \\ e_{m+1} \otimes e_{m} \psi\left(x_{a_{m}} \otimes \zeta_{m+1}\right) & \text { if } i=m+1 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\tilde{\psi}$ is a lifting for $\Omega \psi$. Thus

$$
\begin{aligned}
\Omega^{2} \psi\left(\zeta_{j}\right. & \left.\otimes \zeta_{\nu(j)}\right) \\
= & \sum_{v \in e_{j} B e_{m}}(-1)^{\operatorname{deg} v} v\left(e_{m} \otimes e_{m+1}\right) \psi\left(x_{\bar{a}_{m}} \otimes \zeta_{m}\right) \tilde{\nu}\left(v^{*}\right) \\
& +\sum_{v \in e_{j} B e_{m+1}}(-1)^{\operatorname{deg} v} v\left(e_{m+1} \otimes e_{m}\right) \psi\left(x_{a_{m}} \otimes \zeta_{m+1}\right) \tilde{\nu}\left(v^{*}\right)
\end{aligned}
$$

For $i=0, \ldots, n-m-2$, let f_{i} be the basis element of $H H^{2}(\Lambda)$ as in Subsection 1.1.

$$
\text { Lemma. } \quad f_{i} \circ \Omega^{2} \psi\left(\zeta_{j} \otimes \zeta_{\nu(j)}\right)=0 \text { whenever } j<m \text { or } j>\nu(m)
$$

Proof. The image of $\Omega^{2} \psi$ is in Ker δ and so $\Omega^{2} \psi\left(\zeta_{j} \otimes \zeta_{\nu(j)}\right)$ is a sum of elements of the form $\lambda_{k} \sigma_{k} \lambda_{k}^{\prime}$ with $\operatorname{deg}\left(\lambda_{k} \lambda_{k}^{\prime}\right)=2 m$. Thus $f_{i} \circ \Omega^{2} \psi\left(\zeta_{j} \otimes\right.$ $\left.\zeta_{\nu(j)}\right)$ is an element λ in $e_{j} \Lambda e_{j}$ with λ of degree $2 m$. This element λ is a linear combination (over K) of monomials which start and end at j, and so each monomial has precisely m bar letters and m non-bar letters. If $j<m$ then each monomial starts at j with strictly more than j bar letters and so is zero; if $j>\nu(m)$ then each monomial starts at j with strictly more than $\nu(j)$ non-bar letters and so is also zero (1.3.3). Thus $f_{i} \circ \Omega^{2} \psi\left(\zeta_{j} \otimes \zeta_{\nu(j)}\right)=0$ whenever $j<m$ or $j>\nu(m)$.
4.2. Proposition. $H H^{2}(\Lambda) \times H H^{4}(\Lambda)=0$ if n is odd. If n is even then it is 1-dimensional, and we have, for $0 \leq i \leq m$,

$$
f_{i} \cdot \psi_{0}=(-1)^{m+i+1}(i+1) z_{m} \cdot 1 .
$$

Proof. We fix some $i \leq n-m-2$ and let $\beta=f_{i} \circ \Omega^{2} \psi_{0}$. The argument in Subsection 4.1 shows that elements in the image of $\Omega^{2} \psi_{0}$ are spanned by elements $\lambda_{k} \sigma_{k} \lambda_{k}^{\prime}$ where $\operatorname{deg}\left(\lambda_{k} \lambda_{k}^{\prime}\right)=2 m$.

A ssume first that n is odd; then the only elements in $Z(\Lambda)$ of degree $2 m$ are scalar multiples of z_{m} which are zero in $H H^{6}(\Lambda)$. So the claim follows in this case.

