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It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to 
a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann 
equations from the QRE, and show that this also contains a couple of quantum correction terms, the first 
of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), 
while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and 
predicts an infinite age of our universe.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The generally accepted view of our universe (homogeneous, 
isotropic, spatially flat, obeying general relativity, and currently 
consisting of about 72% Dark Energy, likely in the form of a cosmo-
logical constant Λ, about 23% Dark Matter, and the rest observable 
matter) implies its small acceleration, as inferred from Type IA su-
pernova observations, CMBR data and baryon acoustic oscillations 
[1–4]. However, quite a few things remain to be better understood, 
e.g.,

(i) the smallness of Λ, about 10−123 in Planck units (‘the small-
ness problem’),

(ii) the approximate equality of vacuum and matter density in the 
current epoch (‘the coincidence problem’),

(iii) the apparent extreme fine-tuning required in the early uni-
verse, to have a spatially flat universe in the current epoch 
(‘the flatness problem’),

(iv) the true nature of dark matter, and
(v) the beginning of our universe, or the so-called big-bang.

In this article, we show that one may be able to get a bet-
ter understanding of some of the above problems by studying the 
quantum correction terms in the second order Friedmann equa-
tion, derived from the quantum corrected Raychaudhuri equation 
(QRE), which in turn was obtained by replacing geodesics with 
quantal (Bohmian) trajectories [5] (this formulation of quantum 
mechanics gives rise to identical predictions as those of ordinary 
quantum mechanics). In particular, while one correction term can 
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be interpretable as dark energy, with the right density, and provid-
ing a possible explanation of the coincidence problem, the other 
term can be interpreted as a radiation term in the early universe, 
preventing the formation of a big-bang type singularity, and pre-
dicting an infinite age of our universe. One naturally assumes a 
quantum mechanical description of the fluid or condensate fill-
ing our universe, described by a wavefunction ψ =ReiS (assumed 
normalizable and single valued. Some well-studied examples in 
curved spacetimes, including in cosmology, include Refs. [6–9].
R(xα), S(xa) = real functions), associated with the four-velocity
field ua = (h̄/m)∂a S , and expansion θ = Tr(ua;b) = habua;b , hab =
gab − uaub (with vanishing shear and twist, for simplicity. The 
constant ε1 = 1/6 for conformally invariant scalar fluid, but left 
arbitrary here). We will see later in this article that a condensate 
composed of gravitons with a tiny mass is a natural candidate for 
this fluid. Then the quantum corrected Raychaudhuri equation fol-
lows [10]1

dθ

dλ
= −1

3
θ2 − Rcducud

+ h̄2

m2
hab

(�R
R

)
;a;b

+ ε1h̄2

m2
hab R;a;b. (1)

Note that Eq. (1) follows directly the Klein–Gordon or Dirac equa-
tion (or the Schrödinger equation for non-relativistic situations), 
and the quantum corrected geodesic equation that follows from 
them [10]. The second order Friedmann equation satisfied by the 

1 We use the metric signature (−, +, +, +) here, as opposed to (+, −, −, −) in 
[10], resulting in opposite sign of the h̄2 terms.
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scale factor a(t) can be derived from the above, by replacing 
θ = 3ȧ/a, and Rcducud → 4πG

3 (ρ + 3p) − Λc2/3, [11]2,3 (here the 
cosmological constant Λ has dimensions of 1/(length)2 as usual):

ä

a
= −4πG

3
(ρ + 3p) + Λc2

3

+ h̄2

3m2
hab

(�R
R

)
;a;b

+ ε1h̄2

m2
hab R;a;b, (2)

where the density ρ includes visible and dark matter, and may also 
include additional densities that arise in massive non-linear theo-
ries of gravity [16–18]. The h̄2 terms in Eqs. (1) and (2) represent 
quantum corrections (the first of these is also known as quantum 
potential), which vanish in the h̄ → 0 limit, giving back the clas-
sical Raychaudhuri and the Friedmann equations. Note that these 
additional terms are not ad hoc or hypothetical, but rather an un-
avoidable consequence of a quantum description of the contents of 
our universe. Also, since it is well known that Bohmian trajectories 
do not cross [19,20], it follows that even when θ (or ȧ) → −∞, 
the actual trajectories (as opposed to geodesics) do not converge, 
and there is no counterpart of geodesic incompleteness, or the 
classical singularity theorems, and singularities such as big bang 
or big crunch are in fact avoided. This view is also supported by 
the quantum corrected geodesic deviation equation derived in [10], 
which suggested that trajectories can never actually access infi-
nite curvatures.4 We will return to this issue later, and consider 
the first of these terms, which naturally appears as a cosmological 
constant

