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How Sib Pairs Reveal Linkage

To the Editor:
The Haseman-Elston (1972) method, widely used for
studying linkage, has been criticized for incomplete
utilization of sib-pair information. As an alternative,
Amos (1994) created and advocates the “variance-
components” approach; Wright (1997), using a “like-
lihood argument,” found that the phenotypic difference
discards sib-pair linkage information; and Fulker and
Cherny (1996) came to a similar conclusion after an
analysis of sib-pair covariances (Fulker et al. 1995).
Here, I propose an extension of the Haseman-Elston
(1972) method that puts the sib-trait sum into linkage
testing.

Suppose a trait X has a normal distribution with a
mean genetically determined and environmental (resid-
ual) variance ; each sib pair has i alleles identical by2je

descent (IBD) at the trait locus, , 1, or 2; and thei � 0
sib pair–trait vector has joint normal (bi-T TX { (X , X )1 2

normal) distribution:

1 1 T �1F(X) � exp � (X � m) S (X � m) ,[ ]x2�2p FS Fx

where m is the overall mean and the symbol T stands
for “transpose.” The matrix is the inverse of the�1Sx

variance-covariance matrix, which has the form

v c
S � ,x ( )c v

where

1v � var(X) � V � V � V � V � Vp c e a d2

1� V � V � V � V ,p c e g2

1 1 1c � cov(X , X ) � V � V � iV � i(i � 1)V1 2 p c a d2 2 2

1 1 1� V � V � iV � i(i � 2)V , (1)p c g d2 2 2

and the variances are as follows: polygenic, Vp; common
environment, Vc; additive genetic, Va; dominance ge-
netic, Vd; residual, Ve ; and total genetic,2(� 2j ) V �e g

(Malécot 1966, p. 320; Amos 1994; Fulker andV � Va d

Cherny 1996).
Let us introduce two new variables: , andD � X � X1 2

. By use of matrix algebra methods, it isS � X � X1 2

easy to show that the variance-covariance matrix of D
and S is diagonal:

( )2 v � c 0
S � ;[ ]( )0 2 v � c

thus, these new “coordinates” are uncorrelated, each of
them having the normal distribution, and their joint dis-
tribution is

2 21 D (S � 2m)
F(D, S) � exp � � .[ ]2 22pj j 2j 2jD S D S

The variances are and . In-2 2j � 2(v � c) j � 2(v � c)D S

stead of variances, let us consider the squared pair-trait
difference and the squared pair sum :2 2Y { D Z { S

2E(YFi) � jD

� (V � V � 2V ) � iV � i(2 � i)V , (2)e p g g d

and

2 2E(ZFi) � j � 4mS

2� (V � 3V � 4V � 2V � 4m ) � iVe p c g g

� i(2 � i)V , (3)d

where the symbol stands for “expectation.” TheE

squared pair-trait difference, Y, has been studied (Has-
eman and Elston 1972; Blackwelder and Elston 1982).

Each of the variables (2) and (3) is a function of the
number of alleles IBD, i, at the trait locus, and their
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expected values, conditional on the marker information,
are of interest:

E(...FM) � E(...Fi)P(iFM) , (4)�
i�0,1,2

where is the probability of i alleles IBDf { P(iFM)i

( , 1, or 2) at the trait locus. The expectations arei � 0

E(YFM) � [(V � V � 2V ) � iV� e p g g
i�0,1,2

� i(2 � i)V ]fd i

1� (V � V � 2V ) � 2V (p � )e p g g 2

1� V (J � )d 2

1� (V � V � V � V ) � 2V p � V Je p g d g d2

and

2E(ZFM) � [(V � 3V � 4V � 2V � 4m )� e p c g
i�0,1,2

� iV � i(2 � i)V ]fg d i

2� (V � 3V � 4V � 2V � 4m )e p c g

1 1� 2V (p � ) � V (J � )g d2 2

1 2� (V � 3V � 4V � 3V � V � 4m )e p c g d2

� 2V p � V J ,g d

where

1 1 1p { f � f � and J { f � (5)1 2 12 2 2

at the trait locus. These definitions of p and J differ
from those introduced by Haseman and Elston (1972)
and used by Blackwelder and Elston (1982) by the term