A ssume now that n is even. By Subsection 4.1 we only need the value on $\zeta_{m} \otimes \zeta_{m+1}$ and $\zeta_{m+1} \otimes \zeta_{m}$. M oreover, the degree argument gives that there is some $c \in K$ such that

$$
f_{i} \cdot \psi_{0}=c z_{m} \cdot 1 \in H H^{6}(\Lambda), \quad\left(\cong H H^{0}(\Lambda)\right)
$$

We determine now the scalar factor c by using associativity. We multiply by g_{0}, and get

$$
g_{0} \cdot\left(f_{i} \cdot \psi_{0}\right)=g_{0}\left(c z_{m} \cdot 1\right)=c g_{m} \cdot 1 \quad \text { in degree } 7 .
$$

This is also equal to $\left(g_{0} \cdot f_{i}\right) \cdot \psi_{0}$. Now, $g_{0} \cdot f_{i}$ is given in Subsection 2.5.1 and $h_{i} \cdot \psi_{0}$ is given in Subsection 1.6, and we get

$$
\left(g_{0} \cdot f_{i}\right) \cdot \psi_{0}=(-1)^{i+1}(i+1)(-1)^{m} g_{m} \cdot 1
$$

and $c=(-1)^{i+m+1}(i+1)$.
4.3. $H H^{2}(\Lambda) \times H H^{5}(\Lambda)=0$ if n is odd. If n is even then it is 1 -dimensional and, for $0 \leq i \leq m$,

$$
f_{i} \cdot \theta_{0}=(-1)^{m+i+1}(i+1) g_{m} \cdot 1 .
$$

Proof. U sing associativity, graded-commutativity, and Subsection 1.7, $H H^{2}(\Lambda) \times H H^{5}(\Lambda)=\left(H H^{2}(\Lambda) \times H H^{4}(\Lambda)\right) \times H H^{1}(\Lambda)$. If n is odd then from Subsection 4.2, $H H^{2}(\Lambda) \times H H^{5}(\Lambda)=0$.

Suppose n is even; then since $H H^{5}(\Lambda)$ is cyclic as a module over $Z(\Lambda)$ and $H H^{2}(\Lambda)$ is annihilated by the radical of the center we see that $H H^{2}(\Lambda) \times H H^{5}(\Lambda)$ is spanned by the products $f_{i} \cdot \theta_{0}$, and $f_{i} \cdot \theta_{j}=0$ for $j \neq 0$. M oreover, Subsections 1.7 and 4.2 give the formula for $f_{i} \cdot \theta_{0}$.
4.4. Proposition. If n is even then $H H^{4}(\Lambda) \times H H^{4}(\Lambda)=\operatorname{sp}\left\{f_{m} \cdot 1\right\}$ and $\psi_{0} \cdot \psi_{0}=f_{m} \cdot$. If n is odd then $H H^{4}(\Lambda) \times H H^{4}(\Lambda)=0$.

Proof. It suffices to determine $\psi_{0} \cdot \psi_{0}$.
Let $\beta=\psi_{0} \circ \Omega^{4} \psi_{0}$. Then the image of β is contained in the image of ψ_{0}, so it follows that for $i<m$ or $i>m+1$ one has $\beta\left(\sigma_{i}\right)=e_{i} \beta\left(\sigma_{i}\right)=0$. This leaves us to study the values on σ_{m}, σ_{m+1}.

A ssume first that n is odd. Then similarly $\beta\left(\sigma_{m+1}\right)=\beta\left(\sigma_{m+1}\right) e_{m+1}=0$. So we are left with σ_{m}. But for n odd, each element of $H H^{2}(\Lambda)$ maps σ_{m} to zero, so we are done in this case.

Now assume that n is even. By the above argument we know that $\psi_{0} \cdot \psi_{0}=c f_{m} \cdot 1$ for some $c \in K$. We determine c by using associativity and commutativity. From Subsectin 3.8,

$$
f_{0} \cdot\left(\psi_{0} \cdot \psi_{0}\right)=c f_{0} \cdot f_{m} \cdot 1=c(-1)^{m+1} \psi_{m} \cdot 1
$$