ΛQ = h̄2

m2c2
hab

(�R
R

)
;a;b

. (3)

ΛQ depends on the amplitude R of the wavefunction ψ , which 
we take to be the macroscopic ground state of a condensate (more 
on the details of condensate in [21]). Its exact form is not im-
portant to our argument however, except that it is non-zero and 
spread out over the range of the observable universe. This follows 
from the requirement of causality; even if matter exists beyond 
the horizon, it will have no effect on what is inside the horizon, 
including the wavefunction. To estimate ΛQ , one may assume a 
Gaussian form ψ ∼ exp(−r2/L2

0), or for one which results when 
an interaction of strength g is included in a scalar field theory, 
such that ψ = ψ0 tanh(r/L0

√
2 ) (g > 0) and ψ = √

2ψ0 sech(r/L0)

(g < 0) [23], it can be easily shown that (�R/R);a;b ≈ 1/L4
0, 

where L0 is the characteristic length scale in the problem, which 
is of the order of the Compton wavelength L0 = h/mc [24], over 
which the wavefunction is non-vanishing. This gives

ΛQ = 1

L2
0

=
(

mc

h

)2

, (4)

which has the correct sign as the observed cosmological constant. 
Next to estimate its magnitude, we identify L0 with the current 
linear dimension of our observable universe, since anything out-
side it would not influence an accessible wavefunction. With this, 

2 This procedure, as well the rest of the paper assumes large scale homogeneity 
and isotropy. Even if there are small (perturbative) deviations from homogeneity, 
these can be absorbed in an effective density ρ . Further these do not affect the 
dark energy content and accelerated expansion of the universe [12,13].

3 Note that in [14] too, the authors studied dark energy from the Bohmian me-
chanics perspective, but originating in a scalar field with non-standard action. Also, 
recently in [15], the authors used Bohmian mechanics in the context of Wheeler–
DeWitt equation, to explain inflation.

4 A similar conclusion was also arrived at by the frequency dependence of light 
paths (‘gravity’s rainbow’) picture in [22].
m can be regarded as the small mass of gravitons (or axions), with 
gravity (or Coulomb field) following a Yukawa type of force law 
F = − Gm1m2

r2 exp(−r/L0). Since gravity has not been tested beyond 
this length scale, this interpretation is natural, and may in fact be 
unavoidable [21]. If one invokes periodic boundary conditions, this 
is also the mass of the lowest Kaluza–Klein modes. Substituting 
L0 = 1.4 × 1026 m, one obtains m ≈ 10−68 kg or 10−32 eV, quite 
consistent with the estimated bounds on graviton masses from 
various experiments [25], and also from theoretical considerations 
[26–29]. In other words, we interpret the quantum condensate as 
made up of these gravitons, and described by a macroscopic wave-
function. Finally, plugging in the above value of L0 in Eq. (4), we 
get

ΛQ = 10−52 (m)−2 (5)

= 10−123 (in Planck units), (6)

which indeed matches the observed value. Also, since the size of 
the observable universe is about c/H0, where H0 is the current 
value of the Hubble parameter [31], one sees why the above value 
of ΛQ numerically equals H2

0/c2 (which is 8πG/3c4 × ρcrit , the 
critical density), offering a viable explanation of the coincidence 
problem. Note that the above also implies that this equality will 
hold at all times during the evolution of the universe. While the 
above relationship may have been known, here we provide a nat-
ural explanation for it, in terms of quantum corrections to the 
Raychaudhuri equations via the wavefunction of the cosmic fluid. 
This also brings out the essential quantum origin of the small cos-
mological constant.

One may also be tempted to interpret the quantum potential 
term as a perfect fluid with w Q ≡ p Q /ρQ = −1/3 (such that 
ρQ ∝ a−3(1+w Q ) ∝ a−2). However, a careful analysis using chi-
squared techniques, of the luminosity distances versus red-shifts of 
580 union 2.1 Supernovae data points, baryon acoustic oscillations, 
Hubble and CM shift parameters suggest that the corresponding 
density does not exceed 5% of the current density of the universe 
(at 95% confidence level), and also does not play any significant 
role in early or late epochs [30]. We therefore do not consider that 
possibility.