. So defined, p and J are proportional to the same1
2

functions (5) of {fi}, calculated at the marker locus (Dri-
galenko, in press):

2p � hp , J � h J , (6)m m

where pm and Jm are calculated on the basis of relatives’
marker phenotypes, , and r is the recom-2h � (1 � 2r)
bination coefficient between the trait locus and the
marker locus that depends on the (unknown) distance
between them. Finally, the regression equations become

1E(YFM) � (V � V � V � V ) � 2V hpe p g d g m2

2� V h Jd m

� a � bp � gJ (7)D m m

and

�E(ZFM) � �(V � 3V � 4V � 3Ve p c g

1 2 2� V � 4m ) � 2V hp � V h Jd g m d m2

� a � bp � gJ , (8)S m m

where ,1a { V � V � V � V a { �(V � 3V �D e p g d S e p2

, , and . So,1 2 24V � 3V � V � 4m ) b { V h g { V hc g d g d2

consideration of the squared pair sum of the trait values
(taken with the opposite sign) results in a regression line
that is parallel to that for the squared pair difference.
Since seven parameters are unknown (Ve, Vp, Vc, Vg, Vd,
m, and h) and four regression coefficients are independent
(aD, aS, b, and g), all the parameters cannot be estimated.
Note that only the slopes, b and g, are important for
testing linkage (Haseman and Elston 1972; Blackwelder
and Elston 1982) and that these are the same for the
sum and the difference of the sib pair–trait values.

The method described here uses all the information
from the sib pair. To demonstrate the gain obtained
when the sum and the difference are used together, let
us ignore dominance, suppose that the residuals have
the same variance in (6) and (7), and use Student’s t-
statistic to test the hypothesis H0: . Then, joint useb � 0
of the sum and the difference (rather than the difference
alone) doubles the number of points on the regression
line and, therefore, doubles the estimated values of both
b and its variance, so that the t-statistic is enlarged by
a factor of ∼ , increasing the power of the test. Fulker�2
and Cherny (1996, fig. 1) obtained similar results using
simulated data and maximum-likelihood estimation.

More explicitly, for N sib pairs, indexed by j (j �
), the regression equations (7) and (8) include1, ) , N

residuals �D and �S, assumed to be normally distributed
and common for each sib pair (the dominance is ig-
nored):

Y � a � bp � � , � Z � a � bp � � . (9)j D j D j D j S

These regression lines give the least-squares estimates of
the slope:

NSY p � SY Spj j j j
b̂ � ,D 2 2NSp � (Sp )j j

NSZ p � SZ Spj j j j
b̂ � . (10)S 2 2NSp � (Sp )j j
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Under the assumption that the residuals have the same
variance in (9), var(�D) � var(�S), it is easy to prove that
the least-squares estimate of the slope based on com-
bined data for D and S (denoted by D S) is�

[ ] [ ]NS (Y � Z )/2 p � S (Y � Z )/2 Spj j j j j j

b̂ �D�S 2 2NSp � (Sp )j j

1 ˆ ˆ� (b � b ) , (11)D S2

that is, the “combined” regression line is exactly between
the two individual lines. Owing to the properties of
variances,

1ˆ ˆ ˆ[ ]var(b ) � var (b � b )D�S D S2

1 ˆ ˆ� [var(b ) � var(b )] ,D S4

because cov( , ) � 0, which is easy to see from (10)ˆ ˆb bD S

under the condition of cov(Yj, Zj) � 0, discussed above.
Hence, the estimate based on combined data for D and
S has the smallest variance, that is, it is the most effective.

Note that, for every pair, (11) is based on the half-
difference of Y and Z, which is 1 1(Y � Z) � [(X �12 2

The half-sum of (7) and2 2X ) � (X � X ) ] � �2X X .2 1 2 1 2

(8) gives the equation

1E(�2X X FM) � (a � a ) � bp � gJ ,1 2 D S m m2

which may be easily derived from (1) and (4). Thus, the
most clear estimate, , is based on the pair-trait mul-b̂D�S

tiplication, because the linkage test depends on the num-
ber of alleles IBD (which is a characteristic of a pair
rather than an individual); the covariance (1) gives the
same information as any combination of the squared
pair-trait difference and the squared pair sum. This ex-
plains the effectiveness of the variance-components
method (Amos 1994).
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