On the other hand, from Subsection 4.2 we have $\left(f_{0} \cdot \psi_{0}\right) \cdot \psi_{0}=$ $(-1)^{m+1} z_{m} \psi_{0} \cdot 1=(-1)^{m+1} \psi_{m} \cdot 1$ and $c=1$.
4.5. $H H^{4}(\Lambda) \times H H^{5}(\Lambda)=0$ if n is odd. If n is even then

$$
\psi_{0} \cdot \theta_{0}=(-1)^{m+1}\left(\sum_{j=0}^{m}(-1)^{j}(j+1) h_{j}\right) \cdot 1 .
$$

In particular the space is 1-dimensional.
Proof. U sing associativity, graded-commutativity, and Subsection 1.7, $H H^{4}(\Lambda) \times H H^{5}(\Lambda)=H H^{1}(\Lambda) \times\left(H H^{4}(\Lambda) \times H H^{4}(\Lambda)\right)$. If n is odd then, from Subsection 4.4, $H H^{4}(\Lambda) \times H H^{5}(\Lambda)=0$.

So suppose n is even. Then the space of products is spanned by $\psi_{0} \cdot \theta_{0}$ and from Subsection 2.5.1 we get the formula since

$$
\psi_{0} \cdot \theta_{0}=\psi_{0} \cdot\left(g_{0} \cdot \psi_{0}\right)=g_{0} \cdot f_{m} \cdot 1
$$

5. SUMMARY OF THE RING STRUCTURE OF $H H^{*}(\Lambda)$ FOR TYPE A_{n}

The cohomology is periodic with periodicity 6 , so we may identify $H H^{i}(\Lambda) \times H H^{6}(\Lambda)$ and $H H^{i}(\Lambda)$ as K-spaces for $i \geq 1$. Note also that $H H^{i}(\Lambda) \times H H^{0}(\Lambda) \cong H H^{i}(\Lambda)$ although $H H^{0}(\Lambda)$ and $H H^{6}(\Lambda)$ are not necessarily isomorphic spaces (see Sections I.5.3 and I.5.5). From [G S, G], $H H^{*}(\Lambda)$ is graded-commutative. In fact the ring $H H^{*}(\Lambda)$ is commutative, since we have shown in Section 1 that, for i, j odd, $H H^{i}(\Lambda) \times H H^{j}(\Lambda)=0$.

The information given in this paper about the composition of elements in $H H^{*}(\Lambda)$ is summarized in Table I. From the previous remarks, only the composition of elements $H H^{i}(\Lambda)$ with $H H^{j}(\Lambda)$ for $1 \leq i \leq j \leq 5$ need be given. M oreover, we give a presentation of ${H H^{e v}}^{e v}(\Lambda)$ by generators and relations, and then we also give a presentation of $H H^{*}(\Lambda)$ as an algebra over $H H^{e v}(\Lambda)$. These presentations may be deduced directly from Table I. The notation is given in Subsection 1.1.

Theorem. The even Hochschild cohomology ring $H^{e v}(\Lambda)$ has a presentation given as follows. It is commutative, generated by elements

$$
1, z, f_{0}, \ldots, f_{n-m-2}, \psi_{0}, X,
$$

where $1, z$ are in degree zero, the f_{i} are in degree $2, \psi_{0}$ is in degree 4 , and X is in degree 6. The subring generated by X is the polynomial ring in X. The other generators $\neq 1$ are nilpotent. The relations are as follows.
table I
Composition of Elements in $H H^{*}(\Lambda)$

	$H H^{1}(\Lambda)$		$H H^{2}(\Lambda)$	$H H^{3}(\Lambda)$	$H H^{4}(\Lambda)$	$H H^{5}(\Lambda)$	
$H H^{1}(\Lambda)$	0	$\left\{\begin{array}{l}H H^{3}(\Lambda) \\ g_{0} \cdot f_{n-m-2} \\ 0\end{array}\right.$	if char $K+n+1$ if char $K \mid n+1$ and char $K \neq 2$ in case n odd if char $K=2$ and n odd	0	$H H^{5}(\Lambda)$	0	
$H H^{2}(\Lambda)$			ψ_{n-m-2}	θ_{n-m-2}	$\begin{cases}0, & n \text { odd } \\ z_{m} \cdot 1, & n \text { even }\end{cases}$	$\begin{cases}0, & n \text { odd } \\ g_{m} \cdot 1, & n \text { even }\end{cases}$	
$H H^{3}(\Lambda)$				0	$\begin{cases}0, & n \text { odd } \\ g_{m} \cdot 1, & n \text { even }\end{cases}$	0	
$\begin{aligned} & H H^{4}(\Lambda) \\ & H H^{5}(\Lambda) \end{aligned}$					$\begin{cases}0, & n \text { odd } \\ f_{m}, & n \text { even }\end{cases}$	$\left\{\begin{array}{l} 0, \\ \sum_{j=0}^{m}(-1)^{j}(j+1) h_{j}, \end{array}\right.$	$\begin{aligned} & n \text { odd } \\ & n \text { even } \end{aligned}$