Next, we consider the second correction term in Eq. (2), which 
can be written in terms of H = ȧ/a, and for one species of fluid, 
with p/ρ = w as5

Ḣ = −3

2
(1 + w)H2 + ε1h̄2

m2
hab R;a;b

= −3

2
(1 + w)H2

− ε1h̄2

m2
6H4(1 + w)

[
6(1 + w)2 − 81

2
(1 + w) + 18

]
, (7)

where in the last step we have plugged in the FRW metric. When 
h̄ = 0, integration yields H → ∞ in a finite time, signifying a big-
bang type of singularity. It is interesting to note that H4 propor-
tional terms were also obtained from (i) the trace anomaly of a 
conformal field theory dual to a five-dimensional Schwarzschild–
AdS geometry, and which is known as holographic/conformal-
anomaly Friedmann equation [32,33], (ii) correction to Raychaud-
huri equation in cosmology derived in brane world scenarios [34], 
and (iii) derived in spacetime thermodynamics and the generalized 
uncertainty principle of quantum gravity [33]. It would be interest-
ing to investigate underlying connections between the above if any.

5 The following discussions, and in particular the conclusion following from 
Eq. (11), remain valid even if the first (cosmological constant) term is retained.
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Fig. 1. Ḣ versus H .

Next, to examine the presence or absence of past singularities, 
we write Eq. (7) as

Ḣ = F (H), (8)

and from which the age of the universe as

T =
T∫

0

dt =
H P∫

H0

dH

F (H)
, (9)

where H0 signifies the current epoch. For the ordinary FRW uni-
verse with no quantum corrections of the above type (i.e. ε1 = 0), 
F (H) = −(3/2)(1 + w2)H2, the density and H → ∞ ≡ H P in the 
past (big-bang singularity), where |Ḣ | → ∞ as well, and we get

T = 2

3(1 + w)2 H1
, (10)

which once again, is finite. Now if corrections to the classical 
FRW model changes the nature of the function F (H) (e.g. the de-
gree of the polynomial), such that now neither H nor Ḣ diverges, 
then if H P signifies the nearest fixed point in the past, such that 
F (H P ) = 0, we approximate F (H) = F (n)(H P )(H − H P )n near the 
fixed point, the region which contributes most to the integral, and 
obtain [35]

T = 1

F (n)(H P )

H P∫
H1

dH

(H − H P )n
→ ∞, (11)

signifying a universe without a beginning. This is precisely what 
is expected from the no-focusing of geodesics and the quantum 
Raychaudhuri equation. For example, for Eq. (2), it can be easily 
shown that the sign of the quantum correction (H4) term is posi-
tive (i.e. opposite to the classical, H2 term), for −0.52 ≤ w ≤ 5.27, 
which covers most of the physically interesting range, including 
w = w R = 1/3 (radiation), which is most relevant for the very 
early universe, and also non-relativistic matter (w = wNR = 0). The 
situation is depicted in Fig. 1, where it can be seen that in the 
above range of w , H P is indeed finite, and therefore T is infinite 
from Eq. (11). Thus, the second quantum correction in the Fried-
mann equation gets rid of the big-bang singularity.
In summary, we have shown here that as for the QRE, the 
second order Friedmann equation derived from the QRE also con-
tains two quantum correction terms. These terms are generic and 
unavoidable and follow naturally in a quantum mechanical de-
scription of our universe. Of these, the first can be interpreted 
as cosmological constant or dark energy of the correct (observed) 
magnitude and a small mass of the graviton (or axion). The second 
quantum correction term pushes back the time singularity indefi-
nitely, and predicts an everlasting universe. While inhomogeneous 
or anisotropic perturbations are not expected to significantly affect 
these results, it would be useful to redo the current study with 
such small perturbations to rigorously confirm that this is indeed 
the case. Also, as noted in the introduction, we assume it to follow 
general relativity, whereas the Einstein equations may themselves 
undergo quantum corrections, especially at early epochs, further 
affecting predictions. Given the robust set of starting assumptions, 
we expect our main results to continue to hold even if and when a 
fully satisfactory theory of quantum gravity is formulated. For the 
cosmological constant problem at late times on the other hand, 
quantum gravity effects are practically absent and can be safely ig-
nored. We hope to report on these and related issues elsewhere.
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