(a) $z^{m+1}=0=z f_{i}$ for $0 \leq i \leq n-m-2$. If n is odd then $z^{m} \psi_{0}=0$ and $z^{m} X=0$.
(b) Let $\epsilon_{k}=-1$ if $k \equiv 2,3(\bmod 4)$ and $\epsilon_{k}=1$ otherwise; moreover let $c(t, i)=(-1)^{i+t+l+n m} \epsilon_{n-m-2}(\min (i, t)+1)$. Then

$$
\left.\begin{array}{c}
\psi_{0} \cdot \psi_{0}= \begin{cases}f_{m} X, & \text { n even } \\
0, & n \text { odd }\end{cases} \\
f_{t} \cdot f_{i}=c(t, i) z^{n-m-2} \psi_{0}
\end{array}\right\} \begin{array}{ll}
(-1)^{m+i+1} \epsilon_{m}(i+1) z^{m} X, & \text { neven } \\
f_{i} \cdot \psi_{0}= & \text { nodd } .
\end{array}
$$

Theorem. The Hochschild cohomology ring $H H^{*}(\Lambda)$ has a presentation over $H^{e v}(\Lambda)$ as follows. It is commutative, generated by elements

$$
g_{0}, h_{0}, h_{1}, \ldots, h_{n-m-2}
$$

where g_{0} is in degree 1 and the h_{i} are in degree 3 for $0 \leq i \leq n-m-2$. The relations are as follows.
(a) For $0 \leq i, j \leq n-m-2$ we have $z h_{i}=0, g_{0} \cdot g_{0}=0, h_{i} \cdot h_{j}=0$, and $g_{0} \cdot h_{i}=0$. If n is odd then $g_{0} z^{m}=0$.
(b) We have

$$
\begin{gathered}
g_{0} \cdot f_{1}=(-1)^{i+1}\left[(n-2 i-1)\left(\sum_{j=0}^{i-1}(-1)^{j}(j+1) h_{j}\right)\right. \\
\left.\quad+(i+1)\left(\begin{array}{ll}
\sum_{j=i}^{n-m-2}(-1)^{j}(n-2 j-1) h_{j}
\end{array}\right)\right] \\
h_{i} \cdot f_{j}=\left(\delta_{i j} z^{n-m-2} \epsilon_{n-m-2}\right)(-1)^{n} g_{0} \cdot \psi_{0}, \\
0 \leq i, j \leq n-m-2 \\
h_{i} \cdot \psi_{0}= \begin{cases}\delta_{i m} \epsilon_{m} z^{m} g_{0} X, & n \text { even } \\
0, & n \text { odd } .\end{cases}
\end{gathered}
$$

REFERENCES

[ES] K. Erdmann and N. Snashall, On Hochschild cohomology of preprojective algebras, I, J. Algebra.
[G] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
[GS] M. Gerstenhaber and S. D. Schack, Algebraic cohomology and deformation theory, in "D eformation Theory of A Igebras and A pplications" (M. H azewinkel and M. Gerstenhaber, Eds.), Kluwer ASI Series Vol. 247, pp. 11-264, Kluwer A cademic, D ordrecht, 1988.
[S] A. Schofield, Wild algebras with periodic A uslander-R eiten translate, manuscript.

